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基于 CPO 的 IFMD-BiTCN-BiGRU-AT 断路器
寿命预测方法研究∗
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摘　 要:为提高断路器寿命预测效率并制定合理的维修方案,基于断路器非周期振动信号可以充分表征剩余寿命的特性,提出

一种基于冠豪猪优化算法( CPO) 的改进特征模态分解-双向时间卷积网络-双向门控循环单元-注意力机制( IFMD-BiTCN-
BiGRU-AT)预测模型。 首先通过融合适应度函数和新周期估计方法改进特征模态分解法,弥补其处理非周期信号能力差的缺

陷,并利用 CPO 实现 IFMD 自适应分解。 其次,引入双向并行结构及注意力机制,构建 BiTCN-BiGRU-AT 预测模型来充分提取

时间-空间重要特征,同时利用 CPO 搜索最优超参组合。 最后,搭建断路器信号采集处理实验平台进行实验验证,用该方法进

行预测并设计消融实验及多模型对比实验。 最终,该方法得到的拟合度、平均绝对误差(MAE)、均方根误差( RMSE)指标分别

为 99. 28%、80. 33、98. 17。 相较于其他 3 种信号处理方法,经 IFMD 处理后,预测拟合度平均提高 19. 7%,且有最高的预测效率;
相较于其他模型,该模型的预测拟合度平均提高 18. 3%,MAE、RMSE 平均降低 60. 9%、61. 6%。 实验结果表明了该方法的有效

性与性能优势。
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Abstract:
 

In
 

order
 

to
 

improve
 

the
 

efficiency
 

of
 

circuit
 

breaker
 

life
 

prediction
 

and
 

formulate
 

a
 

reasonable
 

maintenance
 

plan,
 

an
 

IFMD-
BiTCN-BiGRU-AT

 

prediction
 

model
 

based
 

on
 

crown
 

porcupine
 

optimization
 

algorithm
 

( CPO)
 

is
 

proposed
 

based
 

on
 

the
 

characteristics
 

that
 

the
 

non-periodic
 

vibration
 

signal
 

of
 

the
 

circuit
 

breaker
 

can
 

fully
 

characterize
 

the
 

residual
 

life.
 

Firstly,
 

the
 

feature
 

mode
 

decomposition
 

method
 

is
 

improved
 

by
 

integrating
 

the
 

fitness
 

function
 

and
 

the
 

new
 

period
 

estimation
 

method
 

to
 

make
 

up
 

for
 

its
 

poor
 

ability
 

to
 

deal
 

with
 

non-periodic
 

signals,
 

and
 

the
 

IFMD
 

adaptive
 

decomposition
 

is
 

realized
 

by
 

using
 

CPO.
 

Secondly,
 

a
 

two-way
 

parallel
 

structure
 

and
 

attention
 

mechanism
 

are
 

introduced.
 

The
 

BiTCN-BiGRU-AT
 

prediction
 

model
 

is
 

constructed
 

to
 

fully
 

extract
 

the
 

important
 

features
 

of
 

time-space,
 

and
 

the
 

CPO
 

is
 

used
 

to
 

search
 

the
 

optimal
 

hyperparameter
 

combination.
 

Finally,
 

the
 

experimental
 

platform
 

of
 

circuit
 

breaker
 

signal
 

acquisition
 

and
 

processing
 

is
 

built
 

for
 

experimental
 

verification.
 

The
 

method
 

is
 

used
 

to
 

predict
 

and
 

design
 

ablation
 

experiments
 

and
 

multi-model
 

comparison
 

experiments.
 

Finally,
 

the
 

fitting
 

degree,
 

MAE
 

and
 

RMSE
 

indexes
 

obtained
 

by
 

this
 

method
 

are
 

99. 28%,
 

80. 33
 

and
 

98. 17
 

respectively.
 

Compared
 

with
 

the
 

other
 

three
 

signal
 

processing
 

methods,
 

the
 

prediction
 

fitting
 

degree
 

is
 

increased
 

by
 

19. 7%
 

on
 

average
 

after
 

IFMD
 

processing,
 

and
 

the
 

prediction
 

efficiency
 

is
 

the
 

highest.
 

