
第 39 卷　 第 10 期

2025 年 10 月

电子测量与仪器学报

JOURNAL
 

OF
 

ELECTRONIC
 

MEASUREMENT
 

AND
 

INSTRUMENTATION
Vol. 39　 No. 10

·269　　 ·

收稿日期:
 

2025-01-02　 　 Received
 

Date: 2025-01-02

DOI:
 

10. 13382 / j. jemi. B2508087

恶劣环境下的道路目标检测算法研究
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(安徽工程大学电气传动与控制安徽省重点实验室　 芜湖　 241000)

摘　 要:在智能交通系统和安防监控等领域中,目标检测技术的准确性至关重要。 然而,除常规交通环境外,雨雪等特殊天气条

件严重制约着目标检测的精度。 雨雪天气致使图像模糊不清,极大地增加了行人、车辆等目标的特征提取难度,导致检测结果

误差较大,影响相关系统的有效运行。 为攻克这一难题,以
 

YOLOv7
 

算法为基础,深入研究并提出了一种适用于雨雪等特殊天

气的目标检测优化方法。 首先,引入广泛应用的暗通道去雾算法和基于引导滤波的去雨雪算法,对受雨雪雾影响的图像进行预

处理,有效消除天气因素造成的图像降质,恢复图像清晰细节。 其次,将
 

DIP 模块与
 

CNN-PP 模块相结合,通过弱监督学习方

式,进一步挖掘图像中的目标特征,增强算法对复杂天气下目标的识别能力。 大量实验结果表明,改进后的算法在检测精度方

面表现卓越。 相较于
 

YOLOv5
 

算法,其检测精度提升了
 

23. 7%;与原
 

YOLOv7
 

算法相比,也实现了
 

11. 9%
 

的显著增长。 这充分

证明了所提方法在特殊天气目标检测场景中的有效性和优越性,为智能交通、安防监控等领域在恶劣天气下的稳定运行提供了

可靠的技术支持,具有重要的实际应用价值和广阔的发展前景。
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Abstract:
 

In
 

the
 

fields
 

of
 

intelligent
 

transportation
 

systems
 

and
 

security
 

monitoring,
 

the
 

accuracy
 

of
 

target
 

detection
 

technology
 

is
 

of
 

great
 

significance.
 

However,
 

in
 

addition
 

to
 

the
 

normal
 

traffic
 

environment,
 

adverse
 

weather
 

conditions
 

such
 

as
 

rain
 

and
 

snow
 

severely
 

restrict
 

the
 

accuracy
 

of
 

target
 

detection.
 

Rain
 

and
 

snow
 

weather
 

make
 

images
 

blurry,
 

greatly
 

increasing
 

the
 

difficulty
 

of
 

feature
 

extraction
 

for
 

targets
 

such
 

as
 

pedestrians
 

and
 

vehicles,
 

resulting
 

in
 

large
 

errors
 

in
 

detection
 

results
 

and
 

affecting
 

the
 

effective
 

operation
 

of
 

related
 

systems.
 

To
 

address
 

this
 

challenging
 

problem,
 

this
 

paper
 

proposes
 

an
 

optimized
 

target
 

detection
 

method
 

for
 

special
 

weather
 

conditions
 

like
 

rain
 

and
 

snow
 

based
 

on
 

the
 

YOLOv7
 

algorithm.
 

Firstly,
 

a
 

widely-used
 

dark
 

channel
 

de-fogging
 

algorithm
 

and
 

a
 

rain
 

and
 

snow
 

removal
 

algorithm
 

based
 

on
 

guided
 

filtering
 

are
 

introduced
 

to
 

preprocess
 

images
 

affected
 

by
 

rain,
 

snow,
 

and
 

fog.
 

This
 

effectively
 

eliminates
 

the
 

image
 

degradation
 

caused
 

by
 

weather
 

factors
 

and
 

restores
 

clear
 

details
 

of
 

the
 

images.
 

Secondly,
 

the
 

Deep
 

Image
 

Prior
 

(DIP)
 

module
 

is
 

combined
 

with
 

the
 

convolutional
 

neural
 

network-post-processing
 

( CNN-PP )
 

module.
 

