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Remaining useful life prediction for aircraft engine based
on MTCN and dual attention

Wang Yu Zhang Zhecheng Yang Xiaoqing

(School of Automation, Shenyang Aerospace University, Shenyang 110136, China)

Abstract: Current aircraft engine remaining useful life prediction methods often rely on a holistic analysis of multi-source sensor data,
typically using a single time scale or focusing on spatial features, which neglects key differences in sensor data at different time points.
To address these limitations, a novel multi-scale temporal convolutional network ( MTCN) is proposed to comprehensively extract both
long-term and short-term temporal features from multi-source sensor data. Additionally, a dual attention mechanism, integrating channel
attention and self-attention, is designed to enhance spatial feature representation and selectively focus on critical sensor measurements at
key time points. The collaborative integration of MTCN and the dual attention mechanism facilitates effective spatiotemporal feature
fusion, improving the model’ s capacity to capture complex degradation patterns. Moreover, the Gaussian error linear unit ( GeLU)
activation function is employed to enhance the network’ s nonlinear fitting capability. Experimental evaluations conducted on the NASA
C-MAPSS benchmark dataset demonstrate that the proposed method significantly outperforms state-of-the-art approaches, achieving
average reductions of 7% in root mean square error (RMSE) and 13. 1% in Score, thereby verifying its superior prediction accuracy and
robustness.
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Fig.2  Self-attention module design
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Table 3 Hyperparameter of SA-MTCN-CA
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Table 5 Compare the performance of the proposed method with the latest methods on the C-MAPSS dataset
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