Compared
 

with
 

other
 

models,
 

the
 

prediction
 

fitting
 

degree
 

of
 

the
 

model
 

is
 

increased
 

by
 

18. 3%
 

on
 

average,
 

and
 

the
 

MAE
 

and
 

RMSE
 

are
 

reduced
 

by
 

60. 9%
 

and
 

61. 6%
 

on
 

average.
 

Experimental
 

results
 

show
 

the
 

effectiveness
 

and
 

performance
 

advantages
 

of
 

the
 

proposed
 

method.
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0　 引　 言

　 　 万能式低压断路器作为低压电力系统中的重要环

节,承担着切断故障电路,保障电气设备安全的重任。 在

实际生产中,通常采用“计划修”的策略来保障断路器等

开关设备的可靠运行[1-3] 。 因此,为了制定合理的维修计

划,保障电力系统的稳定运行,开展针对断路器剩余寿

命(RUL)的研究具有重要意义。
断路器操作过程中产生的振动信号蕴含着丰富的机

械状态信息,因此作为研究目标被广泛应用于机械结构

的寿命预测[4-10] 。 然而,在实际应用中,复杂的环境往往

会产生一定的噪声,影响振动信号特征提取的有效性。
文献 [ 11 ] 通 过 变 分 模 态 分 解 法 ( variational

 

mode
 

decomposition,VMD)将数据分解为具有不同特征的模态

分量,重组结果表明该方法可以一定程度上减少噪声影

响并提高预测精度。 文献 [ 12 ] 采用特征模态分解

法(feature
 

mode
 

decomposition,FMD),将原始信号经过多

个滤波器分解为不同特征模态,并以峭度值为标准选择

最终特征模态。 结果验证该方法在机械设备状态特征提

取方面具有计算速度快、抗干扰性强的优势,且 FMD 的

滤波器具有一定的自适应性,不受滤波器形状和带宽的

限制。 文献[ 13] 通过逐次变分模态分解法( successiv
 

variational
 

mode
 

decomposition,SVMD)按照频率高低逐次

分解信号,与包络熵和峭度指标结合,降低特征提取算法

的复杂度。 然而上述方法仍存在不足,VMD 受目标模态

数、惩罚参数限制,且计算效率低;FMD 适用于周期性振

动信号的处理,且需人工设定相关参数;SVMD 分解重构

后的信号幅值衰减明显,会导致特征信息的损失。
近年来,深度学习以其特征自动提取和高准确率的

显著优势,被广泛应用于寿命预测机械设备的[14-15] 。 其

中,卷积神经网络( convolutional
 

neural
 

network,CNN) 和

循环神经网络( recurrent
 

neural
 

network,RNN) 作为两个

典型的深度学习网络,可以解决复杂的非线性预测问

题[16] 。 文献[17]提出一种基于 CNN 的断路器储能机构

故障诊断方法,从声振信号中提取二维图像特征,之后输

入 CNN 深度学习故障特征。 然而 CNN 处理一维时序数

据的能力不足,难以捕捉长时间依赖关系。 针对此问题,
文献 [ 18 ] 构 建 了 基 于 时 间 卷 积 网 络 ( temporal

 

convolutional
 

network, TCN) 的带式输送机关键零部件

RUL 模型:先将信号降噪、特征降维,再利用 TCN 提取局

部空间特征。 实验表明该方法显著提高了模型对长期时

序的特征提取能力。 文献[19]利用 RNN 捕捉多传感器

振动信号中的时间依赖关系,提取不同层次的抽象特征,
并通过引入注意力机制来消除冗余特征。 然而 RNN 虽

在时序数据处理方面有一定优势,但易出现梯度爆炸和

梯度消失等问题。 对此,文献[20]提出将长短期记忆网

络(long
 

short-term
 

memory,LSTM) 的特殊门控结构应用

于股票趋势的预测,并且向 TCN 引入双向结构概念。 经

数据集验证,该模型在解决时序长期依赖问题的同时有

效避免了梯度消失或爆炸等问题。 但考虑到 LSTM 结构

复杂,训练效率较低等问题,文献[21]采用结构简单,训
练效率高的门控循环单元( gated

 

