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基于 MTCN 和双重注意力的航空发动机 RUL 预测∗
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摘　 要:当前航空发动机剩余使用寿命预测常局限于多源传感器数据的整体分析,采用单一时间尺度或以空间维度聚焦退化特

征,忽视了不同传感器在不同时刻所呈现的关键特征差异,导致特征提取不充分。 为此,首先将各传感器信息视为整体,设计了

多尺度时间卷积网络(MTCN),以全面提取其长期与短期特征。 在此基础上,引入了包含“通道注意力”和“自注意力”的双重

注意力机制,通过自适应的权重分配,不仅显著增强了空间特征的提取,还成功补充了对各传感器信道在关键时间点信息的精

准聚焦。 通过 MTCN 与双重注意力机制有效协作,实现了时空特征的全面且高效融合。 此外,采用高斯误差线性单元( GeLU)
作为激活函数,进一步提升模型对航空发动机非线性数据的处理能力。 在美国航天局 C-MAPSS 数据集上的实验验证结果表

明,该方法应对复杂工况及多样故障模式时,预测精度和鲁棒性均得到大幅提升,与现有先进方法相比,其整体预测指标均方根

误差(RMSE)和 Score 分别平均下降了 7%和 13. 1%。
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Abstract:
 

Current
 

aircraft
 

engine
 

remaining
 

useful
 

life
 

prediction
 

methods
 

often
 

rely
 

on
 

a
 

holistic
 

analysis
 

of
 

multi-source
 

sensor
 

data,
 

typically
 

using
 

a
 

single
 

time
 

scale
 

or
 

focusing
 

on
 

spatial
 

features,
 

which
 

neglects
 

key
 

differences
 

in
 

sensor
 

data
 

at
 

different
 

time
 

points.
 

To
 

address
 

these
 

limitations,
 

a
 

novel
 

multi-scale
 

temporal
 

convolutional
 

network
 

( MTCN)
 

is
 

proposed
 

to
 

comprehensively
 

extract
 

both
 

long-term
 

and
 

short-term
 

temporal
 

features
 

from
 

multi-source
 

sensor
 

data.
 

Additionally,
 

a
 

dual
 

attention
 

mechanism,
 

integrating
 

channel
 

attention
 

and
 

self-attention,
 

is
 

designed
 

to
 

enhance
 

spatial
 

feature
 

representation
 

and
 

selectively
 

focus
 

on
 

critical
 

sensor
 

measurements
 

at
 

key
 

time
 

points.
 

The
 

collaborative
 

integration
 

of
 

MTCN
 

and
 

the
 

dual
 

attention
 

mechanism
 

facilitates
 

effective
 

spatiotemporal
 

feature
 

fusion,
 

improving
 

the
 

model’ s
 

capacity
 

to
 

capture
 

complex
 

degradation
 

patterns.
 

Moreover,
 

the
 

Gaussian
 

error
 

linear
 

unit
 

( GeLU)
 

activation
 

function
 

is
 

employed
 

to
 

enhance
 

the
 

network’s
 

nonlinear
 

fitting
 

capability.
 

Experimental
 

evaluations
 

conducted
 

on
 

the
 

NASA
 

C-MAPSS
 

benchmark
 

dataset
 

demonstrate
 

that
 

the
 

proposed
 

method
 

significantly
 

outperforms
 

state-of-the-art
 

approaches,
 

achieving
 

average
 

reductions
 

of
 

7%
 

in
 

root
 

mean
 

square
 

error
 

(RMSE)
 

and
 

13. 1%
 

in
 

Score,
 

thereby
 

verifying
 

its
 

superior
 

prediction
 

accuracy
 

and
 

robustness.
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0　 引　 言

　 　 航空发动机作为飞机的核心构成部分,其特性包括

可靠性、可维护性、安全性、保障性、可测试性( reliability,
maintainability, safety, supportability, testability, RMSST ),
长久以来一直是学术界与工业界深入探究与高度重视的