Through
 

weakly
 

supervised
 

learning,
 

the
 

method
 

further
 

excavates
 

the
 

target
 

features
 

in
 

the
 

images,
 

enhancing
 

the
 

algorithm’ s
 

recognition
 

ability
 

for
 

targets
 

in
 

complex
 

weather
 

conditions.
 

Extensive
 

experimental
 

results
 

demonstrate
 

that
 

the
 

improved
 

algorithm
 

performs
 

excellently
 

in
 

terms
 

of
 

detection
 

accuracy.
 

Compared
 

with
 

the
 

YOLOv5
 

algorithm,
 

its
 

detection
 

accuracy
 

has
 

increased
 

by
 

23. 7%,
 

and
 

a
 

significant
 

growth
 

of
 

11. 9%
 

has
 

been
 

achieved
 

compared
 

with
 

the
 

original
 

YOLOv7
 

algorithm.
 

These
 

results
 

fully
 

prove
 

the
 

effectiveness
 

and
 

superiority
 

of
 

the
 

proposed
 

method
 

in
 

target
 

detection
 

scenarios
 

under
 

special
 

weather
 

conditions.
 

It
 

provides
 

reliable
 

technical
 

support
 

for
 

the
 

stable
 

operation
 

of
 

intelligent
 

transportation,
 

security
 

monitoring,
 

and
 

other
 

fields
 

in
 

adverse
 

weather,
 

showing
 

important
 

practical
 

application
 

value
 

and
 

broad
 

development
 

prospects.
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0　 引　 言

　 　 计算机视觉已经成为社会发展和科学进步的一个重

要组成部分,近年来由于卷积神经网络的快速发展,使得

计算机视觉开始融入日常生活,并对其产生了极为深远

的影响。 在自动驾驶场景下对目标的检测已然成为了热

点研究方向之一,同时也是促进城市化快速发展的重要

环节。 因此,在现如今的交通道路场景下,如何实现快速

准确对目标进行检测仍是一大难题。
然而针对恶劣天气环境中的目标检测是道路目标检

测领域需要克服的一个难题,其中包括对雾霾天气和雨

雪天气的目标检测。 目前主要的去雾算法方法有两类,
一类是基于图像增强的去雾方法,该方法只是简单的加

强了图像的细节信息,并没有很好的实现去雾效果;另类

是基于物理成像的去雾方法,该方法通过数学建模实现

大气散射物理模型。 贾世娜[1] 通过提高图像的局部对比

度实现图像去雾,但是该方法使得复原图像的对比度过

高。 梅英杰等[2] 通过利用中值滤波估计大气光成像函

数,复原图像中的景物边缘出现光晕。 黄慧[3] 提出暗通

道理论,结合物体成像模型推导出图像的透射率实现去

雾。 周勇等[4] 提出通过引入混合暗通道,来解决有雾图

像中出先大面积天空和白色物体时暗通道先验失效的问

题。 陈丹丹等[5] 通过修正大气耗散函数,进而使得透射

率更加准确。 杨国亮等[6] 针对雨雪天气条件下的运动目

标检测受到天气的影响较大,采用交替迭代乘子法的思

想结合增广拉格朗日乘子法对目标函数进行优化求解。
目前图像去雨雪方法根据是否有时间特性分为视频

去雨雪和单幅图像去雨雪。 Shijila 等[7] 提出了基于低秩

