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Abstract: Aiming at the problems of the current fan blade defect detection algorithm, such as insufficient detection accuracy, high
incidence of false detection under complex background and inconvenient deployment of model, an improved YOLOv8n fan blade defect
detection algorithm was proposed. Firstly, a new Extra-IB module and C2{-Extra-IB module are introduced to improve the key modules in
MobilenetV2, which are used to reduce the number of model parameters to achieve lightweight and pass high-quality feature maps for
subsequent feature fusion. Secondly, the AEMFP module is proposed to replace the SPPF module, which innovatively integrates the
EMA attention mechanism and parallel substructure design to improve the multi-scale feature fusion and feature adaptive extraction
capability of the algorithm. Finally, ELA attention mechanism is introduced into the neck network to reduce the influence of complex
environment on the detection effect and improve the detection accuracy of small targets. Ablation experiments and comparison
experiments were conducted using fan blade surface defect data set. The proposed algorithm mAP reached 81. 7%, an increase of 5. 1%
compared with YOLOv8n. The number of model parameters and floating-point calculations were 2.09 x 10° and 5.4 GFLOPS,
respectively, decreasing by 22.3% and 21. 7%. The model size is reduced by 19.8% and the detection frame speed reaches 45.57
frames. It shows that the improvement measures proposed in this paper can not only improve the detection accuracy of the algorithm, but
also achieve lightweight, which can meet the demand of using the detection equipment with limited computing resources such as UAV for
efficient and accurate fan blade defect detection.
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Table 1 Experimental environment configuration

E2 24
BAERG Windows 11 64 fif

GPU Nvidia GTX 4090D 24 GB
CPU Intel 19 14900K
Python 3.10

Pytorch 1.9

Cuda 12. 1

3.2 HiR&

N BGIEAS SCHT £2 2t 3R W 18 M, 78 Roboflow
SR 22 AN TR T AL i Bk g 5 B 1 8 - 11
K B ML B0 5 | T 2 | o B R R AR R B iR R —
5 065 S R W w g i il i R A IR AT 5 R T s I
3FPE ULEBRIG . HEER 7 0 2 0 1 AU LB RI A 2R A IR
LM, RANGE 3 545 K E R, BE4E 1 013
gk AR 507 sk I8 R B g i B Y 3 LR B
mE 9 iR,

(a) FR ¥ Y H
(a) Tip oil leakage

P19 LR XUBILAR 2 T e
Fig. 9 Typical turbine blade surface defect

(b) BB HR
(b) Pin hole

(c) R
(c) Dirt
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3.3 EMisER

AIEZ HARK AT 55, ok ARG i % A 0% mAP
R VEAGABIRY A RS o 2 AR A 238, SR T S8R 17 A
1B FH( GFLOPs ) FISE BRI /N E Al B R 1 315 52
F 2T B MR A P o4 0 G ASE ARG 4 2 17 38 8 A
SR, PO R EE A R mAP T 34 i
2(10) ~ (12) FirR,

T,
pP= (10)
T, +F,
TP
R= x 100% (11)
T, +Fy
N
2 AP,
mAP = x 100% (12)

K, T, R EIE B, s RSN A 1E (4 IR RE AR i Bl
F, B IE B, om0 1 /) REA R Fy R
B, 7R BT T S 0 4 TE B AR () 8l s AP Ol P-R
i1 2k 5 A s Al LR T 19 TRT AL s mA P R TG 3 o e o
AP HFHIMH.,
3.4 HERICIE

R VA AR S RIT 4R I S X T A R 1 A B T AL
A, UL YOLOV8n N BEE BRI T 7 ZH AN [a] ele it S m 2
BRI, S5 1 419 YOLOvSn FELRFERL 55 2 3 4 41
A3 A C2f-ExtralB  AEMFP Fl ELA Ji5 4 52 56 45
W, 955,67 412k 3 P R P IR A R SE IR A R
558 UL (AT ) M RN b 3 Fhcist 5 s s i S b
B TR I I A 2588 S 508 — B s L R 58
BT S AR 2 R,

Table 2 Ablation experiment

F%5 YOLOv8n C2f-Extra-IB ELA  AEMFP P/% R/ % mAP/% i/ (x10°) THHEE/GFLOPS HRAMARY/MB MR/ fps
1 vV 0.806  0.697 0. 766 2.69 6.90 5.50 64.25
2 VvV vV 0.79 0.738 0.791 1.86 4.90 3.94 63. 46
3 Vv Vv 0.817  0.722 0.791 2.77 7.10 5.51 63.23
4 VvV vV 0.774  0.745 0.799 2.83 7.30 5.80 63.53
5 vV vV V. 0.864 0.71 0.795 2.92 7.40 5.96 53.9
6 Vv Vv Vv 0.788  0.724 0.784 1.95 5.1 4.12 52.9
7 Vv vV vV 0.808  0.706 0.788 2.00 5.2 4.23 52.37
8 VvV Vv Vv vV 0.817  0.756 0. 817 2.09 5.40 4.41 45.57