焦 点。 预 测 与 健 康 管 理 ( prognostics
 

and
 

health
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management,
 

PHM)技术,作为提升 RMSST 特性的关键

手段,扮演着至关重要的角色。 这其中,剩余使用寿命

(remaining
 

useful
 

life,
 

RUL)预测无疑是最为关键的技术

环节之一[1] 。
随着传感器技术的飞速进步与广泛应用,飞机发动

机在运行过程中产生了海量的数据,鉴于发动机运行环

境的复杂多变以及故障模式的多样化,这些数据普遍展

现出强烈的非线性特征。 近年来,深度学习方法凭借其

在处理非线性数据方面的杰出能力,已成为航空发动机

RUL 预测领域的研究热点。 Sateesh 等[2] 首次将卷积神

经网络(convolutional
 

neural
 

network,
 

CNN) 用于 RUL 预

测,通过自动提取传感器特征并利用深度结构抽象信息,
提升了模型对空间特征的学习能力。 随后,Li 等[3] 又采

用深度卷积神经网络( deep
 

convolutional
 

neural
 

network,
 

DCNN),进一步优化特征提取。 鉴于发动机数据所具有

的时序特性,文献[4-5]使用长短期记忆网络( long
 

short-
term

 

memory,
 

LSTM)来学习商用模块化航空动力仿真系

统( commercial
 

modular
 

aero-Propulsion
 

system
 

simulation,
 

C-MAPSS)数据集中的时序依赖性,解决了循环神经网

络(RNN)的记忆丢失问题,使预测结果得到显著提升。
Hu 等[6] 通过构建双向递归神经网络( deep

 

