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Abstract: Accurate prediction of the projectile launch point can quickly locate enemy threat sources, provide critical intelligence
support, and optimize counterattack strategies, holding significant strategic importance in the military field. This study addresses the
problem of predicting projectile launch points and proposes a deep learning model that combines temporal convolutional network (TCN) ,
bidirectional gated recurrent unit ( BIGRU), and attention mechanism. The model aims to improve ballistic trajectory prediction
accuracy, especially in complex battlefield environments, by backwardly inferring enemy projectile launch points to support counterattack
strategies. Firstly, based on the ballistic model, a detailed projectile trajectory dataset was constructed by solving the six-degree-of-
freedom rigid body ballistic equation for different launch angles and initial velocities. Then, the proposed TCN-BiGRU-Attention model
captures long-term dependencies in the trajectory data by introducing the TCN structure and optimizes information weighting using the
attention mechanism to enhance prediction accuracy. In simulation validation, compared with models like BiGRU, bidirectional long
short-term memory ( BiLSTM ), and their improved variants, the TCN-BiGRU-Attention model demonstrated significantly superior

performance in launch point prediction accuracy, particularly in reducing errors in both range and cross-range directions. Through
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multiple sets of simulation tests, the results indicate that the TCN-BiGRU-Attention model can stably provide accurate launch point

predictions at various launch heights. At sea level, the model’ s range error is only 8.3 meters, and the cross-range error is minimal,

effectively predicting and striking the enemy’ s launch point. This study provides theoretical basis and technical support for the

implementation of enemy launch point prediction in future battlefield scenarios.

Keywords : projectile trajectory prediction; launch point prediction; temporal convolutional network; bidirectional gated recurrent unit;

attention mechanism
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Table 3 Sea level launch point prediction error (m)

GAFS SRR )R 22 4w 7 1) 12 2
BiGRU 167 2
BiLSTM 178.3 2.4
CNN-BiGRU 14 0.17
TCN-BiGRU 3 0.1
CNN-BiGRU-Attention 9.5 0.1
TCN-BiGRU-Attention 8 0.3
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Fig. 8 Recursive prediction of the transmitting point
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Table 4 Launch point prediction error at

1 000 meters above sea level (m)
Bk SREIT )R 2 i 7 1o 1 2

BiGRU 179 0.2
BiLSTM 187 0.3
CNN-BiGRU 404 0.2
TCN-BiGRU 330 1.3
CNN-BiGRU-Attention 68 0. 05
TCN-BiGRU-Attention 25 0.1

TR AE PR 2 000 m 1= 3 1 & B 5 AR Lk 2510 K =
2 000,
£5 BHE 2000 m &5 EFRE

Table 5 Launch point prediction error

at 2 000 meters above sea level (m)
Rk SRS T iR 2 A0 i 75 1] 1 2

BiGRU 185 1
BiLSTM 193 1.8
CNN-BiGRU 961 0. 65
TCN-BiGRU 697 2.4
CNN-BiGRU-Attention 112 0.12
TCN-BiGRU-Attention 17 0.3

M2 4 F1S S5 5 mT %0, TCN A i 4 R A e 41 U4
fiE (0 A 4 A s TR0 AR 1 B 0 A5, R R AE 3l 1) vp
Bt AT RETCIAMER B A 2= 1 sh 784k, 1T CNN-BiGRU
G507 BRI BURI AL GRU B e gt A s
TR FRRHE A BEICRE T, (BTSSR AEAE [RIRE Ay I 88T, G H
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Table 6 Mean Squared Error of Multiple

Trajectories Test Results

St R SRR 1) W4 1)
TV T 5 1 76. 14 0.12
HFIR 1000 m &5 5 689. 74 0. 09
HEAR 2 000 m &5 S 421.78 0.15
5 & i
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