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摘　 要:作为电力电子系统的核心器件,绝缘栅双极型晶体管( IGBT)在实际应用中易受电-热应力影响而发生性能退化和失

效,因此对其剩余寿命的准确预测具有重要意义。 针对 IGBT 寿命预测中单一模型预测精度不足的问题,研究了多模型融合的

剩余寿命预测方法。 首先采用变分模态分解(VMD)将 IGBT 寿命预测关键特征参数集电极-发射极瞬态尖峰电压分解为多个

本征模态分量,其中低频趋势分量应用高斯过程回归模型预测,高频波动分量使用神经基扩展分析( NBEATS)网络建模,最后

将各分量预测结果进行重构融合得到最终预测值。 在 NASA 提供的 IGBT 加速老化实验数据上进行验证,所用融合模型较最优

的单一 VMD-NBEATS 模型,均方根误差降低 70%,平均绝对误差减少 23. 2%,决定系数提升至 0. 97 以上。 改变模型训练集和

测试集的比例,融合模型在不同比例下仍表现出最优性能,验证了多尺度分解与差异化模型的稳定性和泛化性,为电力电子设

备的健康监测与预防性维护提供了新的方案。
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Abstract:
 

As
 

a
 

core
 

component
 

of
 

power
 

electronic
 

systems,
 

insulated
 

gate
 

bipolar
 

transistors
 

( IGBT)
 

are
 

susceptible
 

to
 

performance
 

degradation
 

and
 

failure
 

due
 

to
 

electro-thermal
 

stress
 

during
 

practical
 

applications,
 

making
 

accurate
 

remaining
 

useful
 

life
 

prediction
 

crucial.
 

To
 

address
 

the
 

insufficient
 

prediction
 

accuracy
 

of
 

single
 

models
 

in
 

insulated
 

gate
 

bipolar
 

transistors
 

lifetime
 

prediction,
 

this
 

paper
 

investigates
 

a
 

multi-model
 

fusion
 

approach
 

for
 

remaining
 

useful
 

life
 

prediction.
 

The
 

method
 

first
 

employs
 

variational
 

mode
 

decomposition
 

(VMD)
 

to
 

decompose
 

the
 

collector-emitter
 

transient
 

peak
 

voltage,
 

a
 

key
 

characteristic
 

parameter
 

for
 

insulated
 

gate
 

bipolar
 

transistors
 

lifetime
 

prediction,
 

into
 

multiple
 

intrinsic
 

mode
 

components.
 

The
 

low-frequency
 

trend
 

component
 

is
 

predicted
 

using
 

a
 

Gaussian
 

process
 

regression
 

model,
 

while
 

the
 

high-frequency
 

fluctuation
 

components
 

are
 

modeled
 

using
 

neural
 

basis
 

expansion
 

analysis
 

for
 

time
 

series
 

( NBEATS)
 

network.
 

The
 

final
 

prediction
 

is
 

obtained
 

by
 

reconstructing
 

and
 

fusing
 

the
 

predictions
 

of
 

all
 

components.
 

Validation
 

using
 

NASA’s
 

IGBT
 

accelerated
 

aging
 

experimental
 

data
 

shows
 

that
 

the
 

proposed
 

fusion
 

model
 

achieves
 

a
 

70%
 

reduction
 

in
 

root
 

mean
 

square
 

Error,
 

a
 

23. 2%
 

decrease
 

in
 

mean
 

absolute
 

error,
 

and
 

an
 

improvement
 

in
 

the
 

coefficient
 

of
 

determination
 

to
 

above
 

0. 97
 

compared
 

to
 

the
 

best
 

single
 

VMD-NBEATS
 

model.
 

By
 

varying
 

the
 

ratio
 

between
 

training
 

and
 

testing
 

sets,
 

the
 

fusion
 

model
 

consistently
 

demonstrates
 

superior
 

performance
 

across
 

different
 

proportions,
 

validating
 

the
 

stability
 

and
 

generalizability
 

of
 

the
 

multi-scale
 

decomposition
 

and
 

differentiated
 

modeling
 

approach.
 