bidirectional
 

recurrent
 

neural
 

networks,
 

DBRNN)提取正反向退化特征,
再结合多元回归决策树预测 RUL,取得了更为出色的性

能表现。 针对传统数据驱动方法在特征提取中过度依赖

先验知识和专家经验,未能有效利用时间序列数据中的

中长期依赖关系进行建模等问题,刘文彪等[7] 提出使用

CNN 与 LSTM 融合模型,有效提高了轴承剩余寿命预测

精度。 近年来,深度神经网络在对复杂时间序列数据分

析中 常 遭 遇 梯 度 消 失 与 爆 炸 问 题, 时 间 卷 积 网

络(temporal
 

convolutional
 

network,
 

TCN)利用因果卷积与

空洞卷积有效缓解了这些问题,实现了网络更深层、更稳

定的训练。 文献[8-9] 提出基于 TCN 的寿命预测方法,
通过实验证实了该方法在特征提取和性能预测方面的显

著优势。 文献[10]提出了 TCN 与融合注意力机制的门

控循 环 单 元 ( attention-enhanced
 

gated
 

recurrent
 

unit,
 

AGRU)的滚动轴承剩余寿命预测模型。
综上,航空发动机 RUL 预测本质上是一个高度复杂

的任务,它涉及非线性动态演化以及多维信息的深度融

合,因此实现准确预测极具挑战性。 当前的深度学习方

法大多局限于退化数据的单尺度特征分析,未能充分挖

掘不同时间尺度上潜在的退化信息,从而难以全面捕捉

复杂工况下的多维特征,限制了预测精度的进一步提升。
更为关键的是,许多研究在解析传感器信号时,未能有效

甄别出对 RUL 预测具有决定性影响的关键时间点信息,
这种信息的遗漏无疑会对预测准确性造成不利影响。 为

此,本文提出了融合自注意力( self-attention,
 

SA)﹑通道

注意力 ( channel
 

attention,
 

CA) 与多尺度时间卷积网

络(multi-scale
 

temporal
 

convolutional
 

network,
 

MTCN) 的

SA-MTCN-CA 方法,旨在通过时空维度多层次特征提取

与动态权重分配,全方位提升 RUL 预测性能。

1　 航空发动机数据集描述及特点分析

　 　 航空发动机依赖转速和推力调控运行,其气路结构

涵盖进气道、风扇、涵道、压气机(分高低压)、燃烧室及

涡轮(亦分高低压)、尾喷管。 各阶段的速度、压力、温
度、推力等参数共同反映发动机状态,对 RUL 预测至关

重要。 为验证所提方法的有效性,本文利用 C-MAPSS 数

据集开展实验验证。 该系统能模拟航空发动机在不同飞

行条件(高度、马赫数、海平面温度) 下的运行状态[11] 。
数据集被划分为 4 个子集(表 1),包含 26 维时间序列数

据,其中的 21 维对应发动机多元运行参数物理量( 表

2),剩余的 5 维分别表示发动机台号、运行周期、故障模

式和运行工况。

表 1　 数据集描述

Table
 

1　 Dataset
 

description
数据集 FD001 FD002 FD003 FD004

训练发动机数量 100 260 100 249
测试发动机数量 100 256 100 248

故障模式 1 1 2 2
运行工况 1 6 1 6

表 2　 传感器监测信息

Table
 

2　 Sensor
 

monitoring
 

information
符号 序号 描述 单位

T2 1 风扇入口总温度 ℃
T24 2 低压压缩机出口总温度 ℃
T30 3 高压压缩机出口总温度 ℃
T50 4 低压涡轮出口总温度 ℃
P2 5 风扇入口压力 kPa
P15 6 旁路管道总压力 kPa
P30 7 高压压缩机出口总压力 kPa
Nf 8 风扇转速 r / min
Nc 9 核心轴转速 r / min
epr 10 发动机压力比(P50 / P2) -

Ps30 11 高压压缩机出口静压 Pa
phi 12 燃料流量与

 

Ps30
 

比率 m3 / (Pa·s)
NRf 13 风扇修正转速 r / min
NRc 14 核心轴修正转速 r / min
BPR 15 旁通比 -
farB 16 燃烧室燃料空气比 -

htBleed 17 抽气焓 -
Nf_dmd 18 风扇需求转速 r / min

PCNfR_dmd 19 风扇修正需求转速 r / min
W31 20 高压涡轮冷却排气量 m3 / s
W32 21 低压涡轮冷却排气量 m3 / s



·144　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

2　 SA-MTCN-CA 深度学习网络模型构建

　 　 鉴于航空发动机退化数据的高维非线性特征,本文

在数据预处理阶段采用随机森林[12] 提取关键特征,利用

MIN-MAX 归一化消除量纲差异,并通过滑动时间窗口增

强时序建模能力。 同时,参考文献[13],以 125 为阈值将

RUL 划分为恒定与线性递减阶段。 本文提出的 SA-
MTCN-CA 网络如图 1 所示,主要实现从时间和空间两个

维度深入捕捉传感器数据间的退化特征。

图 1　 SA-MTCN-CA 深度学习网络模型

Fig. 1　 SA-MTCN-CA
 

deep
 

learning
 

network
 

model

2. 1　 基于 SA 与 MTCN 的多维时间特征提取

　 　 为更有效地捕捉传感器数据中蕴含的复杂时序模式

和关键退化信息,首先,引入自注意力机制(图 2),为每

个时间步的特征分配动态权重,增强模型对关键时间点

信息的捕捉能力。

图 2　 自注意模块设计

Fig. 2　 Self-attention
 

module
 

design

预处理后的数据样本为 X = [x1,T,x2,T,…,xk,T],k为
传感器个数,T = [ t1,t2,…,tn] 为时间步长,那么第 i 个
传感器数据为 x i = [x i,t1

,x i,t2
,…,x i,tn

] 。 首先通过卷积

操作对每个传感器的数据生成 Q ( Query )、 K ( Key )
和 V(Value):

Q = Wq × x i (1)
K = Wk × x i (2)
V = Wv × x i (3)

式中: Wq、Wk 和 Wv 是 Conv1D 的权重。 在此基础上,计
算注意力输出 c:

c = Attention(Q,K,V) = Softmax(QK
T

dk

)V (4)

