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摘　 要:准确预测弹丸发射点能够迅速定位敌方威胁源,提供关键情报支持,优化反击策略,在军事领域中具有重要战略意义。
针对弹丸的发射点预测问题, 提出了一种基于时序卷积网络 ( temporal

 

convolutional
 

network,
 

TCN)、 双向门控循环单

元(bidirectional
 

gated
 

recurrent
 

unit,
 

BiGRU)和注意力机制(attention
 

mechanism)相结合的深度学习模型。 该模型旨在提高弹道

轨迹预测精度,尤其是在复杂战场环境下,通过反向推算敌方弹丸发射点,为反击策略提供支持。 首先,基于弹道方程,针对不

同射角和初速度的情况,通过解算六自由度刚体弹道方程,构建了详细的弹丸轨迹数据集。 然后,提出的 TCN-BiGRU-Attention
模型,通过引入 TCN 结构,捕捉轨迹数据中的长时间依赖性,并结合 Attention 机制优化信息加权,以提高预测的精确度。 在仿

真验证中,与 BiGRU、双向长短期记忆网络( bidirectional
 

long
 

short-term
 

memory,
 

BiLSTM) 等模型及其改进模型相比,TCN-
BiGRU-Attention 模型在发射点预测精度上表现显著优越,尤其在射程方向和侧偏方向的误差显著降低。 通过多组仿真测试,结
果表明,TCN-BiGRU-Attention 模型能够在不同发射高度下稳定地提供精准的发射点预测。 其中在海平面高度下,模型的射程

方向误差仅为 8. 3
 

m,侧偏方向误差较小,可以有效预测并打击敌方的发射点。 为未来战场中对敌方发射点预测的实施提供了

理论依据和技术支持。
关键词:

 

弹丸轨迹预测;发射点预测;时序卷积网络;双向门控循环单元;注意力机制

中图分类号:
 

TN98　 　 　 文献标识码:
 

A　 　 国家标准学科分类代码:
 

590. 65

Projectile
 

launch
 

point
 

prediction
 

based
 

on
 

TCN-BiGRU-Attention
 

model
 

Gao
  

Zhanpeng1 　
 

Yi
  

Wenjun1 　
 

Guan
  

Jun2 　
 

Yuan
  

Shusen1

(1. National
 

Key
 

Lab
 

of
 

Transient
 

Physics,
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology,
 

Nanjing
 

210094,
 

China;
2. School

 

of
 

Automation,
 

Jiangsu
 

University
 

of
 

Science
 

and
 

Technology,
 

Zhenjiang
 

212100,
 

China)

Abstract:
 

Accurate
 

prediction
 

of
 

the
 

projectile
 

launch
 

point
 

can
 

quickly
 

locate
 

enemy
 

threat
 

sources,
 

provide
 

critical
 

intelligence
 

support,
 

and
 

optimize
 

counterattack
 

strategies,
 

holding
 

significant
 

strategic
 

importance
 

in
 

the
 

military
 

field.
 

This
 

study
 

addresses
 

the
 

problem
 

of
 

predicting
 

projectile
 

launch
 

points
 

and
 

proposes
 

a
 

deep
 

learning
 

model
 

that
 

combines
 

temporal
 

convolutional
 

network
 

(TCN),
 

bidirectional
 

gated
 

recurrent
 

unit
 

( BiGRU),
 

and
 

attention
 

mechanism.
 

The
 

model
 

aims
 

to
 

improve
 

ballistic
 

trajectory
 

prediction
 

accuracy,
 

especially
 

in
 

complex
 

battlefield
 

environments,
 

by
 

backwardly
 

inferring
 

enemy
 

projectile
 

launch
 

points
 

to
 

support
 

counterattack
 

strategies.
 

Firstly,
 

based
 

on
 

the
 

ballistic
 

model,
 

a
 

detailed
 

projectile
 

trajectory
 

dataset
 

was
 

constructed
 

by
 

solving
 

the
 

six-degree-of-
freedom

 

rigid
 

body
 

ballistic
 

equation
 

for
 

different
 

launch
 

angles
 

and
 

initial
 

velocities.
 

Then,
 

the
 

proposed
 

TCN-BiGRU-Attention
 

model
 

captures
 

long-term
 

dependencies
 

in
 

the
 

trajectory
 

data
 

by
 

introducing
 

the
 

TCN
 

structure
 

and
 

optimizes
 

information
 

weighting
 

using
 

the
 

attention
 

mechanism
 

to
 

enhance
 

prediction
 

accuracy.
 

In
 

simulation
 

validation,
 

compared
 

with
 

models
 

like
 

BiGRU,
 

bidirectional
 

long
 

short-term
 

memory
 

( BiLSTM),
 

and
 

their
 

improved
 

variants,
 

the
 

TCN-BiGRU-Attention
 

model
 

demonstrated
 

significantly
 

superior
 

performance
 

in
 

launch
 

point
 

prediction
 

accuracy,
 

particularly
 

in
 

reducing
 

errors
 

in
 

both
 

range
 

and
 

cross-range
 

directions.
 

Through
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multiple
 

sets
 

of
 

simulation
 

tests,
 

the
 

results
 

indicate
 

that
 

the
 

TCN-BiGRU-Attention
 

model
 

can
 

stably
 

provide
 

accurate
 

launch
 

point
 

predictions
 

at
 

various
 

launch
 

heights.
 

At
 

sea
 

level,
 

the
 

model’s
 

range
 

error
 

is
 

only
 

8. 3
 

meters,
 

and
 

the
 

cross-range
 

error
 

is
 

minimal,
 

effectively
 

predicting
 

and
 

striking
 

the
 

enemy’ s
 

launch
 

point.
 