This
 

work
 

provides
 

a
 

novel
 

solution
 

for
 

health
 

monitoring
 

and
 

preventive
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maintenance
 

of
 

power
 

electronic
 

devices.
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0　 引　 言

　 　 绝 缘 栅 双 极 型 晶 体 管 ( insulated
 

gate
 

bipolar
 

transistors,IGBT)作为电力电子系统的核心器件,凭借其

优异的开关特性和低导通损耗,广泛应用于新能源发电、
电力传输、轨道交通等关键领域。 然而,在实际应用中,
IGBT 长期承受电应力与热应力的交替冲击,导致器件性

能退化甚至失效。 研究表明,IGBT 故障成本约占电力电

子系统成本 80% [1] 。 因此,准确预测 IGBT 的剩余使用

寿命(remaining
 

useful
 

life,RUL)对保障系统可靠运行具

有重要意义。
传统的 IGBT 寿命预测方法主要包括物理模型法和

数据驱动法。 基于物理模型的方法通过建立热-机械应

力模型来分析失效机理[2] ,但由于实际工况复杂,建模难

度大且精度有限。 基于数据驱动的方法利用监测数据直

接建立预测模型,避开了复杂的物理建模过程。 近年来,
随着深度学习技术的发展,有专家学者使用反向传播神

经网络(backpropagation
 

neural,BP)、深度信念网络( deep
 

belief
 

network,DBN)等模型[3] 进行 IGBT 寿命预测,但均

存在一定局限性,如
 

BP
 

神经网络存在极值小、训练时间

长等问题,DBN
 

预测精度不高。 在此背景下,深度学习

方法中的长短期记忆( long
 

short-term
 

memory,LSTM) 网

络被引入 IGBT 寿命预测领域, 取得了一定成果[4] 。
LSTM 网络等人工智能方法在时间序列预测中取得显著

成果。 然而,这些单一模型往往存在局部特征提取能力

不足或长期依赖性难以捕捉等问题,限制了预测精度的

进一步提升。 经研究发现,IGBT 退化信号同时包含长

期、中期趋势和短期波动 3 类不同尺度的特征成分,这种

复杂的信号特性对预测模型提出了严峻挑战。
针对现有单一模型预测精度不足的问题,本文提出

一种基于神经基扩展分析网络 ( neural
 

basis
 

expansion
 

analysis
 

for
 

time
 

series,NBEATS)网络的 IGBT 元件融合模

型寿命预测方法。 与现有研究相比,本文的创新性主要

体现在 3 个方面:1) 将变分模态分解( variational
 

mode
 

decomposition,VMD)技术引入 IGBT 寿命预测领域,建立

了多尺度分解与重构框架,有效解决了复合退化信号建

模难题;2)创新性地提出基于频率特性的分量分类方法,
突破了传统模型融合仅在输出层进行简单集成的局限;
3) 结合高斯过程回归模型( gaussian

 

process
 

regression,
GPR)与 NBEATS 网络各自优势,构建了“分解-差异化建

模-融合”的系统预测框架,为电力电子器件寿命预测提

供了全新技术路线。 本文采用美国国家航天局( NASA)
提供的 IGBT 加速老化数据对所提方法进行实验和验证,
首先利用 VMD 将 IGBT 失效特征参数分解为多个固有模

态分量,然后分别采用 GPR 和 NBEATS 网络对不同频率

特性的分量进行预测。 其中,GPR 用于预测分解后的低

频分量,NBEATS 用于预测剩余的高频分量,最后通过模

型融合获得最终预测结果。 VMD 作为一种新型自适应

信号处理方法,能够将非平稳时间序列分解为具有不同

中心频率的本征模态函数( IMF),有效增强数据的特征

表达能力和信息提取精度,显著改善小样本条件下的分

析效果,降低了预测难度[5] 。 GPR 模型具有较强的非线

性拟合能力和不确定性量化优势,适合处理低频趋势性

分量。 而 NBEATS 网络通过创新的反向和前向残差块设

计,在时间序列预测领域展现出优异的泛化性能,特别适

合捕捉高频波动特征[6] 。 本文所提方法充分发挥了各模

型的优势,有效提高了 IGBT 寿命预测的准确性。 结果表

明该方法相比现有方法具有更好的预测性能。

1　 IGBT 工作原理与失效特征参数选取

1. 1　 IGBT 工作原理与失效机理

　 　 IGBT 作为目前最重要的功率开关器件,结构上融合

了金 属 氧 化 物 半 导 体 场 效 应 晶 体 管 ( metal-oxide-
semiconductor

 

field-effect
 

transistor,MOSFET)和双极结型

晶体管(bipolar
 

junction
 

transistor,BJT)的优点,拥有高输

入阻抗、低导通损耗和高开关速度等特性。 它的基本结

构由 P+衬底、N-漂移层、P 阱区和 N+源区等构成[7] ,其
通过栅极电压控制沟道导通实现开关功能。 在实际应用

中,IGBT 长期承受热-电-机 6 械等多重应力的复杂作用,
其失效模式主要可分为热失效、电气失效和机械应力失

效 3 类。 除主要失效模式外,还有部分失效原因可归结

为环境因素。
热失效是 IGBT 最主要的失效形式。 周期性功率损

耗导致的结温循环和温度梯度作用于特性不匹配的材料

时,会形成疲劳应力[8] 。 而半导体平均结温会令化学过

程热老化,当温度升至 110 ℃ 后晶界处会发生塑性变形

导致金属化重构,继续升温至 900 ℃ 时硅会分解并发生

金属迁移破坏器件阻断能力。 在结温超过 330 ℃ 时,极
易触发寄生晶闸管而发生闩锁效应失效。 研究表明[9] ,
温度循环差为 50 ℃ 和 80 ℃ 时,分别会在 2. 7×105 次和

5. 0×104 次循环后失效。
电气失效主要由电气过应力引起,包括闩锁效应、静
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电放电和耐压击穿等。 当电气参数超过额定范围时会导