近似结合整体变分正则化运动目标检测方法,该方法是

鲁棒主成分分析 ( robust
 

principal
 

component
 

analysis,
RPCA)框架的扩展,对视频中的噪声有较好的去除效果。
Li 等[8] 提出了基于超像素时空特征的视频显著性检测

方法,该方法可对图像进行超像素分割以提取颜色梯度

和运动梯度特征,从而构建超像素级的时空梯度图。 Li
等[9] 提出了分割和显著性约束方法,该方法可以应对动

态背景和显著性约束并能够检测到缓慢移动的对象,但
是未考虑视频中的噪声,所以在实际应用中可能会影响

检测效果。
现有研究大多聚焦于单一的去雾或去雨雪处理,且

在恶劣天气下将图像预处理与目标检测算法结合以提升

检测性能的研究仍不够深入,无法满足复杂恶劣交通环

境下车辆行人检测的需求。
本文在已有研究基础上展开深度探索。 创新性地结

合暗通道先验算法与基于引导滤波的操作,实现高效的

去雾和去雨雪处理,大幅提升恶劣天气下图像的清晰度。

同时,引入深度图像先验 ( deep
 

image
 

prior, DIP ) 模块

和(convolutional
 

neural
 

network-post
 

processing,CNN-PP)
模块,并与 YOLOv7(you

 

only
 

look
 

once
 

v7)检测器联合学

习,改进后的算法在雨雪雾恶劣环境下展现出了良好的

检测性能。 本文研究有效弥补了现有研究的不足,为恶

劣天气下交通场景的目标检测提供了更优解决方案,对
推动自动驾驶等相关领域发展具有重要意义。

1　 图像去雨雪雾研究

　 　 在面对雨雪雾环境时,自动驾驶采集到的实时图像

并不如平时图像一样清晰,这也使得在雨雪雾环境下的

检测结果并不好,因此对图像清晰化的预处理就显得极

为重要。 本文针对雨雪环境和雾天环境分别进行图像的

清晰化处理,在处理雾霾天气时,本文基于暗通道先

验[10] 的方法实现去雾,而在处理雨雪环境时,本文基于

引导滤波的操作实现去雨雪。
1. 1　 基于暗通道先验的去雾研究

　 　 近几年,雾霾已经变得越来越普遍,它不仅污染了环

境,还给居民的健康带来极大的威胁,也严重影响了道路

交通安全。 由于雾霾的存在,空气中的微细颗粒物数量

急剧上升,它们不仅削弱了光线的穿透能力,还使得许多

数据的内容受到损害,从而给图像的后期处理带来极大

的困难,因此采取适当的措施,如采用先进的技术,将受

到污染的环境恢复原貌,显得尤为必要。 为了很好的解

决这一问题,本文决定使用暗通道先验的方法实现图像

去雾的过程。
通常情况下,使用大气散射物理模型[11] 来表示有雾

图像,其计算如式(1)和(2)所示。
I(x) = J(x) t(x) + A(1 - t(x)) (1)
t(x) = e -βd(x) (2)

式中: I(x) 为有雾图像; β 为散射系数; d(x) 为图像的

深度。
对于不包含天空区域的无雾图像,在没有任何外部

遮挡的情况下,3 个颜色的通道之间的差异会变得极小,
甚至接近 0,晴朗天气条件下的图像 J(x) 的暗通通道定

义如式(3)和(4)所示。
Jdark(x) = min

y∈Ω(x)
min

c∈{R,G,B}
Jc(y)( ) (3)

Jdark → 0 (4)
式中: Ω(x) 为邻域窗口; c 为图像中颜色通道。

为了能获得更准确的结果,需要对式(1) 进行局部

最小值滤波操作,其结果如下:

t(x) = 1 - min
y∈Ω(x)

min
c∈{R,G,B}

Jc(y)
Ac( ) (5)

为了让复原后的图像更接近人类的视觉体验,需要

尽可能地减少雾气的存在,因此需要通过调节相关参数,
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来精确控制减少雾气的程度,从而获得最佳的复原效果,
因此通过约束参数 ω(0 ≤ ω ≤ 1) 来控制去雾的程度,其
公式如下:

t(x) = 1 - ω min
y∈Ω(x)

min
c∈{R,G,B}

Jc(y)
Ac( ) (6)

其中, ω 取 0. 95。
如果仅使用式(6) 来粗略估算透射率,而未经过精

细处理就直接用于图像去雾,那么图像中的边缘将会变

得模糊不清,因此必须采取措施来优化透射率,以达到最

佳的效果,其公式如下:

J(x) = I(x) - A
max( t(x),t0)

+ A (7)