SEEE LR LRI C21-Extra-1B BEHY FPRG i 5 A7
NI REARG , R S50 R 038 S RO A .35 el 2 ) e
A1 P RS B 73 ) 42 T 4. 19% #0102, 5% , YL C2f-
Extra-1B AN 0] D845 AU P BE 18 1T L SE B AU 4%
Al BUSIN ELA 5 AL LASS i b i 440 5 B /i
7 RS BRI A R B 2% A [ SR 5 B 1 el

#,5 YOLOv8n AH L Ar 48 T 1. 1% .2.5% 2. 5%, H
TN AEMFP #5250 285 SRR A T I 270 R 1 R AR
3.2% , BIERYE ) 4. 8% , FHPE R 3. 3% , S HU Y
H5. 2% , 77 ASAB A BRI 5. 7% , i AEMFP i n] L)
R R T 22 A ARG I P R o R R AR A Y A
R, [RIEFASIN 3 b i ath S m A5 ARG i o | A [l R A3
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539 &

KA ) HE BRI SR 2 1. 1% 4. 3% 5. 1% , 508 A
TF w38 B0 ) PR AR 22. 3% A1 21, 7% , B A A AR ek 2>
19. 8% , MR JF /1> 18. 68 fps, Pi A SCRTHE B S vl L)
[ 4 o G DR 5 RN S 2 A
3.5 XtLbsCId

1) C2f-Extra-1B BEHE A0 B ] L5256

fifi i C2f-Extra-TB 4l YOLOv8n ik if R [ 47 B
F) C2f BEH , DIRGY se O 1R85 4 75 28 Ry Jie S8 HL At ik 5
W A RS B AR . 5256 LA YOLOVS g FELR A5 Y | Hif 9y
20 M3 51 B R B Backbone 1 Neck B FIFA C2f B |
55 3 21 K [F] A -4 Backbone Ml Neck H1EITA C2f A,
AT A RNER 3 PR,

R 3 C2f-Extra-IB #Hiir B XfEL 016
Table 3 C2f-Extra-IB replacement position

comparison experiment

SRR, R

el P/%  R/'%  mAP/%
(x10°) GFLOPS
YOLOv8n 0.806 0.697  0.766 2.69 6.9
Backbone 0.788 0.719  0.788 2.26 5.7
Neck 0.785 0.705  0.778 2.28 6.1

Backbone+Neck  0.790  0.738 0.791 1.86 4.9

FSCI 2 S nT LA ), 28 4t Backbone F1 Neck H
Frf C2f B, Z AR RITE 3 B die 0y 2 RIEAL, 4 [
B OFEIRE mAP@ 0. 5 # 3L LA 3 B $2 T 4. 1% il
2.5%,Z B FfIE 038 BB 0T BE 2 30. 8% A
28.9% KEWh R BN T I 1. 6% , (A IE7E 3 My &b
22 B /N W S5 22 i 3t A5 7 447 R B Backbone 11
Neck [FJF 4 C2f-Extra-IB A7 58, SCERSE R LW C2f-
Extra-1B FEHBEAE AT 850080 /053 15 S B0 TR B8 S8
[ FsF 2 g R PR A TR

2) AN B I ML X L SE

SHIE ELA 3 2 7 ML AR AR SO $it g B0 12 4 0
T 15 A A 1 A e Ak B 3, 43 il B CBAM, SE |
SA (shuffle attention) \ECA F1 CA 5 Ff UL i) 142 22 F1 LI
B A SO R Y ELA TERE LRI T 4 e S2 5
SCEGEE RN 4 PR,

S EE IR R B — R B AL I A G R S 4
S B AN TR JEE 1 Bt ofe T AR ARG JDRS E  4 TE
FEIX 6 R AL | SE TR L FE A5 i L2 i B TR
&, B4 Jry b fb RN 4 1 AR 3 T A F 3%
H AR AIERAIRE T, R 2RI A (FJ2 T4 R A4
VES ZME 4y AN 15 8., P I 2 3508 B3 A 0K, 154G A U
K 2 A A 2 ECA SR B — 4 VR 1 ] 43 B8 5 B, ARl
SRR T LS BN I /D (R LA R 15 B e
59 ;CBAM ¥ [HE R N SBEEENES  ITRE 2,
FE T 82 2515 S B A ; SA S T8 i Btk AT A 4l B B

IRJE HEA IR UE , ZHGE /N AEZAG IR 23 B3 5] 1 g
B TERAA IR AR A EAFES , IR AE; CA (]
T BRI PR AE X SRR A, TE Neck A3
FIA ELA SR LM A SCRE R 6 R LU SE 11 &
FIIHIK 4% fHRAR T HoAth 4 Fpid: 2 AL SR 1 [ R
12 6 B B AL e m , B A SO AR S PR
P 3 G2 I 4G A A AR BEATR ; P 4R BEAE © i =0 L
i T R IR AT, 43 ) U] SE ECA [CBAM SA Vi)
B 2. 7% 2% 3. 6% 0. 9% , 13 W A 3L 1 7E A6 0 Sk
BFEFE ELA W AL AT 22 2650 H AR A6 I kA 5
PHERR R
x4 AEFEAVFIXS L LI
Table 4 Comparative experiment of
different attention mechanisms
SHE/ HER/

sl P/%  R/'% mAP/ %
(x10°) GFLOPS
YOLOv8n  0.806  0.697 0. 766 2.69 6.9
C2f-Extra-IB+
0.808 0.706 0. 788 2.00 5.2
AEMFP