致结构受损,而电压上升较快或波形突变引发的显著位

移电流会导致器件失控,形成低阻态通路。 此外,栅氧化

层在大电压脉冲作用下易发生“穿通” 现象。 感性负载

的硬开关也会造成显著损伤。 典型指征为集电极-发射

极漏电、栅极漏电以及导通电阻的变化。
机械应力失效受应力冲击导致芯片或封装破坏,引

发器件失效。 疲劳应力超过材料屈服极限时可能引发封

装裂纹、焊点松动和引线断裂等现象[10] 。 研究表明,导
通状态电压、键合线电阻和热阻抗等参数可有效表征封

装退化程度[11] 。
结合先前学者研究可以发现,IGBT 失效机理呈现出

明显的多场耦合特性。 温度循环与电应力不是独立作用

的,而是通过复杂的热-电-机械耦合机制共同导致器件

劣化。 本文通过分析 NASA 加速老化实验数据发现,高
温环境(330 ℃ )下的 IGBT 失效过程可分为 3 个明显阶

段,快速劣化期、稳定劣化期和加速劣化期。 集电极-发
射极 瞬 态 尖 峰 电 压 ( collector-emitter

 

transient
 

spike
 

voltage,Vce_peak) 在这 3 个阶段表现出不同的变化特

征,分别对应着器件内部不同的物理失效机制:初期主要

由键合线微裂纹主导;中期由焊料层疲劳与微空洞生长

共同作用;后期则由大面积界面剥离与芯片击穿共同决

定。 这种多阶段、多机制的失效特性决定了单一模型难

以准确捕捉全寿命周期的劣化趋势,因此本文提出多尺

度分解与差异化建模相结合的融合模型策略。
1. 2　 失效特征参数选取

　 　 基于实验数据分析[12] ,IGBT 在 330 ℃高温工作环境

下表现出显著的热应力失效特征。 实验表明,集电极-发
射极瞬态尖峰电压随老化时间的增加呈现明显的下降趋

势[13] 。 这一现象与封装热阻抗退化导致内部温度升高

的失效机理高度吻合。 在高温环境下,由于芯片和封装

材料的热膨胀系数存在不匹配,产生显著的热机械应力。
这种应力的持续累积会导致焊料层疲劳和键合线退化,
进而造成封装热阻抗增大。 热阻抗的增加又会引起结温

的进一步升高,形成正反馈效应。 最终,过高的结温会触

发 IGBT 内部的寄生晶闸管结构,导致器件发生闩锁效应

而失效[14] 。 这一失效链条充分反映了 IGBT 在高温工作

环境下热-电-机械耦合作用的复杂性,也说明了热应力

是导致 IGBT 失效的关键因素。 基于 IGBT 失效机理分

析[15] ,本文选择 NASA 提供的加速老化数据集中的集电

极-发射极瞬态尖峰电压作为寿命预测的关键特征

参数[16] 。
在信号层面,Vce_peak 在器件关断过程中由寄生电

感与电流变化率共同决定,直接反映了器件内部电场分

布变化;在器件层面,Vce_peak 对封装劣化高度敏感,热
阻抗变化引起的结温升高会直接影响载流子迁移速率,

进而改变瞬态电压特性;同时在系统层面,Vce_peak 是

非侵入式可测量参数,无需改变器件结构或工作状态,便
于在线监测。

IGBT 寿命退化曲线如图 1 所示,观察可知, Vce _
peak 在老化初期约为 25

 

V,随着应力作用的累积逐渐降

低并趋于稳定在 8
 

V 左右。 这种显著的退化趋势主要源

于两个方面:1)高温工作环境下,热应力导致芯片与封装

材料界面的热阻抗发生变化,进而影响器件的瞬态开关

特性;2)电应力作用使得载流子在漂移区的分布发生改

变,直接反映在开关瞬态响应上。 数据显示,Vce_peak
的变化表现出良好的单调性和连续性,这种特征有助于

建立稳定的预测模型。 此外,Vce_peak 具有测量简单、
信号稳定且对退化过程敏感的优点,因此选择其作为寿

命预测的基础特征量。

图 1　 IGBT 寿命退化曲线

Fig. 1　 IGBT
 

life
 

degradation
 

curve

2　 相关理论分析

2. 1　 变分模态分解

　 　 VMD 作为一种自适应信号处理方法,通过迭代求解

变分问题将非平稳时间序列分解为具有不同中心频率的

本征模态分量。 VMD 作为一种新型非递归信号处理方

法,其核心思想源于 Wiener 滤波理论和 Hilbert 变换理

论。 其自适应分解机制能从有限数据中提取关键特征,
避免传统固定分解方法可能带来的信息损失,通过精确

定位各模态的中心频率,VMD 能更好地揭示 IGBT 失效

过程中潜在的非线性和复杂动态特征,同时分解的分量

增加了数据样本,从而改善小样本的分析效果。 与经典

的经验模态分解( empirical
 

mode
 

decomposition,EMD) 和

集 合 经 验 模 态 分 解 ( ensemble
 

empirical
 

mode
 

decomposition,EEMD)相比,VMD 通过构建变分框架,将
信号分解问题转化为约束优化问题[17] :

min{ui},{ωi} ∑
K

k = 1
∂t δ( t) + j

πt( ) × uk( t)
é

ë
êê

ù

û
úú e

-jωkt
2

2
{ }

s. t. f( t) = ∑
K

k = 1
uk( t)

ì

î

í

ï
ï

ï
ï

(1)
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式中: uk、ωk 分别为分解后的 k 个 IMF 分量和相应的中