式中: t0 为一个限定常数,一般取 0. 1。
本文使用的暗通道先验去雾方法[12] 的实验结果如

图 1 所示。

图 1　 暗通道先验去雾效果对比

Fig. 1　 Comparison
 

of
 

the
 

prior
 

dehazing
effect

 

of
 

the
 

dark
 

channel

从图 1 可以看出,通过使用暗通道先验算法去雾,相
比于原始图像,去雾后的图像具有更好的清晰度,可以更

好的描绘出图像的细节部分,有利于后续的目标识别

检测。
1. 2　 基于导向滤波的去雨雪研究

　 　 导向滤波[13] 作为一种图像处理技术,其在平滑图像

细节的同时,还可以不影响图像的边缘信息。 导向滤波

利用引导图像对目标图像进行滤波操作,滤波后的图像

不仅保留了目标图像的大体信息,而且也保留了引导图

像的细节纹理,其公式如下:

q i = akIi + bk,　 ∀i ∈ ωk (8)
式中: q是滤波后图像的像素值; I是引导图像的像素值;
i 和 k 是像素索引值; a 和 b 为系数。

接着对式(9)两边进行梯度操作。
▽q = a▽I (9)
为了得到系数 a 和 b ,需要对局部窗口内的代价函

数进行最小化操作:

E(ak,bk) = ∑
i∈ωk

((akIi + bk - p i)
2 + εa2

k) (10)

通过最小二乘法得到最终的系数:

ak =

1
| ω | ∑ i∈ω

Iip i - μkpk

σ2
k + ε

(11)

bk =pk - akμk (12)
式中: | ω | 为局部窗口 ωk 内包含的像素点个数; μk 为 I

在窗口内的期望; σ2
k 为对应的方差; pk 是目标图像在窗

口内的期望。 导向滤波的示意图如图 2 所示。

图 2　 导向滤波的示意图

Fig. 2　 Schematic
 

diagram
 

of
 

guided
 

filtering

图 3　 去雨雪流程

Fig. 3　 Flow
 

chart
 

of
 

removing
 

rain
 

and
 

snow

在处理雨雪雾天气的图像,可以将图像中的信息分

为高频部分和低频部分,其中高频部分指的是噪声、雨雪
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和图像的边缘信息。
在对图像进行去雨雪操作时,需要将高频部分中的

雨雪部分与边缘信息分隔开,然后将不含雨雪的部分与

低频部分进行结合,从而得到无雨雪的图像,其流程如图

3 所示。
去雨雪的操作如下。
1)

 

颜色空间转换

经过对比图片发现, 雨雪主要集中在 HSV ( hue
 

saturation
 

value)空间中的亮度空间中,其他两个分量几

乎没有分布,因此去雨雪的过程可在 V 分量空间中进行。
将图像首先转换到 HSV 空间,图 4 所示为图像的颜色空

间转换结果。

图 4　 图像颜色空间转换

Fig. 4　 Image
 

color
 

space
 

conversion

2)
 

求解低频图像

首先基于 HSV 色彩空间特性,针对雨雪颗粒在 V 分

量中呈现的像素分布稀疏特征,运用形态学开运算有效

滤除这些细粒度噪声;继而针对开运算处理后可能引发

的块状伪影问题,采用边缘保持特性优异的导向滤波技

术对 V 分量进行自适应平滑处理;最终将优化后的 V 通

道与原始 H、S 分量进行通道融合,重构出高质量的低频

基底图像。 利用开运算去除图像中的雨痕或雪花,使用

导向滤波技术对图像进行平滑,将平滑后的分量进行合

并得到最终的低频图像,其结果如图 5 所示。
3)

 

求解高频部分

在 V 空间中实现了雨痕雪花的去除,但是图像出现

了严重的模糊现象,即高频成分全部被滤除,只剩下了低

频成分。 为了获取高频成分,利用原图像除去低频图像,
即可得到具有雨雪和边缘信息的高频图像,其结果如图

6 所示。
4)

 