recurrent
 

unit,GRU) 对

滚动轴承剩余寿命展开研究。 通过 GRU 实现了对时序

长期依赖关系的高效准确捕捉,较大程度提升了模型的

预测性能和拟合效果。 综上所述,尽管 TCN 和 GRU 在

数据预测领域已经取得不错的成果。 但仍存在以下两点

问题:1)简单的 TCN 和 GRU 都局限于对时间序列的单

向处理,忽略了未来信息的重要影响。 2)模型提取出的

特征序列权重一致,缺少对关键特征的关注,可能造成有

效信息的丢失。
鉴于以上问题,本文提出一种基于冠豪猪优化算

法(crested
 

porcupine
 

optimizer,CPO) 的双向时间卷积网

络-双向门控循环单元-注意机制( BiTCN-BiGRU-AT) 断

路器寿命预测方法。 首先,通过融合适应度函数和冠豪

猪寻优算法对传统 FMD 进行改进和参数寻优,并对断路

器非周期振动信号进行分解;然后,通过冠豪猪优化算法

对 BiTCN-BiGRU 模型的结构参数寻优后,将分解筛选得

到的特征模态通过预测模型进行双向特征提取,形成融

合特征;同时,引入注意力机制,对关键特征加权后,经全

连接层输出预测结果。 最后,通过与其他多个预测模型

进行对比,验证了本文所提方法的有效性。

1　 信号处理模块

　 　 目前,VMD 和 SVMD 被广泛应用于机械振动信号的

分解处理。 然而断路器操作时会产生大量噪声,VMD 在

噪声较大的环境下可能无法有效分离出有用的信号成

分,导致分解结果的可靠性下降;另外断路器振动信号的

数据量通常较大,SVMD 的计算复杂度较高[22] ,处理这

些大数据量的信号时可能需要较长的计算时间和较高的

计算资源。 基于计算速度和抗干扰的性能要求。 本文提

出一种改进特征模态分解方法。
1. 1　 FMD 算法

　 　 FMD 通过一系列自适应有限脉冲响应 ( finite
 

impulse
 

response,FIR)滤波器分解得到不同的特征模态。
FMD 包括 4 个部分,FIR 滤波器组初始化、周期估计、滤
波器系数更新和模态选择[23] 。

1)初始化,用汉宁窗将信号频带均匀分为 k 段,生成

k 个 FIR 滤波器,进而得到各候选模态。 第 k 个模态 uk

如式(1)所示。
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uk(n) = ∑
L

l = 1
fk( l)x(n - l + 1) (1)

式中: fk 为第 k 个 FIR 滤波器; L 为滤波器长度。
2)周期估计,滤波信号的估计故障周期 Ts 选择为自

相关谱在过零点之后达到局部最大值的点。
3)系数更新,选择相关峰度 CK 作为目标函数,根据

输入的信号 x(n)、uk、Ts 来更新滤波器参数。 相关峰度

可以定义为:

CKM(uk,Ts) =
∑

N

n = 1
(∏

M

m = 0
uk

2(n - mTs))

(∑
N

n = 1
uk

2(n)) M+1
(2)

式中: N 为信号长度; M 为位移周期数。
4)模态选择,计算任意两模态间的相关系数,丢弃相

关系数最大模态组中的 CK 较小者。 各模态都可更加清

晰的代表时间序列中的某些特征。 模态 up 与模态 uq 之

间的相关性系数 CCpq 表达如下:

CCpq =
∑

N

n = 1
(up(n) -u- p)(uq(n) -u- q)

∑
N

n = 1
(up(n) -u- p)

2 ∑
N

n = 1
(uq(n) -u- q)

2

(3)
式中: u- p 为模态 up 的均值; u- q 为模态 uq 的均值。
1. 2　 改进特征模态分解

　 　 传统 FMD 多用于机械设备的故障诊断,其故障分量

的出现具有周期性,且相关峰度可以很好的凸显信号的

冲击性与周期性,因此传统 FMD 选择相关峰度作为目标

函数。 而断路器振动信号具有非周期特性。 针对此问

题,本文提出了一种基于相关峰度与样本熵融合的 FMD
改进方法。

1)周期估计

故障周期 Ts 的准确估计在滤波器参数的更新中起

着决定性的作用。 然而针对断路器振动信号的非周期特

性,首先需要对周期 Ts 重新定义。 Ts 在本文中应具体代

表断路器的操作周期,即断路器分闸或合闸时间以及各

自相对衰减时间。 以合闸为例, Ts 计算公式如下:
Ts = th + thd (4)