心频率,通过约束每个分量的带宽最小,使得分解后的各

分量具有独特的频谱特性,有效避免了经验模态分解中

的模态混叠问题; ∂t 表示时间偏导数; δ( t) 表示狄拉克

脉冲函数,其作用为分析信号的瞬时频率特性。
2. 2　 高斯过程回归

　 　 GPR 主要用于处理 VMD 分解后的低频趋势分量。
GPR 通过核函数将输入空间映射到高维特征空间,建立

概率框架下的非参数回归模型。 其核心在于利用高斯过

程先验,通过核函数将低维输入空间映射到高维特征空

间,从而捕捉数据中的非线性关系。 高斯过程回归是一

种基于贝叶斯统计理论的机器学习方法,常用于处理非

平稳时间序列数据的建模和预测[18] 。
已知一定的样本集合 (X,Y) ,对于测试样本输入

X∗ 对应的 Y∗ , 其多元高斯分布可写为:
Y
Y∗

é

ë
êê

ù

û
úú ~

N 0,
K(X,X) + σ2

n K(X,X∗ )

K(X∗ ,X) K(X∗ ,X∗ )
é

ë

ê
ê

ù

û

ú
ú

é

ë

ê
ê

ù

û

ú
ú

(2)

式中: K(X,X′) 表示输入 X 和 X′之间的协方差矩阵,核
函数由 K(·,·) 确定[19] 。

为了灵活地适应数据的不同变异性和噪声特性,本
文选择了一个组合核函数,其中包括多个不同类型的核

函数:

KRBF(x,x′) = exp - | x - x′ | 2

2l2( ) (3)

式中: KRBF 表示径向基函数核; l为长度尺度参数,控制

函数变化的平滑程度。

KRQ(x,x′) = 1 + | x - x′ | 2

2αl2( )
-α

(4)

式中: α 为有理二次核函数的尺度混合参数,控制核函数

在不同尺度上平滑的程度。
KWhite(x,x′) = σ2δ(x - x′) (5)
所选用的核函数组合包括了两个径向基函数

(RBF)、一个有理二次核( rational
 

quadratic)以及一个白

噪声核(white
 

kernel)。 σ2 表示噪声方差,用于量化测量

过程中的不确定性。 在 δ(x - x′) 中,当 x =x′ 时值为 1,
否则为 0。
2. 3　 神经基扩展分析网络

　 　 NBEATS 是本文预测模型的核心部分,主要用于处

理高频分量的非线性映射。 该网络采用纯前馈架构,通
过堆叠多个基本块来构建深度模型。 每个基本块包含反

向残差和前向残差两个分支,分别学习局部和全局时序

特征。 其创新之处在于反向残差设计使得网络能自适应

分解复杂的时序模式,每个块专注于不同尺度的模式;前
向残差通过层级结构传递信息,增强了对长期依赖关系

的建模能力;通用近似定理支持的全前馈结构,无需预定

义时间窗口长度,具有更强的泛化能力[20] 。
如图 2 所示,该架构由输入部分、多个堆叠的模型块

以及多层预测输出部分组成。 输入部分包括块输入和栈

输入,通过这些输入驱动整个模型的学习和推理过程。
模型块之间通过某种连接方式组成深度结构,每个模型

块内部可能包含全连接层等子组件。 预测输出部分则由

多层栈结构组成,能够产生不同粒度的预测结果,如全局

预测。 此外,该架构还采用了反馈连接机制,以增强模型

的学习能力。 这种分层次、多模块的模型结构有利于提

高整体的表达能力和泛化性能。

图 2　 NBEATS 网络结构模型

Fig. 2　 NBEATS
 

network
 

structure
 

model
 

diagram
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　 　 基本块内部由两部分构成。 第 1 部分是全连接网

络,用于生成向前 θf
l 和向后 θb

l 的扩展系数预测器,其计

算过程如下:
h l,1 = FC l,1(x l)
h l,2 = FC l,2(h l,1)
h l,3 = FC l,3(h l,2)
h l,4 = FC l,4(h l,3)

θb
l = LINEARb

l(h l,4)

θf
l = LINEAR f

l(h l,4)

ì

î

í

ï
ï
ï
ï

ï
ï
ï
ï

(6)

其中, FC 层为带有 ReLU 非线性激活函数的标准全

连接层,如下:
h l,1 = RELU(W l,2x l + b l,2) (7)
LINEAR 是简单线性投影层,即 θf

l = W f
lh l,4。 第 2 部

分由向后 gb
l 和向前 g f

l 基底层组成,通过基函数集将扩展

系数 θf
l 和 θb

l 映射为输出 ŷ l 和 x̂ l ,计算公式为:

ŷ l = ∑
dim(θfl)

i = 1
θf
l,iv

f
i

x̂ l = ∑
dim(θbl )

i = 1
θb
l,iv

b
i

ì

î

í

ï
ïï

ï
ïï

(8)