This
 

study
 

provides
 

theoretical
 

basis
 

and
 

technical
 

support
 

for
 

the
 

implementation
 

of
 

enemy
 

launch
 

point
 

prediction
 

in
 

future
 

battlefield
 

scenarios.
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0　 引　 言

　 　 弹丸轨迹预测在军事和航空航天领域具有重要的战

略意义。 通过对来袭威胁的轨迹进行有效预测,可以增

强反导系统的拦截能力[1-2] ,提高整体防御水平。
由于战场环境复杂多变、目标的高机动性、电子对抗

和反制措施使得导弹拦截系统难以在短时间内完成精准

的拦截。 同时,拦截系统必须精确计算飞行轨迹,并迅速

反应,这对计算能力和决策速度提出了极高要求。 但从

逆向思维出发,如果对其发射点准确预测,并打击敌方发

射点,从根本上削弱敌方的作战能力,使得防空系统不仅

具备防御功能,还具备主动进攻和威慑能力,进一步增强

了防空体系的整体效能。
对其发射点预测可以归纳为未来轨迹预测的反推,

其原理一致。 而目前常用的轨迹预测方法主要为传统的

滤波算法[3-4] 和基于深度学习预测方法[5] 。 其中传统滤

波算法主要采用卡尔曼滤波算法来获取状态信息。 现实

中运动轨迹是复杂且具有非线性特征,卡尔曼滤波在处

理非线性问题时表现不佳,并且算法对初始值敏感导致

预测结果不准确[6] 。
本文将采用深度学习方法进行轨迹预测,而飞行器

的轨迹预测较为多见[7-8] 。 Shi 等[9] 采用一种具有约束的

长短期记忆(long
 

short-term
 

memory
 

network,
 

LSTM)网络

模型,提出的 CLSTM 充分利用约束条件,相比较 LSTM
模型大大提高了轨迹预测的精确度。 同样类比二维的车

辆轨迹预测。 Ma 等[10] 采用卷积神经网络( convolutional
 

neural
 

network,
 

CNN)和 LSTM 融合,LSTM 挖掘时间维度

特征,并采用 CNN 提取空间维度特征,实现对飞行轨迹

的准确预测。 Jia 等[11] 提出融合注意力机制的 LSTM 预

测模型,采用 LSTM 挖掘数据中的时间序列信息,并根据

注意力机制,来筛选重要的影响因素,所提出模型结果优

于 CNN-LSTM 结果。 Guo 等[12] 搭建一种基于二进制编

码的新框架,其中编码器用来学习历史数据,解码器用来

预测飞行轨迹,并为该模型设计一组全新的损失函数,结
果表明该算法拥有优越的性能和计算效率。 在后续的研

究中,Zhang 等[13] 创新型的提出一种基于小波变换的方

法对飞行轨迹进行预测,在预测任务中充分利用频域分

析法,有效改进了预测性能,出色完成预测任务。
在弹丸飞行轨迹预测研究中,郑志伟等[14] 提出一种

卷积神经网络与长短期记忆网络的混合轨迹预测模型,
利用差分法和滑动窗口法构建输入输出数据,但所提出

模型在 3
 

s 内 y 轴方向预测的累计误差约 20
 

m,其预测

误差较大,3
 

s 的预测结果对导弹拦截的指导意义较小。
任济寰等[15] 采用一种增强上下文信息的 LSTM 网络对弹

道轨迹进行预测,仿真表明采用深度学习方法比解算弹

道微分方程组法的速度要快,并且具备一定泛化能力,但
是未能解决反向预测弹丸发射点位置,对其发射点实现

打击。 因此本文将围绕提高预测精确度和实现发射点预

测两个角度展开研究。
在处理时间序列问题中,循环神经网络( recurrent

 

neural
 

network,
 

RNN)
 [16] 、门控循环单元( gated

 

recurrent
 

unit,
 

GRU) [17] 以及 LSTM[18] 等模型常被采用,但在处理

复杂问题,尤其针对弹丸这一类速度快且机动能力较强

的预测任务中,单一的模型难以满足预测要求。 在处理

时间序列预测问题中,双向门控循环单元( bidirectional
 

gated
 

recurrent
 

unit,
 

BiGRU) 相比较 GRU 的预测性能均

有大幅度提升[19-20] ,因此本文将以 BiGRU 为基准,对其

改进, 将 其 与 时 序 卷 积 网 络 ( temporal
 

convolutional
 

network,
 

TCN) [21] 和 Attention[22] 组合,构建 TCN-BiGRU-
Attention 模型用于弹丸的发射点预测。

针对弹丸发射点预测问题,本文提出 TCN-BiGRU-
Attention 弹丸轨迹预测模型,运用递归预测思想,模拟敌

方弹丸来袭状态从而获取敌方发射点位置。 为保证仿真

结果的可靠性和真实性,将采用实际弹丸参数和弹道模

型建立弹丸轨迹数据集,并且将数据集逆向排列以便训

练和测试。 通过多组仿真对比可以发现,本文所提出的

算法在发射点预测中,其预测值可以较为准确的模拟敌

方弹丸发射后的飞行轨迹,实现了对敌方来袭弹丸的发

射点预测,同时有效提高了弹丸轨迹的预测精确度。

1　 弹道模型和数据集构建

　 　 深度学习模型在轨迹预测中的应用高度依赖于数据

质量,要求数据具备丰富的数量、多样性以及高质量等特

点。 为了确保模型能够有效地学习和具备良好的泛化能

力,训练数据必须覆盖不同的发射情境,从而使模型能够

适应各种环境变化。
1. 1　 问题描述

　 　 由于战场环境复杂多变、目标的高机动性、电子对抗
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和反制措施使得导弹拦截系统难以在短时间内完成精准

的拦截。 同时拦截系统必须精确计算飞行轨迹,并迅速

反应,这对计算能力和决策速度提出了极高要求。
但在拦截敌方导弹的同时预测并打击敌方发射点具

有显著的战略优势,从根本上削弱敌方的打击能力,使得

防空系统不仅具备防御功能,还具备主动进攻和威慑能

力,进一步增强了防空体系的整体效能。
本文将以弹箭 6 自由度刚体弹道方程的飞行数据为

例,将弹丸的发射地点视为敌方发射点,弹丸最终落点为

敌方攻击目标(我方地域),发射点预测如图 1 所示。

图 1　 发射点预测

Fig. 1　 Launch
 

point
 

prediction

图 1 中,当敌方弹丸一旦飞入我方雷达监测范围内,
称为进入我方观测区域。 因此如何利用可观测段区域反

推敌方发射点位置是亟待解决的问题。

1. 2　 弹箭 6 自由度刚体弹道方程

　 　 6 自由度刚体弹道方程描述的是弹丸在三维空间内

的运动,考虑了弹丸的线性和旋转运动,通常使用该方程

进行现代导弹、炮弹等弹丸的弹道模拟,6 自由度刚体弹

道方程的基本形式如下:
dv
dt

= 1
m
Fx2 (1)

dθa

dt
= 1
mvcosψ2

Fy2 (2)

dψ2

dt
= 1
mv

Fz2 (3)

dx
dt

= vcosψ2cosθa (4)

dy
dt

= vcosψ2sinθa (5)

dz
dt

= vsinψ2 (6)

dωξ

dt
= 1

C
Mξ (7)

dωη

dt
= 1

A
Mη - C

A
ωξωζ + ωη

2 tanφ2 (8)

dωζ

dt
= 1

A
Mζ + C

A
ωξωη - ωηωζ tanφ2 (9)

dφa

dt
=

ωζ

cosφ2
(10)

dφ2

dt
= - ωη (11)

dγ
dt

= ωξ - ωζ tanφ2 (12)