式中: th 为合闸时间; thd 为合闸对应的相对衰减时间。
根据标准 GB / 1984—2014 的相关定义,将分合闸时

间定义为分合闸线圈带电时刻至振动幅值最大时刻;将
相对衰减时间定义为分合闸时刻之后振动衰减至平稳所

用的时间[24] 。
分、合闸带电时刻通过监测线圈的电流信号可以轻

易获得。 而为了从振动信号中准确提取分、合闸时刻,本
文通过计算振动信号的短时能量来锁定断路器的刚分、
刚合时刻。 短时能量 S(n) 定义如下:

S(n) = ∑
n

i = n-M+1
x2( i)w(n - i) = x2(n)·w(n) (5)

式中: x(n) 为振动信号,其中 n = 0,…,M + 1; w(n) 为

海明窗函数。
对于相对衰减时间的计算,以合闸振动信号 thd 为

例,其计算过程如下:
(1)将正常合闸时的振动信号 x( t) 的平方和进行

累加。

e( t) = ∑
tq

t = 0
x( t) 2 (6)

式中: tq 为振动信号时长,可由采集点数与采样频率计算

得出。
(2)对 e( t) 进行多项式拟合,得到能量释放曲线

E( t) 。
E( t) = c0 + c1 t + c2 t

2 + … + cn t
n (7)

式中: c0,c1,…,cn 为多项式系数。 经研究, n = 10 时拟合

效果最佳。
(3)以振动能量释放 99%为标准计算合闸相对衰减

时间。
thd = E -1(Eh + ΔE) - th (8)
Eh = E( th) (9)

ΔE = ∑
tq

t = th

| x( t) | 2 (10)

式中: E f 为截至刚合时刻已释放的能量;ΔE 为自刚合时

刻至振动信号趋于平稳期间所释放的能量。 振动时刻分

析如图 1 所示。

图 1　 合闸振动时刻分析

Fig. 1　 Shut-off
 

vibration
 

analysis
 

of
 

moving
 

time

图 1 中, t1 为合闸指令到达时刻, t2 为理论刚合时

刻, t3 为达到最大振动的时刻, t4 为储能机构释能达到

99%的时刻。 t1 ~ t3 为合闸时间; t3 ~ t4 即为合闸相对衰

减时间 thd ; t1 ~ t4 为操作周期 Ts。
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2)融合适应度函数

为了更全面地度量非周期信号的特征,提高 FMD 在

非周期信号分解中的准确性和稳定性。 本文加入一种可

衡量信号复杂程度,突出非周期特性的适应度函数,即样

本熵(sample
 

entropy,SampEn)。
样本熵是一种用于衡量一维时序的复杂性和不确定

性的统计量。 它通过计算一维时序中相似子序列的概率

来量化数据的不可预测性。 样本熵值越高,说明信号的

不规则性越高,在分析非周期信号时更具优势[25] 。 样本

熵定义如下:

SampEn(d,r,N) = - ln
Bd+1( r)
Bd( r)

é

ë
êê

ù

û
úú (11)

式中: d 为维数; r 为相似阈值,一般取时序标准差的

0. 1 ~ 0. 25 倍; N 为有限时序长度; Bm+1( r)、Bm( r) 分别

为时序与 r 匹配 m + 1、m 点的概率。
为了同时考虑信号的全局复杂性和局部尖峰特征,

本文基于相关峰度和样本熵这两种基本的适应度函数,
提出一种适用于本文的融合适应度函数:相关峰度-样本

熵。 但由于相关峰度和样本熵的取值范围差异较大,需
标准化后再进行融合。 IFMD 以此作为目标函数,进行滤

波器的参数更新并作为模态选择的依据。 图 2 所示为

IFMD 流程,其中 n 为目标模态数,Tmax 为最大迭代次数。

图 2　 IFMD 流程

Fig. 2　 IFMD
 

flowchart

此时,FMD 理论变为约束问题的求解,可以表示为:

argmax F fit(uk) = α·
γ - γmin

γmax - γmin

+{

β·
SampEn - SampEnmin

SampEnmax - SampEnmin
}

s. t. 　 uk(n) = ∑
L

l = 1
fk( l)x(n - l + 1) (12)