式中: vfi 和 vbi 分别是预测和回测的基向量; θf
l,i 是 θf

l 的第

i 个元素。 基底层 gb
l 和 g f

l 的作用是提供丰富的基函数

集,以通过不同扩展系数表示输出。 在通用架构中, gb
l

和 g f
l 被设为前一层输出的线性投影。
在可解释架构中,和它们被设计为具有特定结构的

函数,以体现时间序列的趋势和季节性等特征。 这种双

分支架构使得模型能够同时捕捉局部波动特征和全局趋

势信息,特别适合处理 IGBT 瞬态电压序列中的多尺度非

线性特征。 相比传统的循环神经网络,NBEATS 避免了

梯度消失问题;相比注意力机制模型,其计算效率更高且

具有更好的可解释性。 这些特点使其在处理 VMD 分解

后的高频分量时具有独特优势,能够准确刻画 IGBT 在不

同退化阶段的动态特性。
这 3 种方法在理论层面的互补性为构建鲁棒的预测

模型提供了坚实基础。 同时,所述 3 种方法的选择并非

随机组合,而是基于对 IGBT 退化机理和 Vce_peak 信号

特性的深入分析。 IGBT 退化过程具有 3 个关键特性,即
多尺度性、非线性和小样本限制。 首先,多尺度性源于

IGBT 内部结构的复杂性。 在热循环应力作用下,封装材

料与芯片界面、键合线连接处以不同速率退化,导致

Vce_peak 信号同时包含长期、中期趋势和短期波动。
VMD 方法能够精确分离这些不同时间尺度的特征,使后

续建模能针对性处理不同的物理退化过程。 其次,非线

性特性体现在 Vce_peak 的变化率随时间非均匀变化,特

别是在退化初期和接近失效阶段表现出不同的变化速

率。 这种非线性与 IGBT 内部微观结构变化的阈值效应

密切相关。 GPR 的核函数设计能够自适应捕捉这种非

线性关系,特别是低频趋势中的非线性变化;而 NBEATS
的深层网络结构则能有效建模高频分量中的复杂非线性

模式。 最后,IGBT 加速寿命试验通常受限于成本和时

间,导致可用样本量较少,这为预测建模带来挑战。 GPR
在小样本学习方面具有天然优势,能在有限数据条件下

提供可靠预测;而 NBEATS 的参数共享机制和残差设计

也有助于缓解小样本条件下的过拟合问题。
综上所述,本文所选方法与 IGBT 退化问题的特性高

度匹配,VMD 解决了多尺度问题,GPR 和 NBEATS 分别

针对不同频率特性的非线性建模,同时 3 种方法共同应

对小样本限制。 这种方法与问题的深度融合是本研究框

架设计的核心思想。 这种理论框架的有机结合不仅提高

了预测精度,也增强了模型的可解释性和泛化能力。

3　 VMD-GPR-NBEATS 模型

　 　 本文提出的融合 NBEATS 模型的预测框架包括特征

提取、多尺度分解、自适应差异化建模 3 个主要环节,其
中自适应差异化建模是本方法的核心创新点。 不同于传

统简单的多模型输出融合,本文方法首先基于信号的内

在特性进行分解,然后根据各分量的频率特征有针对性

地选择最适合的预测模型,实现按需建模的精准预测。
这种“分解-差异化建模-融合”的策略有效解决了单一模

型无法同时处理不同频率特征和多种非线性模式的问

题。 考虑到原始序列的非线性和非平稳性,为了提升

IGBT 寿命预测精度,建模前首先用 VMD 方法进行分解。
针对分解后不同分量的频率特性,采用差异化建模的方

式以 实 现 不 同 模 型 之 间 的 优 势 互 补。 VMD-GPR-
NBEATS 融合预测模型整体框架如图 3 所示,建模过程

可以分为 6 步,如下:
1)在 IGBT 的老化失效过程中,集电极-发射极瞬态

尖峰电压已被证明是 IGBT 故障检测的重要表征参数,因
此首先对 NASA 研究中心提供数据集进行特征提取。 实

验测试仪器记录设备的电压参数共计 418 组,每组瞬态

数据中包含 100
 

000 个集电极-发射极电压采样点。 在实

验中观察到一旦 IGBT 关断,电压值就会产生一个尖峰,
提取每组中的尖峰数据,构成原始数据集。

2)将 IGBT 老化全寿命周期数据按比例依次划分为

训练集和测试集,分别用于 IGBT 寿命预测模型的训练和

预测。 采用 Z-Score 标准化方法消除量纲,从而提高模型

训练时的收敛速度和精度。
3)使用 VMD 对标准化后的退化特征序列进行分解,

设置合适的带宽限制参数、噪声容限参数以及中心频率
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初始化参数,最终将原始序列分解为若干带宽有限且中

心频率唯一的分量,分解得到的 IMF 分量可根据频率的

高低分为两类。 将分解得到的分量进行叠加重构,与被

分解前的数据进行比较,从而验证 VMD 分解的可行性。
4)基于分量的频率特性差异,对各个分量建立差异

化预测模型,对低频 IMF 分量采用 GPR 模型进行预测。
在处理复杂系统时,采用独立的 GPR 核函数往往只能捕

获数据的单一特征维度,对于具有高复杂度要求的建模

任务,依赖单核函数的高斯过程回归模型难以实现理想

的预测效果。 为解决此问题,可考虑构造复合核函数结

构,通过多核函数的协同作用来刻画数据中的异质性特

征,从而提升核函数在特征空间中的非线性映射能力。
对高频 IMF 分量采用 NBEATS 网络进行预测, 其中

NBEATS 网络采用双残差块设计,包含反向残差和前向

残差两个分支。
5)按照低频分量进行 GPR 模型预测,高频分量进行

NBEATS 模型预测的方法,两类模型可以并行训练,分别

优化各自的模型参数。
6)融合所有分量的预测结果,通过逆标准化处理获

取最终 Vce_peak 序列的预测结果,最后在测试集上与真

实序列比较得出预测效果,并且用模型性能评价指标函

数对模型的预测效果进行评估。
本文提出的理论框架通过 3 种方法的创新性组合,

形成了一种全新的多尺度、多模型协同预测范式,突破了

传统单一模型在 IGBT 寿命预测中的局限性。 VMD、GPR
和 NBEATS

 

