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Design of misalignment-tolerant magnetic induction coupler for
AUV wireless charging system

Zhang Yunhao He Min

(School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China)

Abstract: To address the issues of misalignment and unstable transmission power and efficiency in complex environments for Autonomous
Underwater Vehicle wireless charging systems, a magnetic induction coupling wireless charging system featuring high misalignment
tolerance is proposed. The magnetic core and coil structures are designed to optimize the magnetic path. Compared with existing
systems, it has better space efficiency, magnetic field control, and anti-misalignment performance. A compensation network for the
system is selected based on anti-misalignment performance. The constant current output performance is evaluated through controlled
source model. The ZVS method is applied in parameter design to minimize extra losses. Simulation results show that the wireless
charging system maintains coupling coefficient attenuation within 20% for lateral offsets of 20 mm and longitudinal offsets of 15 mm, and
within 15% for rotational offsets of 15°. The output current fluctuation remains within 10% when the load is increased by ten times. The
magnetic coupling structure was fabricated, and the coupling coefficient attenuation remains within 25% under misalignment in all
directions. The hardware experiment was conducted, with experimental results showing 83% transmission efficiency at 10 € load with
25 V input voltage. When subjected to maximum design-range offsets in various directions, the system maintains transmission power
above 70% of its peak value while sustaining transmission efficiency exceeding 70%.
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Fig. 1 Mutual inductance model of magnetic coupling structure
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Fig.2 Magnetic coupling structure model
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Fig. 15 Three dimensional graph of the relationship

between output current and coefficient
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Table 2 Circuit parameter
2R 4 ZHE
UIRIE TR ENES 15V
i b LT 3.18 A
R A, 150
TARSR 50 kHz
J30 IR 70.42 wH
&l A% 59.20 pH
REWr? 19.79 pH
Dt e 1K PR 15 wH
Ji i ER I L 2 0.159 uF
S UBR PR 0.675 pF
RIS 0.171 pF

R 2 S EE multisim 3149 347 /L B4 &
KUE, MOSFET 1y v, Al Vv, JIE WlEl 16 fizs, ¥ GE
NV, FESSE V, BT, V, R 0,5 T ZVS, AL
Tk R, 43594 15 B 50 Q BF, 33285 i R U, KR
W E 1, MBEE R 17 18 FrR, SRkl 15 Q
B, BB I TO AR S5 7 R 290 2. 89 A, HUEIIE
J7 i WEE 15 V., SRR 50 Q B LR IOY 5 AL
P B (TG A A Ak

S 2 T 3¢ i i v R IR S 2R AE 5~ 50 Q
T L PN 28 T 2 F A ) AR AR T B 19 IR A B 28 B 1
K10 f50EF, AR M 1.05 A Z846E] 1. 18 A {UFEh T
10% , 3631F 1 MM R 2 ELA 17 23806 e da 1 Ag
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Fig. 16 Waveforms of V, and V,,
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Fig.20 Mutual inductance testing experiment
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Table 3 Comparison of simulation and

physical testing parameters

SR i ¥ S
RS B wH 70. 42 67. 00
He 2 e BB/ wH 59.20 52.00

HJE/ wH 19.79 16.5
LY 0. 306 0.280

e F e o By i B R FE S 40 0~ 20 mm 47
T R, B8 R B 6 55 0 FUERHE (% Eb ] 21
B, U x S E WML S H 0~ 15 mm PEFTHN 10 fR A5 0
A RBCE S O BEER X ELAn &l 22 FfR, DA «
Tl ) A EHERE A 0° ~ 15 HEATHERE AL I, HE & B
BOEACS 5 BB BT FL i 23 BTk,

& 21 W%, U-C TR S5 FRm A R A y Bl 1) i A%
20 mm B FEG ZBCH 0. 220 24, I B LA BIHES &
B 78. 79% 5 1 E 22 WI AT 7E « SHOA M R AS 15 mm Y
FIA R BN 0.228 72, 20K & 07 B IR & &R AW
82.89% ; M1 &1 23 FI N, FEHE R m A 15°0F, #i & R Ak
0.245 66, X E TN LN G R M 87. 88% ., 1J WLXf
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Fig.21 Comparison of variations in lateral
misalignment coupling coefficient
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Table 4 Comparison of offset resistance performance

between U-C shaped structure and E-C shaped structure

[EEEE 8 U-C 1B M & R A E-C JE45#

Tk 0.279 54(100.00%)  0.565 31(100.00%)

y SUBEERAS 20 mm 0.220 24(78.79%)  0.212 30(37.55%)
x SRR AS 15 mm 0.228 72(82.89%)  0.426 30(75.41%)
TR AL 15° 0.245 66(87.88%)  0.157 93(31.51%)