　 　 其中, dk 是 Key 的维度大小,用于缩放点积,使结果

更加稳定。 随后,将输入 x i 与注意力输出 c 在时间维度

上对传感器特征进行加权组合拼接得到输出 o1,动态聚

焦关键时间步的信息。
o1 = cx i = {c1x1,t1

,c2x2,t2
,…,clxk,tn

} (5)
在此基础上,为进一步强化模型的时序建模能力,设

计了 MTCN 模块,如图 3 所示。 MTCN 通过并行多路径

卷积和逐层膨胀卷积捕捉不同时间尺度的特征。 每个路

径使用不同的卷积核大小,并通过指数膨胀因子逐步扩

大卷积操作的时间覆盖范围,从而捕获更长时间跨度内

的时序依赖关系。 而残差连接、 ReLU 激活函数 和

Dropout 层增强了网络的表达能力和鲁棒性。 每一个

TCN 路径下的输出 Yk 为:
YK = ReLU(Conv(o1) + Res(o1)) (6)

式中: Conv(o1) 是膨胀卷积操作; Res(o1) 是残差操作。
最终将 3 个尺度的 TCN 输出融合为全面的综合时序特

征 o2:
o2 = Concat(Y1,Y2,Y3) (7)



　 第 11 期 基于 MTCN 和双重注意力的航空发动机 RUL 预测 ·145　　 ·

式中: Y1、Y2、Y3 为不同 TCN 路径的输出。

图 3　 MTCN 模块设计

Fig. 3　 MTCN
 

module
 

design

2. 2　 引入通道注意力的空间特征增强

　 　 通过 SA 和 MTCN 的结合已实现对输入数据的时间

维度特征的捕捉,充分挖掘数据间的时序关联。 考虑到

不同传感器对于 RUL 预测的贡献度亦存在差异,若简单

地对所有通道采用等权重处理,会导致信息冗余或噪声

干扰,从而影响预测的准确性,因此引入通道注意力机

制,自适应地调整各通道权重,以强化那些对预测至关重

要的数据的空间表达能力,有效抑制不相关及冗余信息,
提升模型的预测性能。

 

所设计的 CA 模块如图 4 所示,其中,a 表示传感器

数量,H 表示时间维度,W 表示传感器信道维度。
首先将 MTCN 所捕获的不同时间尺度的特征在传感

器信道维度上进行全局平均池化,生成每个通道的全局

特征向量:

图 4　 CA 模块设计

Fig. 4　 Channel-attention
 

module
 

design

za = 1
W∑

T

t = 1
x t,a 　 a = 1,2,…,a0 (8)

式中: x t,a 是第 t 个时间步的第 a 个通道值。
接着,将全局特征向量依次通过两个全连接层,生成

通道权重向量:
s = σ(W2·ReLU(W1·za)) (9)

式中: W1 和W2 是全连接层的权重矩阵; σ 是 Sigmoid 激

活函数。
通过权重向量 s 调节每个通道的特征重要性:
o = x′i☉s (10)

式中: x′i 是经过 MTCN 网络处理后所得的输入;☉表示按

通道加权。 最终通过通道注意力模块获取经过时间维度

和空间维度自适应调节的特征 o。
此外,在 SA-MTCN-CA 的自注意力、通道注意和全

连接层中,均采用(Gaussian
 

error
 

linear
 

unit,
 

GeLU)激活

函数,增强非线性表达、捕捉复杂的非线性特征,提升

RUL 预测性能。
2. 3　 性能评估

　 　 为了定量评估所提出方法的性能,本文采用均方根

误差(root
 

mean
 

square
 

error,
 

RMSE)和惩罚函数( Score)
作为模型性能的评估标准,如式(11)和(12)所示。

RMSE = 1
n ∑

n

i = 1
( ŷ i - y i)

2 (11)

Score =
∑

n

i = 1
( e

-
hi
13 - 1 ) ,h i =

 