3 种方法在理论层面形成了有机互补,构成

了一个从信号处理到深度学习的完整技术链。 首先,
VMD 作为一种新型自适应信号分解方法,相比传统的经

验模态分解和小波分解,其最大创新点在于将信号分解

问题转化为变分优化问题,通过迭代求解使各分量的带

宽得到最小化。 这种基于变分框架的分解方式使得

VMD 具有更强的抗噪能力和模态分离能力,能够更准确

地提取 IGBT 退化过程中的多尺度特征。 特别是对于

IGBT 这类存在多物理场耦合作用的复杂系统,VMD 的

自适应分解能力能够自动识别不同频率域上的特征模

式,为后续的差异化建模奠定基础。 其次,GPR 作为一

种概率框架下的非参数贝叶斯方法,其独特优势在于能

够同时提供预测值和预测不确定性。 在处理 IGBT 寿命

预测中的低频趋势分量时,GPR 不仅能够基于有限观测

数据进行准确预测,还能量化预测结果的可靠性,这对于

实际工程应用中的风险评估和决策制定具有重要价值。
最后,NBEATS 网络作为一种新兴的时间序列预测深度

学习模型,其双残差块设计和基扩展思想为捕捉复杂时

序模式提供了全新视角。 与传统的循环神经网络相比,
NBEATS 避免了长序列训练中的梯度消失问题。 本文首

次将 NBEATS 应用于 IGBT 寿命预测领域,并针对高频波

动分量的特性进行了网络优化,充分发挥了其在捕捉局

部波动特征和全局趋势信息方面的优势。
这 3 种方法的创新性结合形成了一种“分解-差异化

建模-融合”的新型预测范式,不仅显著提升了预测精度,
还增强了模型的可解释性和泛化能力。 VMD 的多尺度

分解为后续建模提供了更清晰的特征表达,GPR 的概率

框架为预测结果提供了可靠的不确定性估计, 而

NBEATS 的深度学习架构则确保了模型对复杂非线性关

系的建模能力。 这种理论框架的有机结合不仅提高了预

测精度,还为解决其他功率电子器件的寿命预测问题提

供了新的方法论思路。

4　 实验结果分析

4. 1　 模型评估标准
 

　 　 为了全面评估所提出的 VMD-GPR-NBEATS 融合模

型的预测性能,本文采用均方根误差( root
 

mean
 

square
 

error,RMSE)、平均绝对误差( mean
 

absolute
 

error,MAE)
和决定系数( coefficient

 

of
 

determination,R2 )作为评价指

标。 RMSE 反映了预测值与真实值之间的偏差程度,
MAE 衡量了预测值与真实值之间的绝对误差平均水平,
R2 反映了模型对数据变化的解释程度。 RMSE 与 MAE
的值越接近 0,R2 值越接近 1,表明模型的预测效果越好。
同时,本文通过消融实验对比了不同模型组合的预测效

果。 涉及到 RMSE、MAE、R2 的计算公式如下:

RMSE = 1
n ∑

n

i = 1
(y i -ŷ i)

2 (9)

MAE = 1
n ∑

n

i = 1
| ŷ i - y i | (10)

R2 = 1 -
∑

n

i = 1
(y i -ŷ i)

2

∑
n

i = 1
(y i - y i)

2
(11)

式中: y i 与 ŷ i 分别表示第 i 个样本的实际观测值和模型

预测值; y i 为样本实际观测值的算术平均数;n 为样本

总量。
4. 2　 VMD 分解结果

　 　 在 VMD 分解过程中,通过设置带宽限制参数 α =
100、噪声容限参数 τ = 0 以及中心频率初始化参数等,实
现了对序列的自适应分解。 经大量实证研究与数据分析

发现[21] ,对于 IGBT 失效特征参数的时间序列数据特性

而言,8 个分量的划分展现出卓越的适应性与优势。 过

少的分量划分会过度简化数据表征,致使关键的局部波

动特征与微弱的趋势性变化被忽视遗漏,无法全面勾勒

失效过程全貌;而过多分量虽可细化数据细节,但易引入
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过量噪声干扰与虚假模态,增加计算复杂度与模型过拟

合风险,模糊核心失效特征。 8 分量结构则平衡了特征

表达完整性与噪声鲁棒性,兼顾了低频段的长期退化趋

势和高频段的瞬态异常波动,契合后续针对不同频率特

性分量开展的差异化建模需求,故本文使用 VMD 分解将

原始数据划分为 8 个分量进行建模预测。

如图 4 所示,分解得到的 IMF 分量可分为两类。 前

两个 IMF 分量表现出明显的低频趋势特征,主要反映了

IGBT 器件在老化过程中的长期退化趋势,其余分量则呈

现出不同频率的波动特性,体现了器件在不同时间尺度

上的波动变化规律。 基于分量的这种差异性,采用不同

的预测策略。

图 3　 VMD-GPR-NBEATS 建模流程

Fig. 3　 Modeling
 

flow
 

chart
 

of
 

VMD-GPR-NBEATS

图 4　 K= 8 时的 VMD 分解

Fig. 4　 VMD
 

decomposition
 

diagram
 

when
 

K= 8

4. 3　 消融实验

　 　 为验证所提 VMD-GPR-NBEATS 模型在 IGBT 寿命
预测的优越性和有效性,本文通过消融实验进行比较,采
用 IGBT 加速老化数据集中的集电极-发射极瞬态尖峰电