剔除雨雪的高频成分

根据频域分解理论,图像高频分量同时包含真实场

景的边缘纹理特征与雨雪噪声的高频响应。 低频基底虽

经降噪处理,但仍完整保留着场景的主体结构特征,而雨

雪残留的高频伪影在低频域中并无对应关联,因此为实

图 5　 低频图像效果图

Fig. 5　 Effect
 

of
 

low-frequency
 

image

图 6　 高频图像

Fig. 6　 High-frequency
 

image

现有效分离,本文以生成的去雨雪低频图像作为引导图,
用提取的高频分量作为目标图像进行联合优化。 通过导

向滤波的边缘敏感特性,在精准识别并抑制高频分量中

与引导图不相关成分的同时,还可以保留与引导图存在

空间对齐的真实边缘信息。 最终将优化后的纯净高频分

量与低频基底进行频域融合,即可重构出既消除雨雪干

扰又保持视觉细节的清晰图像。
为保留图像的边缘信息,利用雨雪亮度高于背景亮

度的特性生成非雨雪掩膜,首先选取图像中三通道亮度

值最大的像素值,然后与设定的阈值 δ 进行对比,再与高

频成分相乘,其公式如下:

Irs(x,y) =
0,max

c
( Ic(x,y)) ≥ δ

1,其他{ (13)

式中: c 表示颜色三通道, c ∈ {R,G,B};x 和 y 表示图像

的位置坐标。
高频成分主要包括图像边缘成分和雨雪成分,其结

果如图 7 所示。
5)

 

生成去雨雪图像
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图 7　 图像边缘的高频成分效果

Fig. 7　 Rendering
 

of
 

high-frequency
 

components
at

 

the
 

edges
 

of
 

the
 

image

将得到的低频成分与具有高频成分的边缘信息相结

合,即可得到去雨雪的图像,去雨雪图像的效果如图 8
所示。

图 8　 去雨雪效果

Fig. 8　 Renderings
 

of
 

rain
 

and
 

snow

从图 8 可以看出,操作后的图像具有非常好的去雨

雪效果,虽然会一定程度上损失图像的像素,但其去雨雪

的效果有利于后续的目标识别检测。

2　 算法改进

　 　 为了很好的在雨雪雾天气下对目标进行识别,只对

图像进行清晰化处理还是远远不够的,因此本文在已改

进的基础上加入一个 DIP 模块[11] ,并且其参数由 CNN-
PP [14] 来进行预测,通过采用端到端的方式联合学习

CNN-PP 和 YOLOv7[15] , 从而确保 CNN-PP 可以适配

DIP,达到以弱监督[16] 的方式提高图像的检测效果。 DIP
和 CNN-PP 的结构如图 9 所示。

由图 9 可见,整个流水线由一个基于 CNN 的参数预

测器、一个可微分图像处理模块和一个检测网络组成。
首先将输入图像的大小调整为 256×256,然后将其输入

到 CNN-PP 中以预测 DIP 的参数,然后将 DIP 模块滤波

后的图像作为 YOLOv7 检测器的输入。
2. 1　 DIP 模块

　 　 DIP 模块由 6 个具有可调超参数的可微滤波器组

成,包括 Defog、白平衡、伽玛、对比度、Tone 和 Sharpen。
其中如白平衡、伽玛、对比度和 Tone,可以表示为像素级

滤波器。 像素级滤波器通过将输入像素值 P i = {R,G,B}
映射到输出像素值 P0 = {R0,G0,B0} ,其中 {R,G,B} 分

别表示红色、绿色和蓝色三种颜色的通道值,通过简单的

乘法和幂运算可以得知三颜色的映射函数对输入图像和

参数而言都是可微的,其输入映射函数和输出映射函数

如式(14)和(15)所示。

En(P i) = P i ×
EnLum(P i)
Lum(P i)

(14)

P0 = 1
TL

∑
L-1

j = 0
clip(L × P i - j,0,1) tk (15)

其中, Lum(P i)、EnLum(P i)、PL 和 TL 的定义如下:
Lum(P i) = 0. 27R i + 0. 67G i + 0. 06B i (16)

EnLum(P i) = 1
2

[1 - PL] (17)

PL = cos(πLum(P i)) (18)
TL = { t0, t1,…, tL-1,} (19)
DIP 模块的技术原理与功能特性可归纳为如下两个

部分。
1)