辅助方程及力和力矩的表达式如下:
sinδ2 = cosψ2sinφ2 - sinψ2cosφ2cos(φa - θa) (13)

sinδ1 =
cosφ2sin(φa - θa)

cosδ2
(14)

sinβ =
sinψ2sin(φa - θa)

cosδ2
(15)

Fx2 =-
ρvr
2
Scx(v - wx2

) + ρS
2
cy

1
sinδr

[vr
2cosδ2cosδ1 -

vrξ(v - wx2
)] +

ρvr
2
Scz

1
sinδr

( - wz2
cosδ2sinδ1 + wy2

sinδ2) -

mgsinθacosψ2 + Fpcosδ2cosδ1 (16)

Fy2 =
ρvr
2
Scxwy2

+ ρS
2
cy

1
sinδr

[vr
2cosδ2sinδ1 + vrξwy2

] +

ρvr
2
Scz

1
sinδr

[(v - wx2
)sinδ2 + wz2

cosδ2cosδ1] - mgcosθa +

Fpcosδ2sinδ1 (17)

Fz2 =
ρvr
2
Scxwz2

+ ρS
2
cy

1
sinδr

[vr
2sinδ2 + vrξwz2

] +

ρvr
2
Scz

1
sinδr

[ - wy2
cosδ2cosδ1 - (v - wx2

)cosδ2sinδ1] +

mgsinθasinψ2 + Fpsinδ2 (18)

Mξ =-
ρSld

2
m′xzvrωξ +

ρvr
2

2
Slm′xwδf (19)

Mη = ρSl
2
vrmz

1
sinδr

vrζ - ρSld
2

vrm′zzωη -

ρSld
2

m′y
1

sinδr
ωξvrη (20)

Mζ =-
ρSl
2
vrmz

1
sinδr

vrη - ρSld
2

vrm′zzωζ -

ρSld
2

m′y
1

sinδr
ωξvrζ (21)

vr = (v - wx2
) 2 + wy2

2 + wz2
2 (22)

vrx2
= v - wx2

,vry2
=- wy2

,vrz2 =- wz2
(23)

δr = arccos
vrξ
vr

( ) (24)
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vrξ = (v - wx2
)cosδ2cosδ1 - wy2

cosδ2sinδ1 - wz2
sinδ2

(25)
vrη = vrη2

cosβ + vrζ2
sinβ (26)

vrζ =- vrη2
sinβ + vrζ2

cosβ (27)
vrη2

=- (v - wx2
)sinδ1 - wy2

cosδ1 (28)
vrζ2

=- (v - wx2
)sinδ2cosδ1 + wy2

sinδ2sinδ1 - wz2
cosδ2

(29)
wx2

= wxcosψ2cosθa + wzsinψ2 (30)
wy2

=- wxsinθa (31)
wz2

=- wxsinψ2cosθa + wzcosψ2 (32)
wx =- wcos(αW - αN) (33)
wz =- wsin(αW - αN) (34)
上述弹道方程中设计 15 个变量,但有 15 个方程。

当弹箭结构参数、气动力参数、射击条件、气象条件、起始

条件时,可以积分获取弹箭的运动规律和任意时刻的弹

道诸元。 本文以 155
 

mm 弹丸为例进行仿真分析,其中计

算过程中所涉及的气动参数参考文献[23]的辨识结果,
弹体结构参数参考文献[24]。
1. 3　 数据集的构建

　 　 本文的数据将采用数值模拟的方式获取,采用龙格

库塔法来求解修正质点弹道方程,其中将解算的时间步

长设置为 0. 01
 

s,通过不断调整射角和初速度进行解算

构建弹丸轨迹数据集,如表 1 所示。
表 1　 弹丸轨迹采样方式

Table
 

1　 Projectile
 

trajectory
 

sampling
 

method
参数 采样值 采样间隔

初速度 / (m·s-1 ) (700,1
 

000] 5
射角 / ( °) (35,55] 1

　 　 根据表 1 中的采样方式进行外弹道仿真,可以得到

1
 

200 条不同的轨迹。 而本研究目的为对敌方发射点进

行预测,因此忽略敌方弹丸飞行末段,取 1
 

200 条轨迹数

据的前 60
 

s 进行分析。 在实际的防空和反导系统中,雷
达可以快速捕捉来袭导弹的位置信息,因此本文将各条

轨迹时间、射程、射高以及侧偏等位置信息保存以构建数

据集。 因此保存的数据集格式为 Traj = {T1,T2, …,
T1200} ,其中任意一条轨迹又可以表示为 T i = { tni ,x

n
i ,y

n
i ,

zni } ,其中 i为第 i个坐标点, n为第 n条轨迹, t为当前坐

标点对应的时间戳。 并且将数据集按照 8 ∶ 1 ∶ 1 划分为

训练集,测试集和验证集。

2　 弹丸发射点预测模型

　 　 由于无控弹丸在空中飞行的状态受到前一时刻乃至

前一段时间状态的影响,弹丸飞行过程中呈现出强烈的

时间连续性。 本文选用时间序列分析的方法,以捕捉这

种连续性特征,通过对历史轨迹进行分析和学习,从而进

行未来轨迹的预测。
在轨迹预测任务中,TCN、BiGRU 和 Attention 机制的

综合应用可以显著提升模型的性能,通过将这 3 个模块

结合起来,可以构建一个强大的轨迹预测模型,有效地捕

捉弹丸飞行状态的时间连续性和相关性特征,从而实现

对未来轨迹的准确预测。 图 2 所示为 TCN-BiGRU-
Attention 的组合模型结构。
2. 1　 TCN 模块

　 　 TCN 是 CNN 在时序数据建模中的变种,旨在解决传

统 RNN 在处理长期依赖、梯度消失和训练效率方面的不

图 2　 TCN-BiGRU-Attention 组合模型结构

Fig. 2　 TCN-BiGRU-Attention
 

combined
 

model
 

structure
 

diagram
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足。 其核心原理包括卷积操作、空洞卷积、残差连接和多