压的前 80%数据作为训练集,后 20%数据作为模型的测

试集。

本文所提差异化建模结果如图 5 所示,对前两个低

频 IMF 分量采用 GPR 模型进行预测,GPR 的混合核函数

(RBF 核与有理二次核的组合) 具有优异的非线性拟合

能力,特别适合捕捉平滑连续的趋势变化。 其次,低频分

量数据点相对稀疏,GPR 在小样本学习方面表现出色,
能够有效处理此类数据特征

 

。 对于后 6 个高频 IMF 分

量,采用 NBEATS 模型进行预测,NBEATS 网络的双残差

块设计(包含反向残差和前向残差)能够同时捕捉局部

波动特征和全局趋势信息,其堆叠结构中的趋势块和季

节性块特别适合处理多尺度的时间序列特征,这样的处

理方式和特性符合后 6 个非平滑分量的特征。
如图 6 所示,对于前两个分量,GPR 模型在测试集上

表现出了良好的预测性能,体现了 IGBT 退化过程中的趋

势变化。 对于后 6 个分量,NBEATS 模型在测试集上预

测值贴近真实值,捕捉到了 IGBT 退化过程中局部的数据

波动。
这种差异化建模策略还考虑到了计算资源的高效利

用,对于变化相对缓慢的低频分量使用计算复杂度较低

的 GPR 模型,而对需要捕捉复杂动态特征的高频分量使

用深度学习模型。 这种基于信号特性的差异化建模策略

不仅在理论上具有充分依据,在实际预测效果上也取得

了显著提升。
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图 5　 VMD 分解后不同分量预测图(3D)
Fig. 5　 Prediction

 

charts
 

of
 

components
 

after
 

VMD
 

(3D)

图 6　 VMD 分解后不同分量预测图(2D)
Fig. 6　 Prediction

 

charts
 

of
 

components
 

after
 

VMD
 

(2D)

不同预测模型在测试集上的预测结果如图 7、8 所

示,对比看出融合模型 VMD-GPR-NBEATS 表现出最优

的预测性能。 从图 7 和 8 中可以明显观察到,相比于单

一模型 ( GPR、 NBEATS ) 以及 VMD 分解模型 ( VMD-
GPR、VMD-NBEATS),融合模型的预测曲线与实际数据

曲线吻合度最高,预测偏差最小。 当 IGBT 性能呈现明显

的非线性衰减趋势时,融合模型仍能保持稳定的预测精

度。 局部放大图(图 9)进一步显示了不同模型在数据波

动较大区域的预测效果,VMD-GPR-NBEATS 模型能够更

好地捕捉数据的局部波动特征,体现了多模型融合策略

的优势。

图 7　 5 种模型在测试集上的预测

Fig. 7　 Predictions
 

of
 

five
 

models
 

on
 

the
 

test
 

set

图 8　 5 种模型在测试集上的预测(2D)
Fig. 8　 Predictions

 

of
 

five
 

models
 

on
 

the
 

test
 

set
 

(2D)

图 9　 5 种模型在测试集上的预测(局部放大)
Fig. 9　 Predictions

 

of
 

five
 

models
 

on
 

the
 

test
 

set
 

(local
 

zoom)

预测模型评估指标对比如表 1 所示,可以看出,
VMD-GPR-NBEATS 融合模型在所有评价指标上都取得
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了最优结果, RMSE 仅为 0. 021
 

5, 比第二优的 VMD-
NBEATS 模型降低了 70%,同时其 R2 值达到 0. 97,表明

模型具有极强的预测能力。 当移除 VMD 预处理步骤后,
单一模型的性能显著下降,出现了负的 R2 值,这充分说

明了在处理 IGBT 寿命预测这类复杂非线性问题时,预处

理和模型融合的重要性。
表 1　 预测模型评估指标对比

Table
 

1　 Comparison
 

of
 

evaluation
 

metrics
for

 

prediction
 

models
模型 RMSE MAE R2

GPR 0. 214
 

3 0. 183
 

2
NBEATS 0. 262

 

3 0. 214
 

1
VMD-GPR 0. 082

 

4 0. 098
 

2 0. 594
 

5
VMD-NBEATS 0. 071

 

8 0. 034
 

4 0. 881
 

2
VMD-GPR-NBEATS 0. 021

 