 

环境退化校正

针对复杂光照条件下的图像退化问题,DIP 模块集

成了基于大气散射物理模型的自适应去雾算法。 通过建

立雾浓度与场景深度的非线性映射关系,构建透射率矩

阵与大气光联合估计模型,有效补偿气溶胶粒子对光波

长的选择性散射效应。
2)

 

通过构建四元组滤波器组合实现精细化色彩

管理

(1)白平衡校正,采用改进型 Retinex 理论框架,建
立色温估计与色偏校正的联合优化模型,通过最大色差

熵约束实现光源色温的精准估计。
(2)Gamma 校正,设计亮度感知自适应的非线性映

射函数,基于 Weber-Fechner 定律构建符合人眼视觉特性

的动态伽马曲线。
(3)对比度增强,提出多尺度直方门限拉伸算法,结

合局部对比度保持约束,在增强动态范围的同时抑制过

饱和现象。
(4)色调映射,构建 HSV 色彩空间的量子化修正模

型,通过色相角偏移与饱和度增益的协同控制实现图像

的鲜艳化。
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图 9　 DIP 和 CNN-PP 结构

Fig. 9　 Structural
 

diagram
 

of
 

DIP
 

and
 

CNN-PP

2. 2　 CNN-PP 模块

　 　 在相机图像信号处理管道中,为了提高图像质量,通
常会采用可调滤波器。 然而这些滤波器的超参数需要专

业人员通过目视检查手动调整,而这种方法既不方便又

费时费力,因此寻找适合各种场景的超参数变得尤为

重要。
CNN-PP 通过了解图像的全局内容来预测 DIP 的参

数,因此可以大大节省计算成本,对于给定任意分辨率的

图像,可以通过使用双线性插值将其降采样到 256×256
分辨率。

CNN-PP 网络是作为一个复杂的多级结构,由 5 个

卷积块以及 2 个完整的连接层构建而成,可以检测到

DIP 模块的超参值。

3　 实验结果分析

3. 1　 模块对比实验

　 　 自 然 图 像 质 量 评 估 器 ( natural
 

image
 

quality
 

evaluator,
 

NIQE ) 通 过 使 用 高 斯 混 合 模 型 ( Gaussian
 

mixture
 

model,
 

GMM)建立自然图像特征的概率分布,通
常用于输入图像质量的评估,其公式如下:

NIQE = (v1 - v2) T-1 ∑ 1
+ ∑ 2

2( )
-1

(20)

式中: v1、v2 和 ∑ 1
、∑ 2

分别为自然图像的多元高斯模

型和失真图像的多元高斯模型的均值向量和协方差

矩阵。
盲无参考图像控件质量评估器( blind

 

referenceless
 

image
 

spatial
 

quality
 

evaluator,
 

BRISQUE) 使用支持向量

机来学习图像质量与图像特征之间的映射关系。
为了验证所提算法的有效性,本文在多个数据集上

与几种先进算法进行了定量和定性比较,包括 PSD[17] 、
EPDN[18] 、 MSCNN[19] 、 AOD-Net[20] 、 Dehaze-Net[21] 、
Refine-Net[22] 。

本文使用 SOTS 数据集,通过采用自然图像质量评

估器和盲无参考图像空间质量评估器来衡量算法的性

能,这两种评价指标能够全面反映出算法的性能。 实验

结果如表 1 所示。
表 1　 SOTS 上的性能对比

Table
 

1　 Quantitative
 

comparisons
 

in
 

SOTS
算法 NIQE↓ BRISQUE↓
PSD 3. 190 21. 326

EPDN 3. 554 25. 319
MSCNN 3. 427 23. 111

AOD-Net 3. 616 29. 185
Dehaze-Net 3. 398 26. 028
Refine-Net 3. 363 20. 739

本文 3. 255 21. 147

　 　 从表 1 可以看出,与现有的几种先进算法相比,本文

算法在 NIQE 上仅比 PSD 算法高 0. 065,效果位居第 2,
且比其余 6 种算法的平均值高 0. 141;在 BRISQUE 上仅

比 Refine-Net 算法高 0. 412,效果也位居第 2,且比其余 6
种算法的平均值高 3. 138。 实验结果进一步验证了该方

法具有不错的效果。
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3. 2　 目标检测实验结果

　 　 本文使用的目标检测数据集包括 BDD100K[23] 、
TT100K[24] 、VOC2007 和 DAWN 数据集,数据集共 10

 