式中: F fit(uk) 为融合适应度函数; α 和 β 分别为相关峰

度与样本熵的权重系数; γmin 和 γmax 分别为相关峰度的

最小值和最大值; SampEnmin 和 SampEnmax 分别为样本熵

的最小值和最大值。
1. 3　 CPO 算法

　 　 虽然 IFMD 具有一定的自适应性,但并非“完全自适

应”。 在实际应用中,仍需人工设定目标模态数以及滤波

器的长度。 因此需要寻找最优参数组合。
基于快速收敛和节约计算成本的需求[26] ,本文最终

选择了 CPO 算法。 CPO 是一种自然启发式的仿生算法,
它通过模拟冠豪猪对敌人独特的防御-攻击模式,能够实

现 IFMD 自适应以及后续的预测模型超参数优化[27] 。 种

群初始化表示为:
X i = L + r × (U - L) (13)

式中: i = 1,2,…,N;r ∈ [0,1];N 为种群数量; X i 为第 i
个待选解; U、L 为搜索上、下限。

为防止陷入局部最优解,同时加快搜索速度,CPO 采

取一种种群缩减技术( cyclic
 

population
 

reduction,CPR)。
其原理是将未发现天敌的部分种群先取出,在后续阶段

放回,以此提高收敛速度。 其数学模型可以表述为:

N = Nmin + (N′ - Nmin) × 1 -
t%·Tmax ·T -1

Tmax ·T -1( )( )
(14)

式中: Nmin 为新种群的最小个体数量; t 为当前时刻的函

数评估; Tmax 为最大函数评估循环数; T 为规律循环

次数。
根据种群与天敌的距离分为四级防御手段。 该防

御-攻击模式分为两个阶段:距离天敌较远时,处于全局

勘探防御阶段;距离天敌较近时进入局部开发攻击阶段。
1)全局勘探防御阶段

(1)当发现潜在天敌时,开启一级视觉防御。 数学

模型表述如下:
x t +1
i = x t

i + 1 ×| 2· 2·x t
CP - y t

i | (15)
式中: x t

i 为 t 次迭代时个体 i 的位置; x t +1
i 为 t + 1 次迭代

时个体 i 的位置; 1 为随机数,且服从正态分布规律;

2 ∈ [0,1] ; x t
CP 为迭代 t 次时的最优解; y t

i 迭代 t 次时

天敌的位置。
(2)若天敌依然靠近,则开启二级听觉防御。 该过

程的数学模型如下:
x t +1
i = (1 - U1) × x t

i + U1 × (y + 3 × (x t
r1 - x t

r2))
(16)

式中: U1 为二元向量; 3 ∈ [0,1] ; r1、r2 ∈ [1,N] 。
2)局部开发攻击阶段

(1)若天敌未被吓退,开启嗅觉攻击。 模拟这一过

程的数学公式如下:
x t +1
i = (1 - U1) × x t

i + U1 ×
[x t

r1 + S t
i·(x t

r2 - x t
r3) - 3·δ·γ t·S t

i] (17)
式中: S t

i 为气体扩散因子; r3 ∈ [1,N] ; δ 为方向搜索参
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数; γ t 为攻击因子。
(2)若以上措施均失效,冠豪猪直接发起物理攻击。

用一维非弹性碰撞模拟攻击过程,其数学模型表达如下:
x t +1
i = x t

CP + [α(1 - 4) + 4] × (δ·x t
CP - x t

i) -

5 × δ × γ t × F t
i (18)