尺度特征融合。 通过在时间轴上滑动的卷积核,TCN 能

够捕捉局部时间特征;空洞卷积通过在卷积核之间插入

空洞来增加感受野,从而捕捉更长范围的时间依赖性;残
差连接帮助梯度在反向传播过程中更好地流动,缓解梯

度消失问题;多尺度特征融合通过堆叠多个卷积层并进

行特征融合,捕捉多层次的时间依赖性。 TCN 的优势在

于其并行化能力、长距离依赖性捕捉能力和简洁的模型

结构。 由于卷积操作可以并行计算,TCN 在处理长序列

数据时效率更高,训练速度更快;通过空洞卷积和多层堆

叠,TCN 能够更好地处理长距离依赖性;其简洁的模型结

构和丰富的特征表示也使其在处理复杂的时间序列数据

时更具鲁棒性和准确性。 TCN 中因果卷积、扩张卷积和

残差连接如下:
1)因果卷积,因果卷积可以确保在时间序列处理时,

当前时间步的输出仅依赖于当前或之前的输入,而不会

涉及未来的时间步。 避免了“未来信息泄露”问题,保证

了数据的时间顺序性。
2)扩张卷积,通过在卷积核的元素之间插入空隙

(即增加卷积核的“扩张” 因子),有效地增加卷积的感

　 　 　

受野,从而能够捕捉更长范围的时间依赖。 扩张卷积使

得感受野呈指数级扩展,但不会显著增加计算量或参数

数量。 其中扩张卷积结构如图 3 所示。

图 3　 TCN 扩张卷积结构

Fig. 3　 TCN
 

dilated
 

convolution
 

structure
 

diagram

3)残差连接[25] ,通过引入短路连接(即跳过一部分

层,将输入直接加到输出),残差连接允许模型更容易地

学习到恒等映射,增强训练稳定性。 图 4 为 TCN 的残差

结构单元,采用 Dropout 正则化和 ReLU 激活函数来加快

网络收敛,每个残差块具有相同的扩张因果卷积、权值归

一化处理、激活函数和正则化,同时为保证 TCN 输入输

出通道保持一致,增加了一个 1×1 的卷积。

图 4　 TCN 模型结构

Fig. 4　 TCN
 

model
 

structure
 

diagram

2. 2　 BiGRU 模块

　 　 BiGRU 是一种双向递归神经网络架构,它是 GRU 的

一种扩展形式。 GRU 通过门控机制控制信息的更新和

遗忘,能够更有效地处理长期依赖性问题。 BiGRU 通过

结合正向和反向的 GRU,能够在时间序列的两个方向上

同时传递信息,从而捕捉双向的上下文信息。 正向 GRU
按照时间顺序处理输入序列,反向 GRU 按照时间逆序

处理输入序列。 通过这种方式,BiGRU 能够更好地理

解序列数据的整体结构。 BiGRU 的优势在于其双向信

息传递能力、高效的门控机制、简洁的模型结构以及一

定的并行化能力。 BiGRU 在序列数据处理任务中表现

出色,被广泛应用在时间序列预测中。 GRU 的结构如

图 5 所示。
更新门:
zt = σ(Wz·[h t -1,x t]) (35)
重置门:
rt = σ(Wr·[h t -1,x t]) (36)
候选隐藏状态:
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图 5　 GRU 结构图

Fig. 5　 GRU
 

structure
 

diagram

ĥ t = tanh(Wh·[ rt·h t -1,x t]) (37)
最终隐藏状态:

h t = (1 - zt)·h t-1 + zt ·ĥ t (38)
式中: σ为 sigmoid函数; Wz,Wr 和Wh 为 GRU 的权重矩

阵; x t 为当前时刻输入; h t -1,h t 和 ĥ t 分别为上一时刻隐

藏层状态,最终隐藏层状态和候选隐藏状态; zt 为更新门

决定当前时刻状态 h t 应该由多少候选隐藏状态 ( ĥ t) 和

上一时刻隐藏状态 (h t -1) 决定; rt 为重置门,控制了上一

时刻的隐藏状态 (h t -1) 在当前时刻对候选隐藏状态计算

的影响。
2. 3　 注意力机制

　 　 在传统神经网络中,每个输入的元素都会被赋予相

同的权重,模型在处理数据时对所有输入都 “ 均等关

注”。 而注意力机制在轨迹序列预测中通过为序列中的

不同部分分配不同的重要性权重,使模型能够关注于对

预测未来轨迹最为关键的时间步和特征。 在 TCN-
BiGRU 模型上增加注意力机制,能够根据输入序列中不

同时间步的相关性,为每个时刻赋予一个动态的权重,使
得模型在进行预测或分类时,能够更集中地关注序列中

的重要部分,而忽略不相关或冗余的信息。 具体来说,注

意力机制通过对 TCN 和 BiGRU 输出的特征进行加权求

和,提升了模型对重要时刻的响应,使得模型在处理复杂

时序问题时更具灵活性和精确性。 其中注意力机制的计

算方式如下[26] 。
对 Query 和 Key 进行相似度计算:
eij = D(q i,p j) (39)
对相似度进行归一化处理:
a ij = softmax(eij) (40)
加权求和:

ci = ∑
N

i = 1
a ijq i (41)

式中: D 运算代表点积函数; q 为查询元素; p 为元素地

址; e 为元素之间的相似度; c 为权值。

3　 仿真配置与预测方式

　 　 仿真实验基于 Python 语言和 Pycharm 平台,实验过

程使用 NVIDIA
 

GeForce
 

RTX
 

4060 显卡进行训练。 其弹

丸发射点预测的实验流程如图 6 所示。

图 6　 轨迹预测仿真流程

Fig. 6　 Flow
 

chart
 

of
 

trajectory
 

prediction
 

simulation

3. 1　 数据预处理

　 　 在训练之前要对轨迹集进行归一化处理。 归一化可

以将不同量纲和范围的数据统一到一个标准尺度上,从
而消除数据之间的量级差异,避免某些特征主导模型的

学习过程。 有助于加速收敛,提高模型的训练效率,公式

如下:

TN =
T - Tmin

Tmax - Tmin
(42)