000
张图像,其中包括 7

 

000 张训练集、2
 

000 张验证集和

1
 

000 张测试集。 通过对比 YOLOv5、YOLOv7 和本文改

进 YOLOv7 来证明,其实验结果如表 2 所示。
表 2　 检测结果分析

Table
 

2　 Analysis
 

of
 

test
 

results (%)
模型 精度 召回率 mAP@ 0. 5 mAP@ 0. 95

YOLOv5 70. 5 41. 1 45. 5 26. 3
YOLOv7 71. 8 52. 8 57. 3 36. 3

Improved
 

YOLOv7 75. 3 69. 4 69. 2 42. 3

　 　 从表 2 可以看出,改进后的 YOLOv7 算法在检测精

度上比 YOLOv5 和 YOLOv7 高 23. 7%和 11. 9%。
为了更清楚的体现本文改进算法的优势,检测结果

对比如图 10 所示。 从图 10 可以看出,YOLOv5 原模型算

法存在较为严重的漏检,YOLOv7 原模型算法虽具有较

低的漏检率,但却存在很明显的错检情况,而本文改进的

YOLOv7 算法不仅没有出现错检情况,而且也具有较低

的漏检率。

图 10　 检测结果对比

Fig. 10　 Comparison
 

of
 

test
 

results

为了验证本文的检测结果,图 11 所示为本文改进算

法在雨雪雾环境下对道路目标的检测结果。

图 11　 雨雪雾环境下的目标检测结果

Fig. 11　 Road
 

target
 

detection
 

results
 

in
 

rain,
 

snow
 

and
 

fog

4　 结　 论

　 　 本文针对自动驾驶领域在恶劣天气下目标检测精度

低、可靠性差的关键问题,提出了一种融合图像预处理与

深度学习的改进方案。 核心思路在于打破传统单一检测

算法的局限,通过
 

“图像清晰化-特征增强-模型优化”的

多阶段处理,构建适应复杂天气的目标检测体系。 具体

而言,采用暗通道去雾算法和基于引导滤波的去雨雪算

法作为核心技术,对雾霾、雨雪天气下的图像进行预处

理,有效消除天气因素导致的图像模糊、纹理丢失等问

题,为后续检测提供高质量数据。 同时,创新性引入
 

DIP
 

模块和
 

CNN-PP
 

参数预测器,通过深度图像先验知识和

高效的参数预测机制,增强网络对复杂特征的学习能力,
显著提升检测精度。 研究中的难点技术主要体现在两方

面:1)如何在有效去除恶劣天气干扰的同时,最大程度保
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留图像目标的关键细节;2)如何设计轻量化、高鲁棒性的

深度学习模块,避免算法复杂度增加导致的检测效率下

降。 通过将暗通道理论与引导滤波相结合,以及优化
 

DIP
 

和
 

CNN-PP
 

模块的结构与训练策略,成功突破上述

技术瓶颈。 实验结果表明,改进后的
 

YOLOv7
 

算法较原

始的
 

YOLOv5
 

和
 

YOLOv7
 

模型, 检测精度分别提升
 

23. 7%
 

和
 

11. 9%,有效减少漏检与错检,在多种恶劣天

气场景下均展现出优异的鲁棒性和实用性。 未来,研究

将聚焦于探索更高效的图像处理技术,如基于生成对抗

网络的实时去雨雪雾算法,以及开发轻量化、自适应的深

度学习模型,使其能够快速适应不同恶劣天气类型和强

度的动态变化。 同时,进一步优化算法在边缘设备上的

部署效率,推动自动驾驶技术在极端环境下的安全可靠

性提升,助力智能交通系统的全面发展。
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