ŷ i - y i < 0

∑
n

i = 1
( e

hi
10 - 1 ) ,h i =

 

ŷ i - y i ≥ 0

ì

î

í

ï
ïï

ï
ï

(12)

式中: n 为预测样本总数;
 

ŷ i 为发动机寿命预测值; y i 为

发动机寿命真实值。 式(12)中,当 h i ≥0 时,意味着预测

值大于真实值,属于延迟预测;反之,当 h i < 0 时,属于超

前预测。 本文所设计的惩罚函数具有不对称性,对延迟

预测实施更重惩罚,以防冒进预测引发灾难。
模型 训 练 过 程 如 图 5 所 示, 网 络 采 用 均 方 误

差(MSE)作为损失函数,使用 Adam 优化器进行训练。
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图 5　 模型训练过程

Fig. 5　 Flow
 

chat
 

of
 

model
 

training
 

process

3　 实验结果及分析

3. 1　 随机森林法筛选关键特征

　 　 采用随机森林特征重要度筛选法,完成 FD001、
FD002、FD003 以及 FD004 四个子数据集的重要度分析,
获得各传感器特征的重要度排序,结果如图 6 所示,去除

重要度为 0 的传感器特征用于 RUL 预测。
3. 2　 模型超参数设置及时间窗口选择

　 　 FD001、 FD002 和 FD004 数据集的 epoch 设置为

150,FD003 数据集为 120,所有数据集的批大小均为

512,其他超参数设置如表 3 所示。
本文在 4 个子集上分别开展滑动时间窗口实验,得

到预测结果如图 7 所示。 由图 7 可知,4 个子集的时间窗

口大小分别为 30、40、45、50 时,模型所预测的 RMSE 和

Score 指标最小,性能最佳。
此外,针对数据集的复杂度差异,FD001 和 FD003 数

图 6　 数据集中特征的重要性

Fig. 6　 Feature
 

importance
 

in
 

the
 

dataset

　 　 　

据集采用 StepLR 调度器,每 40 个 epoch 将学习率降低至

原来的 2%,以实现快速收敛和精细优化。 FD002 和

FD004 数据集采用 MultiStepLR 调度器,在第 100 和 130
个 epoch 将学习率调整为当前的 10%,以应对高复杂度

和多样工况,提升训练的稳定性。
3. 3　 RUL 预测结果

　 　 4 个数据集中实际 RUL 与 SA-MTCN-CA 预测 RUL
的对比情况如图 8 所示。
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表 3　 SA-MTCN-CA 超参数设置

Table
 

3　 Hyperparameter
 

of
 

SA-MTCN-CA

模块类型 参数 参数值

SA 卷积核的数量 14 / 15 / 15 / 16
卷积核的大小

激活函数

1
ReLU

激活函数 ReLU

MTCN TCN 层数 6

卷积核的大小 3,5,7

膨胀率 2i

激活函数 ReLU

CA 压缩率 r 2

图 7　 滑动窗口大小对比

Fig. 7　 Sliding
 

window
 

size
 

comparison

为了进一步探究在预测过程中,各台发动机的具体预测

情况,分别对 4 个子数据集的发动机单独进行了研究,从
FD001 和 FD004 子数据集的测试集中随机挑选一台发动

机的 RUL 预测结果,如图 9 所示。
综合图 8 和 9 结果可知,模型在发动机寿命初期的

预测存在一定波动,但随着接近寿命终点,预测值逐渐与

实际 RUL 一致,表明该模型能够准确预测发动机的

RUL,满足故障前应急维修决策的需求。
预测值与实际值的误差分析如图 10 所示。 在

FD001 和 FD003 数据集上,大部分气泡呈浅蓝色或接近

白色,且气泡较小,说明误差较小,接近零值。 而在包含

多工况的 FD002 和 FD004 数据集上,尽管故障模式复

杂,但也仅有少量气泡呈深蓝色。 总体来看,模型预测结

果与实际值高度接近,具备较强的泛化能力和较高的预

测精度。

图 8　 预测 RUL 与实际 RUL 结果的比较

Fig. 8　 Comparison
 

of
 

predicted
 

RUL
 

and
 

actual
 

RUL

4　 方法对比及性能分析

4. 1　 引入 GeLU 的 SA-MTCN-CA 模型性能分析

　 　 在 SA-MTCN-CA 结构中,引入 GeLU 激活函数显著
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图 9　 单台发动机的 RUL 预测结果