式中: T 为数据集中的一条轨迹,将 T 中的数据分别进行

归一化处理; Tmin 和 Tmax 为相应数据的最小值和最大值;
TN 为归一化处理后的数据。



　 第 10 期 基于 TCN-BiGRU-Attention 模型的弹丸发射点预测 · 85　　　 ·

3. 2　 模型配置

　 　 本文结合 TCN、BiGRU 以及 Attention
 

3 个模块提出

TCN-BiGRU-Attention 模型,并与改进过程中所采用的

BiGRU、 BiLSTM、 CNN-BiGRU、 TCN-BiGRU 以 及 CNN-
BiGRU-Attention 等模型的预测结果进行对比。 其中模型

中模型参数与模型结构配置如表 2 所示。

表 2　 模型参数与模型结构配置

Table
 

2　 Model
 

parameters
 

and
 

model
structure

 

configuration
模型 参数 配置

CNN-BiGRU-
Attention

CNN 层 卷积核数量 32,长度 3
CNN 层 卷积核数量 64,长度 3

BiGRU 层 神经元数量 64
Dropout Dropout 率 0. 2

Attention ———
全连接层 神经元数量 3

TCN-BiGRU-
Attention

TCN 层 卷积核数量 32,长度 3,扩张率 1
TCN 层 卷积核数量 64,长度 3,扩张率 2

BiGRU 层 神经元数量 64
Dropout Dropout 率 0. 2

Attention ———
全连接层 神经元数量 3

　 　 其中采用对比的 BiGRU 和 CNN-BiGRU 模型配置,
与 TCN-BiGRU-Attention 模型中相关配置方式相同。 将

迭代次数统一设置为 20,学习率设置为 0. 000
 

1。 其中模

型评价标准采用终点预测误差和平均轨迹预测点预测

误差。
3. 3　 预测方式

　 　 由于敌方弹箭发射后到进入我方观测范围内的时间

段较长,虽然单步预测精确度较高,但是不能满足长序列

预测的需求,多步预测虽然能够同时生成多个时间步的

结果,具有一定的效率优势,但是多步预测存在预测误差

的累积、其训练过程不稳定,随着预测时间的增加,其预

测模型的可解释性越低,在弹道轨迹预测中单步预测和

多步预测通常不被考虑。
如图 7 所示,递归预测通常用以处理长时间序列任

务预测,递归预测是一种逐步利用单步预测结果的方

法[27] ,具有灵活性和可解释性,适合对时间序列数据进

行动态调整。 递归预测的数学表达式如下:

x̂ i,t +1 = f(x j,t -n:t) (43)

x̂ i,t +2 = f(x j,t -n+1:t +1) (44)
︙

x̂ i,t +l +1 = f(x j,t -n+l:t +l) (45)

图 7　 递归预测

Fig. 7　 Recursive
 

prediction

4　 仿真结果

　 　 采用龙格库塔算法求解的 1
 

200 条弹道的发射点均

为三维坐标系中的坐标原点,但是现实作战环境中敌方

弹箭将会从不同海拔高度发射。 意味着在对不同海拔高

度的发射点进行饱和打击前,要明确划分不同海拔高度

的发射点预测误差,从而得出最佳的决策和资源配置。
当敌方发射点为海平面时,发射点预测模型的预测

截止条件为 y = 0,其中 y 为弹丸所处高度。 发射点递归

预测结果如图 8 所示。
从图 8(a)可以看出,本文所采用的算法可以实现对

敌方弹丸发射点进行预测。 虽然 BiGRU 可以较为准确

预测弹丸射程方向变化,但是对于图 8( b)和( c)的射程

和侧偏方向的误差较大。 在使用 BiGRU 进行轨迹预测

时,前面加上了 CNN 进行特征提取,结果出现了中段误

差增大,末端误差快速缩减的现象。 其中段误差较大的

原因在于 CNN 特征提取未能有效捕捉轨迹数据的全局

模式或局部变化,影响了 BiGRU 的预测能力。 而在序列

的末端,由于历史信息的积累和 BiGRU 的双向建模,会
弥补这些误差,从而使末端的误差较小。

从图 8(d)可以看出,加入 Attention 后,对于发射点

射程和侧偏方向的误差减小。 原因在于模型能够自动识

别并强调中段轨迹中重要的时间步,从而减轻了 CNN 特

征提取不全的影响。 Attention 通过给不同时间步分配不

同的权重,使得模型能够集中注意力于对预测更重要的

部分,从而提高整体的预测精度。
当弹丸高度为 0 时,记录其射程和侧偏方向的误差,

即为发射点预测误差,如表 3 所示。
表 3　 海平面发射点预测误差

Table
 

3　 Sea
 

level
 

launch
 

point
 

prediction
 

error (m)
算法 射程方向误差 侧偏方向误差

BiGRU 167 2
BiLSTM 178. 3 2. 4

CNN-BiGRU 14 0. 17
TCN-BiGRU 3 0. 1

CNN-BiGRU-Attention 9. 5 0. 1
TCN-BiGRU-Attention 8 0. 3
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图 8　 发射点递归预测结果

Fig. 8　 Recursive
 

prediction
 

of
 

the
 

transmitting
 

point

　 　 从表 3 可以看出,BiGRU 在轨迹预测中表现优于

BiLSTM,是因为其较简洁的门控机制能够更高效地捕捉

长期依赖性,同时有效减少了模型计算的复杂度。 虽然

TCN-BiGRU 模型在海平面高度的发射点预测结果最为

精确,但是在海拔 1
 

000 和 2
 

000
 

m 高度的预测结果中呈

现出较大的预测误差。
而采用 TCN-BiGRU-Attention 模型在射程和侧偏方

向的综合误差为 8. 3
 

m,相比较 CNN-BiGRU-Attention 模

型预测误差缩小了 1. 3
 

m, 其原因在于 TCN-BiGRU-
Attention 模型在处理轨迹预测任务时, 相比于 CNN-
BiGRU-Attention,能够更好地捕捉长时间依赖、增强时序

建模能力,并通过 Attention 机制进一步优化预测精度,表
现出更优秀的性能。

由于敌方发射点海拔高度未知,为验证该模型可以

实现对不同高度的发射点实现精确预测, 将对海拔

1 000
 

m 和海拔 2 000
 

m 的发射点预测结果进行分析,如
表 4、5 所示。

其中预测在海拔 1 000
 

m 高度的发射点的截止条件

为 y= 1
 

000。
表 4　 海拔 1

 