AR S o ] 117 4 R 5 2 B S, W B A R B S 4K
FUBTEAT 7 URRE RS R AL ES S BN ER 5 R

K5 ZHRBESH

Table 5 Experimental circuit parameter

Ees 2l
UIR TR NS 12.0V
SRR 10.0 Q
T ARSI 50 kHz
gz 67.00 pH
Rl R 52.00 pH
HK 16.53 pH
JE320 ER I AL JER 14.7 pH
D R I R 2 0.150 pF
BRI I L 2 0. 680 wF
AR 2 0.171 uF

B PR B A T IR S L B | AR A L f AN R
5 M e | JHL A e % K S i A R TE — Bl AR
e SR e B S U R B WA D L B
LA — AR I,

R T ARIESE e 4y 7 S L L 2 T, S e s
HL i LR A5 DA SR O TARIRAS I IE#f 1 B4 il 5
SR IR B R, X R R Bl e e
HAKZ A IR2104 S AMERE(S S IE . — & B A PWM
5 S RS A HF 10748 B 6 P 41 MOS 45 28 8 Gl , HAFAEAE
DX B 1 F R e e, T LGRS R I 2 R T ARSI Ry
50 kHz, 5 Tl € AH [R], 156 BH 7F 3 A B3l fL s RS
I TAE,

J T RAE LCC-P MW 4% L B e O F 1 B A 38 1Y
TAESAE A2 TIREE TR B SO RENL, 43 501 028 H B 1
70 288 L BRIV A L AT T A B B A T S O Sl A
TSR BRI FL I S R R S C R e L R G Y

o BEARERN 12 VA, ik K/ S BLFTH &R
SEi B DR AR R A 5~50 Q, Z {1
INARBR N T3 Bl B N H R O S AR GE R AR
0.6 A ZeA7  B00IE T LCC-P 2% 4 4 37 YR A% % i 1 2
Rt F BEL I I 38 A, SR M, ROCRAE LB R 35 Q

IR BNER K, h 84.65% ., K] 24 Fir7m J& 8RR /INVS Tk
FERLR G AR AR A LR, Pk, T 00 A
12 V HE, 518835 Q i, REERA RAEFTEHRACE,

®6 HHEASHHINE HENXR
Table 6 Relationship between load resistance

and output power, efficiency

BRH/Q  HE RV SR/ mA BHIIREW R/ %

3.083 617 1.9 70. 98
10 5.985 598 3.58 71.85
15 8.04 588 4.73 73.5
20 10. 464 582 6.09 77. 03
25 12.874 576 7.41 78.43
30 15 577 8. 655 79.3
35 16. 89 572 9. 66 84. 65
40 20. 02 573 11.47 84.18
45 22.05 571 12.58 83.70
50 24.10 571 13.76 83.58
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Fig. 24  Relationship diagram between load,

output power, and efficiency
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Table 7 Relationship between input voltage ,

output power, and efficiency

MWARE/V HHEE/V HRBERE/mA FHRYRW S8R/ %

5 2.391 248 0.593 59.71
10 4.777 498 2.379 68. 04
15 7.461 747 5.57 72.88
20 9.55 1 000 9.55 74.41
25 11.43 1 246 13.76 83.58
30 14. 369 1 500 21.55 81. 30
35 16. 853 1755 29.577 75.96
40 19.92 1999 39. 832 77.39
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Fig. 25 Relationship between input voltage
output power, and efficiency
20 71100
18 190
G --
16r  ~TE--g__ 180
‘B'--ﬂ———a-_ﬂ___ﬂ
14 0]
§ 12%6\9\6\:0 ES
R 10+ so %
H S
E 8¢ 140
6F 130
Y otk 120
2f -BE-HE 110
: : : 0
0 3 10 15 20
A1 A/ mm

K126 Ghrw B2 i DR AReRAE AL
Fig. 26 Output power and efficiency variation

chart during longitudinal offset
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Fig. 27  Output power and efficiency variation

chart during lateral offset
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Fig. 28 Output power and efficiency

variation chart during rotation offset
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