5 0. 026
 

4 0. 973
 

3

　 　 通过这些实验结果,可以清晰地看到模型各个组件

对预测性能的贡献,验证了所提出的 3 模型融合框架的

合理性和必要性。 本文所提 VMD-GPR-NBEATS 融合模

型的预测效果如图 10 所示。 IGBT 关断过程中的尖峰电

压呈现典型的衰减振荡特性,但融合模型预测曲线与真

实曲线之间具有很高的重合性,特别是在捕捉关键的尖

峰特征和衰减趋势方面表现出色。 95%置信区间的范围

较窄,表明预测结果具有较高的可靠性和稳定性。

图 10　 VMD-GPR-NBEATS 预测结果

Fig. 10　 Prediction
 

results
 

of
 

VMD-GPR-NBEATS

4. 4　 训练集比例对比实验

　 　 为验证模型的泛化性能和稳定性,参考文献[22],
采用不同训练集与测试集比例进行对比实验。 首先选择

训练集与测试集的划分比例为 8 ∶ 2 之后分别扩大和缩

小训练集与测试集的比例为 9 ∶ 1 和 6 ∶ 4,通过多组实验

来评估模型在不同数据集划分下的表现。 图 11 和 12 所

示为不同训练集与测试集比例(9 ∶ 1 和 6 ∶ 4)下各模型

在测试集上的预测结果。 从图 11、12 可见,VMD-GPR-
NBEATS

 

模型的预测曲线与原始数据曲线贴合度较高,
在整个采样周期内能够很好地跟踪峰值电压的变化趋

势,进一步验证了本文提出的 VMD-GPR-NBEATS 模型

的优越性。
对预测效果进行定量分析如表 2 所示,实验结果呈

图 11　 比例为 9 ∶ 1 时模型在测试集上的预测

Fig. 11　 Predictions
 

of
 

the
 

model
 

when
 

the
 

ratio
 

is
 

9 ∶ 1

图 12　 比例为 6 ∶ 4 时模型在测试集上的预测

Fig. 12　 Predictions
 

of
 

the
 

model
 

when
 

the
 

ratio
 

is
 

6 ∶ 4

现了各比例下模型的性能指标,这有助于全面评估模型

的鲁棒性和泛化能力。 在 3 种划分比例中,8 ∶ 2 的划分

方案表现出了较好的平衡性:其 RMSE 为 0. 021
 

5,相比

6 ∶ 4 划分方案的 0. 035
 

7 显著降低了约 39. 8%;虽然 9 ∶
1 划 分 方 案 能 够 获 得 略 优 的 性 能 指 标 ( RMSE 为

0. 019
 

6),但过高的训练集比例可能导致测试样本不足,
难以充分验证模型的泛化能力。 相比之下,8 ∶ 2 的划分

既保证了充足的训练样本以捕捉 IGBT 退化特征的复杂

模式,又保留了足够的测试样本以验证模型的预测性能。
从决定系数来看,8 ∶ 2 划分方案达到了 0. 973

 

3 的高度

拟合程度,表明预测值与实际值之间具有很强的相关性。
同时,其 MAE 为 0. 026

 

4,处于一个较低的水平,说明模

型预测的绝对误差较小。 因此,本文选择 8 ∶ 2 作为最终

的数据集划分比例,这种划分策略为模型提供了充足的

训练数据以学习 IGBT 退化特征,同时又保留了合适规模
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的测试集以进行可靠的性能评估。
表 2　 VMD-GPR-NBEATS 模型不同划分比例对比

Table
 

2　 Comparison
 

of
 

different
 

division
 

ratios
 

of
the

 

VMD-GPR-NBEATS
 

model
比例 RMSE MAE R2

6 ∶ 4 0. 035
 

7 0. 028
 

7 0. 970
 

5
8 ∶ 2 0. 021

 

5 0. 026
 

4 0. 973
 

3
9 ∶ 1 0. 019

 

6 0. 024
 

2 0. 975
 

7

5　 结　 论

　 　 VMD-GPR-NBEATS 融合模型通过多尺度分解与差

异化建模策略成功实现了 IGBT 寿命的高精度预测,在
NASA 加速老化数据集上的均方根误差为 0. 021

 

5,较现

有最优模型提升 70%。 消融实验证实了 VMD 分解的必

要性,解决了传统分解方法模式混叠,移除 VMD 预处理

步骤会导致模型性能显著下降,出现负的决定系数。 同

时,针对不同频率特征分量采用不同预测模型的策略有

效提升了预测精度,GPR 模型对低频趋势分量的预测与

NBEATS 网络对高频波动分量的捕捉形成了良好互补,
解决了低频趋势建模与高频波动捕捉的技术难题。
VMD-GPR-NBEATS 融合模型通过创新的差异化建模策

略成功实现了 IGBT 寿命的高精度预测,相比现有方法具

有 3 个主要的创新点:1)提出了基于频率特性的分量分

类方法,实现了预测模型的自适应选择;2) 创新性地将

GPR 与 NBEATS 网络结合,充分发挥两种模型在处理不

同频率特性信号时的互补优势;3)构建了完整的“分解-
差异化建模-融合”预测框架,为电力电子器件寿命预测

提供了新思路。 但当前模型在实际应用中仍存在计算复

杂度较高的问题,未来可从以下 3 个方面展开深入研究:
1)开发轻量级模型结构,在保持预测精度的同时降低计

算开销;2)引入在线学习机制,使模型能够适应 IGBT 在

不同工作环境下的动态特性变化;3)将该框架推广至其

他功率器件的寿命预测,如 MOSFET、二极管等,进一步

验证方法的通用性。 此外,结合工业物联网和边缘计算

技术,研究分布式预测框架也是一个很有前景的方向。
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