000
 

m 发射点预测误差

Table
 

4　 Launch
 

point
 

prediction
 

error
 

at
1

 

000
 

meters
 

above
 

sea
 

level (m)
算法 射程方向误差 侧偏方向误差

BiGRU 179 0. 2
BiLSTM 187 0. 3

CNN-BiGRU 404 0. 2
TCN-BiGRU 330 1. 3

CNN-BiGRU-Attention 68 0. 05
TCN-BiGRU-Attention 25 0. 1

　 　 预测在海拔 2 000
 

m 高度的发射点的截止条件为 y=
2

 

000。
表 5　 海拔 2

 

000
 

m 发射点预测误差

Table
 

5　 Launch
 

point
 

prediction
 

error
at

 

2
 

000
 

meters
 

above
 

sea
 

level (m)
算法 射程方向误差 侧偏方向误差

BiGRU 185 1
BiLSTM 193 1. 8

CNN-BiGRU 961 0. 65
TCN-BiGRU 697 2. 4

CNN-BiGRU-Attention 112 0. 12
TCN-BiGRU-Attention 17 0. 3

　 　 由表 4 和 5 结果可知,TCN 通过卷积操作来提取特

征,但其捕捉长时间依赖的能力较弱,尤其是在轨迹的中

段,可能无法准确建模复杂的动态变化。 而 CNN-BiGRU
结合了卷积特征提取和双向 GRU 的时序建模,尽管提高

了局部特征的提取能力,但仍然存在同样的问题,尤其是
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在处理长时间依赖时,无法充分捕捉轨迹的全局信息。
因此,这些模型在轨迹的中段预测上出现了偏差,导致精

度不如单独的 BiGRU 模型。
而 TCN-BiGRU-Attention 的改进使得该模型能够在

处理高海拔环境下的轨迹数据时,优先关注那些与发射

点预测最相关的特征,减少了因局部特征提取不足而导

致的误差。 尤其是在高海拔条件下,气象因素和环境变

化更加复杂,注意力机制帮助模型在时序建模中聚焦于

关键的时间点和特征,从而有效提高了预测准确性。 而

TCN 通过扩张卷积逐步扩大感受野,使得每层卷积能够

看到更长时间范围的输入特征。 能够更好地捕捉轨迹数

据中的长时间依赖性,从而获取最佳的发射点预测结果。
多条轨迹预测结果的均方误差如表 6 所示,可以看

出,本文所提出的 TCN-BiGRU-Attention 算法在侧偏方向

预测结果极其稳定,全部控制在 1
 

m 的误差范围。 虽然

射程方向预测结果呈现出误差数值较大,经分析可知,其
在海平面高度、1

 

000 和 2
 

000
 

m 等发射点高度的预测误

差都可以控制在 30
 

m 左右。 其预测结果具有较好的稳

定性,可以根据此误差范围优化资源配置,以较小的成

本,对敌方发射点进行饱和打击。

表 6　 多条轨迹测试结果的均方误差

Table
 

6　 Mean
 

Squared
 

Error
 

of
 

Multiple
Trajectories

 

Test
 

Results

发射点海拔 射程方向 侧偏方向

海平面发射点 76. 14 0. 12
海拔 1

 

000
 

m 发射点 689. 74 0. 09
海拔 2

 

000
 

m 发射点 421. 78 0. 15

5　 结　 论

　 　 针对弹丸发射点预测问题,本文提出了 TCN-BiGRU-
Attention 的弹丸发射点预测模型。 首先在不同的射角和

初速度情况下对弹丸 6 自由度刚体弹道方程进行解算获

取数据集,并用于弹丸的发射点预测模型验证。 结果表

明,与传统的 BiGRU 和 CNN-BiGRU 等模型相比,TCN-
BiGRU-Attention 模型在发射点预测的精度上表现更优,
有效减小了在射程方向误差和侧偏方向误差。 该模型通

过引入 TCN 结构,能够更好地捕捉轨迹数据中的长时间

依赖关系,并结合 Attention 机制优化信息加权,显著提升

了整体预测精度。 针对海平面高度的发射点的射程和侧

偏方向的综合误差仅为 8. 3
 

m,据此可以精确的打击敌

方发射点,摧毁敌方攻击能力。 通过不同高度(如 1 000
 

和 2 000
 

m) 发射点的发射点预测任务中,TCN-BiGRU-
Attention 模型的预测误差最小,稳定性较高。 并且针对

海拔 1 000
 

m 高度的发射点,其射程方向误差为 25
 

m,根

据此误差范围可以合理的优化资源配置,实现在最小成

本情况下,对敌方发射点进行饱和打击。 但是由于该发

射点预测模型依托大量敌方弹丸轨迹进行训练,战场环

境复杂多变,如何实现在少量样本和样本不完全的情况

下,仍能保证较高的预测精度是一个关键问题。

参考文献

[ 1 ]　 SUN
 

L,YANG
 

B,MA
 

J.
 

Trajectory
 

prediction
 

in
 

pipeline
 

form
 

for
 

intercepting
 

hypersonic
 

gliding
 

vehicles
 

based
 

on
 

LSTM
 

[ J ].
 

Chinese
 

Journal
 

of
 

Aeronautics,
 

2023,
 

36(5):
 

421-433.
[ 2 ]　 GAO

 

Z,
 

YI
 

W.
 

Prediction
 

of
 

projectile
 

interception
 

point
 

and
 

interception
 

time
 

based
 

on
 

Harris
 

Hawk
 

optimization-
convolutional

 

neural
 

network-support
 

vector
 

regression
 

algorithm
 

[J].
 

Mathematics,
 

2025,
 

13
 

(3):
 

338-338.
[ 3 ]　 WANG

 

X,QIN
 

W,BAI
 

Y,
 

et
 

al.
 

Trajectory
 

estimation
 

for
 

ballistic
 

missile
 

in
 

boost
 

stage
 

using
 

robust
 

filtering
 

[J].
 

IET
 

Radar,
 

Sonar
 

&
 

Navigation,
 

2017,
 

11
 

( 3 ):
 

513-519.
[ 4 ]　 QIN

 

W, TANG
 

J, LU
 

C,
 

et
 

al.
 

Trajectory
 

prediction
 

based
 

on
 

long
 

short-term
 

memory
 

network
 

and
 

Kalman
 

filter
 

using
 

hurricanes
 

as
 

an
 

example
 

[J].
 