+SE 0.857 0.724 0.790 2.01 5.2
+ECA 0.785 0.741 0.797 2.00 5.2
+CBAM 0.809 0.703 0. 781 2.09 5.3
+SA 0.777  0.730 0. 808 2.00 5.2
+CA 0.795 0.743 0.810 2.02 5.6
+ELA 0.817  0.756 0.817 2.01 5.4

3) AEMFP FEHA 0 SE50 R 55 E AEMEFP BIdk 4
AR50 RS ST B vk G AN ) RUST L R B 1) 5 e | i
IUT 416416 ,640x 640 800X 800 = Ft i UL /3 1k 4 114 [&]
BN R REAS G i A AT 52, BN b T A
%) YOLOv8n ,YOLOv8n+AEMFP #5581 DL R A Sr 4k 3 fif
FERIPAE TR 3 [ 2R mAP | SCE BRI 3R 5 s,

#* 5 AEMFP EHEHIERLE
Table 5 Experiment on the effectiveness
of AEMFP module

& RE TR P/% R/% mAP/%
YOLOv8n 78.7 73.9 78
416%416 +AEMFP 76.5 72.2 78.5
AR 81.6 71.4 79.6
YOLOv8n 80.6 69.7 76.6
640%640 +AEMFP 77.4 74.5 79.9
' 81.7 75.6 81.7
YOLOv8n 78.1 74.1 79.1
800x800 +AEMFP 82 70. 8 79.2
A3 80. 3 72.5 80.5

H2 5 A, AEMFP AHAEA A [R] 43 R 18 A st
XSS PRI — B, 416x416 (K7 FER 5 A 11
LTI AEMFP AL EET mAP $27F T 0. 5%, {H )2
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Sy BERAR SR BRI REAE AR 2T 5 B 32 A0 3 [
KRR H ILE 640x640 RSFH AT, AEMFP A5 He i 3%
$Em T A EPRA mAP, 43582 & T 4. 8% Fl 3. 3% ;800
800 MR/ HERE AT B R A T 8 F & MRHEE B, H
EABBI AT LI EEMERA | I AEMFP BB = T BRIy
FEH0RA mAP [ [ A R R A BTG,

AR LEANA I AEMFP BB A SCRIE AR 43 PR
AN T T HRALA mAP, 7E 640x640 Fl 800800
IR AR SR mAP 251553 T 81. 7% F1 80. 5% , B
i 416x416 WAL/ HERim A T EEEE] 79. 6%, LI L
SEEULIA T AEMFP R (4 850 | [RI AR B T AR SC T4t
RN BN R e o

4) H UL e A % L

R T 2P PR AR SO R SR AR XUBL2E i Bk 1
1155 FRPEREFR I, 76 AH [R) S5 55 PR 455 Rl 25 4% S 805008
T Z AU i B ARSI AT L SE S, R
L5 R 22 501% YOLOVS . YOLOvIO 1 YOLOv11 YA ] L
MEAA: [ B K YOLOV8n B R AIE £ HUR T X 2% B 46 oy
MobilenetV2  MobilenetV3 | ShuffleNetV2 F EfficientNetV2
SR I M5 | 3 o X H S i B A TIDRS BE  mAP 2
Bi 0F R B BRUARUR ININIRAE 6 FhEE bR IRk
A SRR AR XL 3 T ke o A AT 55 b g A1 35
BB TSI A AR 6 R .

®6 ERNBEUEEILLSLE

Table 6 Comparison experiment of common target detection algorithms

P/ %

SHe/

AR,

w e wihs g ol "% Gaosy  crops  PURFRVAD B fpe
1 YOLOv8n 71.1 88.8 75.3 76.6 2.69 6.9 5.50 64. 25
2 YOLOv8s 69.5 88.6 75.9 78 9. 84 23.6 19. 50 48. 83
3 YOLOv10n 66. 8 86.3 78. 1 77. 1 2.7 8.4 5.64 58.07
4 YOLOv10s 69. 8 87.7 79 78.8 8. 06 24.8 16. 16 56. 64
5 YOLOvlln 73.4 89.3 76.3 79.7 2.59 6.4 5.36 60. 24
6 YOLOvlls 72.5 88.8 80.9 80.7 9.41 21.3 18.75 60. 06
7 YOLO_shufflenetV2 69. 4 86. 4 75 76.9 1.7 1.1 3.56 52.28
8 YOLO_mobilenetV2 68.4 87.6 77.5 77.8 3 7.6 6.15 59.41
9 YOLO_mobilenetV3 72 89 79.3 80.5 2.69 6 5.58 46.77
10 YOLO_efficientnetV2 70. 1 87.2 75.8 77.7 2.18 2.4 4.59 46. 06
11 AL 72.2 89.7 84.6 81.7 2.01 5.4 4.41 45.57
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