Fig. 9　 RUL
 

prediction
 

for
 

a
 

single
 

engine

增强了模型的非线性表达能力。 以 FD001 数据集为例,
将 GeLU 激活函数与其他传统的激活函数所测得的指标

值进行比较,实验结果如表 4 所示。

表 4　 不同激活函数预测结果对比

Table
 

4　 Comparison
 

of
 

prediction
 

results
 

with
different

 

activation
 

functions

激活函数 RMSE Score

GeLU 10. 84 171. 1

ReLU 12. 36 261. 04

LeakyReLU 11. 93 223. 48

ELU 11. 65 214. 52

Softplus 12. 95 303. 3
Swish 12. 40 251. 07

　 　 由表 4 可知,与其他激活函数相比,GeLU 的选择性

激活特性更擅长捕捉多层次时间模式,在准确性方面表

现优异。
4. 2　 方法对比

　 　 本文在 3. 3 和 4. 1 节于 C-MAPSS 数据集上进行了

一系列实验,验证了所提方法的有效性。 为了进一步证

实本文所提出的方法的优越性,将其与目前较为先进的

一些深度学习方法进行了比较,这些方法中包括最新流

行的 Transformer 模型和图神经网络以及几个优秀的注意

机制模型。 比较结果如表 5 所示。

图 10　 误差分析

Fig. 10　 Error
 

analysis

由表 5 可知,本文方法 RMSE 和 Score 两项指标的平

均值均为最低,分别比第 2 名下降 7%和 13. 1%,说明其

对各类工况的适应度最好,综合预测性能出色。 本文方



　 第 11 期 基于 MTCN 和双重注意力的航空发动机 RUL 预测 ·149　　 ·

　 　 　 表 5　 在 C-MAPSS 数据集上本文方法和先进方法的性能比较

Table
 

5　 Compare
 

the
 

performance
 

of
 

the
 

proposed
 

method
 

with
 

the
 

latest
 

methods
 

on
 

the
 

C-MAPSS
 

dataset

方法 年
FD001 FD002 FD003 FD004 平均值

RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score
TCN[14] 2018 13. 91 330 18. 93 2

 

327 20. 22 1
 

557 22. 81 3736 18. 97 1
 

987. 5
TaFCN[15] 2022 13. 99 336 17. 06 1

 

946 12. 01 251 19. 79 3
 

671 15. 71 1
 

551
AE-DBN[16] 2022 11. 27 219 14. 24 1

 

255 11. 13 264 26. 85 2
 

135 15. 87 968. 25
Trans. +TCNN[17] 2022 12. 31 252 15. 35 1267 12. 32 296 18. 35 2

 

120 14. 58 983. 75
Transformer[18] 2022 11. 43 203 15. 25 924 11. 32 154 18. 36 1

 

490 14. 09 693
STFA-GCN[19] 2022 11. 35 194 19. 17 2

 

493 11. 64 224 21. 41 2
 

760 15. 89 1
 

417
SCTA-LSTM[20] 2023 12. 10 207 16. 90 1

 

267 12. 14 248 21. 93 3
 

310 15. 77 1
 

258
CNN-LSTM-SAM[21] 2023 12. 6 261 15. 3 1

 

156 13. 8 253 18. 6 2
 

425 15. 1 1
 

023. 8
WCGAN-GPConvLSTM[22] 2023 — — 18. 99 822 — — 21. 82 1

 

474 — —
MSIDSN[23] 2023 11. 74 205 18. 26 2

 