Computational
 

Geosciences,
 

2021,
 

25
 

(3):
 

1-19.
[ 5 ]　 周登极,刘巧珍,岳梦云,等.

 

基于可解释模型的火箭

推力故障辨识与轨迹预测方法
 

[J].
 

电子测量与仪器

学报,
 

2023,
 

37
 

(11):
 

72-80.
ZHOU

 

D
 

J,
 

LIU
 

Q
 

ZH,
 

YUE
 

M
 

Y,
 

et
 

al.
 

Method
 

for
 

thrust
 

fault
 

identification
 

and
 

trajectory
 

prediction
 

of
 

launch
 

vehicle
 

based
 

on
 

interpretable
 

machine
 

learning
 

model
 

[ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37
 

(11):
 

72-80.
[ 6 ]　 DENG

 

M, LI
 

S, JIANG
 

X,
 

et
 

al.
 

Vehicle
 

trajectory
 

prediction
 

method
 

based
 

on
 

“ Current”
 

statistical
 

model
 

and
 

cubature
 

Kalman
 

filter
 

[ J ].
 

Electronics,
 

2023,
 

12
 

(11):2464.
[ 7 ]　 LI

 

R,
 

QIN
 

Y,
 

WANG
 

J
 

B,
 

et
 

al.
 

AMGB:
 

Trajectory
 

prediction
 

using
 

attention-based
 

mechanism
 

GCN-BiLSTM
 

in
 

IOV [ J ].
 

Pattern
 

Recognition
 

Letters, 2023,
 

169:
17-27.

[ 8 ]　 王江,史元浩,郭正玉,等.
 

融合小波分解和 LSTM 的

目标轨迹预测
 

[ J].
 

电子测量与仪器学报,
 

2023,
 

37
 

(1):
 

204-211.
WANG

 

J,
 

SHI
 

H
 

Y,
 

GUO
 

ZH
 

Y,
 

et
 

al.
 

Target
 

trajectory
 

prediction
 

by
 

fusing
 

wavelet
 

decomposition
 

and
 

LSTM[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37
 

(1):
 

204-211.
[ 9 ]　 SHI

 

Z,
 

XU
 

M,
 

PAN
 

Q.
 

4-D
 

flight
 

trajectory
 

prediction
 

with
 

constrained
 

LSTM
 

network
 

[ J].
 

IEEE
 

Transactions
 

on
 

Intelligent
 

Transportation
 

Systems,
 

2021,
 

22 ( 11):
 



· 88　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

7242-7255.
[10]　 MA

 

L,
 

TIAN
 

S.
 

A
 

hybrid
 

CNN-LSTM
 

model
 

for
 

aircraft
 

4D
 

trajectory
 

prediction
 

[ J].
 

IEEE
 

Access,
 

2020,
 

8:
 

134668-134680.
[11]　 PEIYAN

 

J,HUIPING
 

C,LEI
 

Z,
 

et
 

al.
 

Attention-LSTM
 

based
 

prediction
 

model
 

for
 

aircraft
 

4-D
 

trajectory.
 

[ J].
 

Scientific
 

Reports,
 

2022,
 

12
 

(1):
 

15533-15533.
[12]　 GUO

 

D,
 

WU
 

E
 

Q,
 

LIN
 

L
 

Y.
 

FlightBERT:
 

Binary
 

encoding
 

representation
 

for
 

flight
 

trajectory
 

prediction [ J ]. IEEE
 

Transactions
 

on
 

Intelligent
 

Transportation
 

Systems,
 

2023,
 

24(2):1828-1842.
[13]　 ZHANG

 

Z,GUO
 

D
 

Y,ZHOU
 

S
 

Z,
 

et
 

al.
 

Flight
 

trajectory
 

prediction
 

enabled
 

by
 

time-frequency
 

wavelet
 

transform
 

[J].
 

Nature
 

Communications,
 

2023,
 

14
 

(1):
 

5258-5258.
[14]　 郑志伟,管雪元,傅健,等.

 

基于卷积神经网络与长短

期记忆神经网络的弹丸轨迹预测
 

[ J].
 

兵工学报,
 

2023,
 

44
 

(10):
 

2975-2983.
ZHENG

 

ZH
 

W,
 

GUAN
 

X
 

Y,
 

FU
 

J,
 

et
 

al.
 

Projectile
 

trajectory
 

prediction
 

based
 

on
 

CNN-LSTM
 

model
 

[ J].
 

Acta
 

Armamentarii,
 

2023,
 

44
 

(10):
 

2975-2983.
[15]　 任济寰,吴祥,薄煜明,等.

 

基于增强上下文信息长短

期记忆网络的弹道轨迹预测
 

[ J].
 

兵工学报,
 

2023,
 

44
 

(2):
 

462-471.
REN

 

J
 

H,
 

WU
 

X,
 

BO
 

Y
 

M,
 

et
 

al.
 

Ballistic
 

trajectory
 

prediction
 

based
 

on
 

context-enhanced
 

long
 

short-term
 

memory
 

network
 

[ J ].
 

Acta
 

Armamentarii,
 

2023,
 

44
 

(2):
 

462-471.
[16]　 SHERSTINSKY

 

A.
 

Fundamentals
 

of
 

recurrent
 

neural
 

network
 

( RNN)
 

and
 

long
 

short-term
 

memory
 

( LSTM)
 

network
 

[J].
 

Physica
 

D:
 

Nonlinear
 

Phenomena,
 

2020,
 

404:
 

132306-132306.
[17]　 GAO

 

S,
 

HUANG
 

Y,
 

ZHANG
 

S,
 

et
 

al.
 

Short-term
 

runoff
 

prediction
 

with
 

GRU
 

and
 

LSTM
 

networks
 

without
 

requiring
 

time
 

step
 

optimization
 

during
 

sample
 

generation[J]. Journal
 

of
 

Hydrology,
 

2020,
 

589:125188.
[18]　 GAO

 

Z,
 

ZHANG
 

D,
 

YI
 

W.
 

Projectile
 

trajectory
 

and
 

launch
 

point
 

prediction
 

based
 

on
 

CORR-CNN-BiLSTM-
attention

 

model
 

[ J].
 

Expert
 

Systems
 

with
 

Applications,
 

2025,
 

275:
 

127045-127045.
[19]　 LI

 

X,
 

ZHOU
 

S,
 

WANG
 

F.
 

A
 

CNN-BiGRU
 

sea
 

level
 

height
 

prediction
 

model
 

combined
 

with
 

Bayesian
 

optimization
 

algorithm
 

[ J].
 

Ocean
 

Engineering,
 

2025,
 

315:
 

119849-119849.
[20]　 MAO

 

X, REN
 

N, DAI
 

P,
 

et
 

al.
 

A
 

variable
 

weight
 

combination
 

prediction
 

model
 

for
 

climate
 

in
 

a
 

greenhouse
 

based
 

on
 

BiGRU-Attention
 

and
 

LightGBM
 

[ J ].
 

Computers
 

and
 

Electronics
 

in
 

Agriculture,
 

2024,
 

219:
 

108818.

[21]　 RAO
 

Z,YANG
 

Z,YANG
 

X,
 

et
 

al.
 

TCN-GRU
 

based
 

on
 

attention
 

mechanism
 

for
 

solar
 

irradiance
 

prediction
 

[ J].
 

Energies,
 

2024,
 

17
 

(22):
 

5767-5767.
[22]　 ZHANG

 

S,XIA
 

J,CHEN
 

K,
 

et
 

al.
 

A
 

hybrid
 

model
 

based
 

on
 

LSTM-CNN
 

combined
 

with
 

attention
 

mechanism
 

for
 

MPC
 

concrete
 

strength
 

prediction
 

[ J ].
 

Journal
 

of
 

Building
 

Engineering,
 

2024,
 

97:
 

110779-110779.
[23]　 XIA

 

Y,
 

YI
 

W,
 

ZHANG
 

D.
 

Coupled
 

extreme
 

learning
 

machine
 

and
 

particle
 

swarm
 

optimization
 

variant
 

for
 

projectile
 

aerodynamic
 

identification
 

[ J ].
 

Engineering
 

Applications
 

of
 

Artificial
 

Intelligence,
 

2022,
 

114:
 

105100.
[24]　 彭晨洋,陈龙淼,张鸣洋.

 

基于 Bahdanau 注意力机制

的大口径火炮双向 GRU 轨迹预测
 

[ J].
 

兵器装备工

程学报,
 

2024,
 

45
 

(7):
 

56-64.
PENG

 

CH
 

Y,
 

CHEN
 

L
 

M,
 

ZHANG
 

M
 

Y.
 

Bidirectional
 

GRU
 

trajectory
 

prediction
 

for
 

large-caliber
 

artillery
 

based
 

on
 

Bahdanau
 

attention
 

mechanism
 

[ J ].
 

Journal
 

of
 

Ordnance
 

Equipment
 

Engineering,
 

2024,
 

45
 

( 7 ):
 

56-64.
[25]　 高学金,马东阳,韩华云,

 

等. 基于 DAE 和 TCN 的复

杂工业过程故障预测 [ J]. 仪器仪表学报, 2021,
42(6):140-151.
GAO

 

X
 

J,
 

MA
 

D
 

Y,
 

HAN
 

H
 

Y,
 

et
 

al.
 

Fault
 

prediction
 

of
 

complex
 

industrial
 

process
 

based
 

on
 

DAE
 

and
 

TCN
 

[J].
 

Chinese
 

Journal
 

of
 

Science
 

Instrument,
 

2021,
 

42 ( 6):
140-151.

[26]　 DERYA
 

S.
 

Attention
 

mechanism
 

in
 

neural
 

networks:
 

where
 

it
 

comes
 

and
 

where
 

it
 

goes
 

[J].
 

Neural
 

Computing
 

and
 

Applications,
 

2022,
 

34
 

(16):
 

13371-13385.
[27]　 CHEN

 

Z,
 

MA
 

M,
 

LI
 

T,
 

et
 

al.
 

Long
 

sequence
 

time-series
 

forecasting
 

with
 

deep
 

learning:
 

A
 

survey[J].
 

Information
 

Fusion,
 

2023,
 

97:101819.
作者简介

　 　 高展鹏,2023 年于南京工业大学浦江

学院获得学士学位,现为南京理工大学博士

研究生,主要研究方向为弹箭飞行与控制。
E-mail:

 

gaozhanpeng@ njust. edu. cn
Gao

 

Zhanpeng
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Nanjing
 

Tech
 

University
 

Pujiang
 

Institute
 

in
 

2023.
 

He
 

is
 

now
 

a
 

Ph. D.
 

candidate
 

in
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

projectile
 

flight
 

and
 

control.
易文俊(通信作者),2000 年于南京理

工大学获得博士学位,现任南京理工大学教

授,主要研究方向为弹箭飞行与控制。
E-mail:

 

wenjunyi@ njust. edu. cn
Yi

 

Wenjun
 

( Corresponding
 

author )
 



　 第 10 期 基于 TCN-BiGRU-Attention 模型的弹丸发射点预测 · 89　　　 ·

received
 

a
 

Ph. D.
 

from
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology
 

in
 

2000.
 

He
 

is
 

now
 

a
 

professor
 

in
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

projectile
 

flight
 

and
 

control.
管军,2018 年于南京理工大学获得博

士学位,现为江苏科技大学副教授,主要研

究方向为弹箭飞行与控制。
E-mail:

 

jguan@ just. edu. cn
Guan

 

Jun
 

received
 

a
 

Ph. D.
 

from
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology
 

in
 

2018.
 

He
 

is
 

now
 

an
 

associate
 

professor
 

at
 

Jiangsu
 

University
 

of
 

Science
 

and
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

missile
 

and
 

projectile
 

flight
 

and
 

control.

　 　 袁树森,2018 年于江苏师范大学获得

学士学位,2023 年于南京理工大学获得博

士学位,现为南京理工大学瞬态物理全国重

点实验室博士后,主要研究方向为复杂系统

机械动力学、非线性振动及控制。
E-mail:

 

njustyuan@ 163. com
Yuan

 

Shusen
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Jiangsu
 

Normal
 

University
 

in
 

2018
 

and
 

a
 

Ph. D.
 

from
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology
 

in
 

2023.
 

He
 

is
 

now
 

a
 

postdoctoral
 

researcher
 

at
 

the
 

National
 

Key
 

Laboratory
 

of
 

Transient
 

Physics,
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology.
 

His
 

main
 

research
 

interests
 

include
 

mechanical
 

dynamics
 

of
 

complex
 

systems,
 

nonlinear
 

vibration,
 

and
 

control.