046 12. 04 196 22. 48 2
 

910 16. 13 1
 

339
DBN-SO-BiGRU[24] 2024 12. 23 242. 8 — — 11. 93 235. 4 — — — —

MCBLSTM[25] 2024 12. 27 228. 3 18. 70 1
 

629 12. 41 276. 7 19. 80 2
 

457 15. 8 1
 

147. 8
本文 2024 10. 84 171. 1 16. 10 1

 

121 10. 38 172. 85 14. 98 943. 8 13. 1 602. 2

法在数据集 FD001、FD003 和 FD004 上的 RMSE 值相比

其他方法的最优结果分别下降了 3. 8%、6. 7%和 18. 4%,
而尽管在 FD002 数据集上的 RMSE 值略逊于 AE-DBN 的

方法,但本文方法在该数据集上的 Score 值仍占优。 此

外,本文方法在 FD001、FD004 数据集上的 Score 值相比

其他方法的最优结果分别下降了 11. 8%、36. 7%。 尽管

在 FD002 数据集以及 FD003 数据集上 WCGAN-GP-
ConvLSTM,Transformer 方法的 Score 值更低,但本文方法

在其他数据集上的综合表现也是优于此两种方法。
综合上述分析,可以清晰地看出,本文方法凭借高效

的捕捉更全面、层次更深退化信息的能力,不仅显著降低

了 RUL 预测中的相对误差,有效规避了延迟预测可能引

发的严重后果,还充分展示了其在泛化能力和鲁棒性方

面的优越性能。
4. 3　 消融实验

　 　 通过相同的超参数配置分别对 TCN、 MTCN、 SA-
MTCN、SA-MTCN-CA

 

4 种深度学习模型进行了训练和测

试,旨在评估本文方法所引入的不同策略模块对 RUL 预

测性能的影响。 比较结果如图 11 所示。 实验结果表明,
4 种模型在 Score 和 RMSE 指标上的预测精度排序为

MTCN<TCN<SA-MTCN<SA-MTCN-CA。
进一步分析可知,尽管 MTCN 在 Score 指标上略逊于

TCN,但通过多尺度卷积操作,它能够有效捕捉时间序列

中的多尺度特征,从而在 RMSE 指标上整体表现优于

TCN。 同时,SA 机制通过在时间维度上捕捉关键时刻特

征,帮助模型聚焦于对 RUL 预测至关重要的时间步,使
得 SA-MTCN 模型在 RMSE 和 Score 指标上均优于 TCN
和 MTCN。 此外,CA 机制的引入,又使模型能够在各传

感器之间动态调整关注度,增强了对空间特征的提取能

力,因此,SA-MTCN-CA 模型在所有数据集上表现最佳。

图 11　 消融实验结果

Fig. 11　 Ablation
 

study
 

results

5　 结　 论

　 　 针对现有方法在单一传感器特征提取、多尺度时序

建模以及多通道空间特征融合方面的不足,本文提出了

一种结合双重注意力机制与 MTCN 的航空发动机 RUL
预测模型。 其中,多尺度时间卷积结构利用不同尺度卷

积核提取长短期特征的优势,有效提升了长期预测的稳

定性。 自注意力机制通过精准捕捉各传感器信道时间维

度的关键退化特征,有效过滤冗余信息干扰。 通道注意

力机制动态优化多传感器数据的空间特征,增强对关键
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传感器的选择性聚焦。 此外,GeLU 激活函数被应用于注

意力模块和全连接层,通过平滑非线性变换,进一步提升

模型的预测精度。 在 C-MAPSS 数据集上的综合实验结

果表明,该模型在 4 个子数据集上的 RMSE 和 Score 评价

指标较先进方法平均降低了 7%和 13. 1%,在复杂工况条

件下展现出卓越的预测鲁棒性能。
未来研究将深入探索图神经网络与 Transformer 等深

度学习技术,满足多源异构传感器数据对物理关联及长

时依赖关系的建模需求,进一步提升 RUL 预测精度。
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