式中: α 为收敛速度因子; 4、 5 ∈ [0,1] ; F t
i 表示进攻

时产生的非弹性碰撞力。
由 IFMD 基础原理可知,目标模态数 n 和滤波器的

长度 L 很大程度上影响分解的有效性。 利用 CPO 对

IFMD 参数组合[n,L]寻优的流程如图 3 所示。

图 3　 CPO 寻优流程

Fig. 3　 CPO
 

optimization
 

flow
 

chart

本文设置 CPO 的种群规模为 50,最大迭代次数为

100。 由此得到的 IFMD 结果如表 1 所示。 其中目标模

态搜索区间的设置是为了避免欠分解或过分解。

表 1　 参数设置及寻优结果

Table
 

1　 Parameter
 

setting
 

and
 

optimization
 

results

参数 搜索步长 搜索区间 最优参数

目标模态个数 n 1 [2,7] 6
滤波器长度 L 10 [10,60] 40

2　 寿命预测模块

　 　 在断路器寿命预测领域,复合型预测模型以其优势

互补的特点成为主流研究趋势。 特别是 TCN-GRU 模型,
它依靠 TCN 捕捉长时间依赖关系和 GRU 出色的非线性

拟合能力,能够综合考虑数据的时序特性和非时序特

性[28] 。 然而考虑到单向处理时间序列会忽略未来信息

的重要影响,以及特征权重一致导致有效信息丢失等问

题,本文提出一种基于双向结构和注意力机制的 BiTCN-
BiGRU-AT 预测模型。
2. 1　 双向时间卷积神经网络

　 　 1)膨胀因果卷积

膨胀因果卷积是在因果卷积的基础上,增加了膨胀

卷积操作,以此建立时间约束条件。 即:只能用过去的信

息来预测未来,并且保证不会遗漏掉过去时刻所蕴含的

特征信息。 通过引入膨胀因子 d ,可以在时间序列上进

行间隔采样,以最少的卷积层获得对时间序列最广泛的

覆盖。 膨胀因果卷积结构如图 4 所示,其中 padding 是填

充神经元。 任意时刻的卷积输出结果 y = (y0,y1,y2,…,
yT) 只与当前时刻之前的输入 x = (x0,x1,x2,…,xT)
有关。

t 时刻以滤波器 f = ( f0,f1,f2,…,fk-1) 作为卷积核的

膨胀因果卷积表示如下:

A( t) = ∑
k-1

i = 0
f( i)x t -i·d (19)

式中: k 为卷积核尺寸; x t -i·d 间隔采样后的时间序列; d
为膨胀因子,一般以 2 的指数次幂递增。

图 4　 膨胀因果卷积结构体

Fig. 4　 Inflated
 

causal
 

convolution
 

structure
 

diagram

2)残差网络

残差块是对膨胀因果卷积进行正则化、提升泛化能

力等一系列操作后形成的一种类似短路的连接,组合残

差块的输入信息和膨胀因果卷积的输出信息,使网络能

够跨层传输信息。
本文采用 ELU 非线性激活函数来取代传统 TCN 的

RELU 激活函数,可以防止神经元的死亡,避免有效信息

的丢失,并且具有更好的收敛性。
ELU 表达公式如下:

ELU(x) =
x,x > 0
α(ex - 1),x ≤ 0{ (20)

残差网络可由下式表达:
G(x) = f[x + F(x)] (21)

式中: x 为输入的时间序列; G(x) 为残差网络输出; f 为
ELU 激活函数; F(x) 为输入序列经过残差块操作后的

结果。
为充分挖掘信号中的局部特征与全局特征,本文向

传统 TCN 加入反向支路,将正向 TCN 和反向 TCN 提取
到的并行特征信息进行双向时域特征融合[29] 。 BiTCN
结构如图 5 所示。
2. 2　 双向门控循环单元

　 　 GRU 由重置门和更新门这两个关键的门控单元组
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图 5　 BiTCN 结构

Fig. 5　 BiTCN
 

structure
 

diagram

成。 通过门结构有选择的忽略或保留不同重要程度的状

态信息,最终获取输入序列中的长短期依赖关系。 GRU
结构如图 6 所示。

图 6　 GRU 结构

Fig. 6　 GRU
 

structure
 

diagram

其中,重置门 R t 的大小决定了上一时刻记忆信息的

保留程度。
R t = σ(WR[h t -1,x t] + bR) (22)

式中: x t 为输入时间序列; σ 为 sigmoid 激活函数; WR 为

重置门权重矩阵; h t -1 为上一时刻状态信息; bR 为重置门

偏置。
更新门 Z t 的大小决定了上一时刻的状态信息能够

被保留到当前时刻记忆中的程度。
Z t = σ(WZ[h t -1,x t] + bZ) (23)

式中: WZ 为更新门权重矩阵; bZ 为更新门偏置。

中间输出状态 h􀮨t 综合了当前时刻输入序列和重置门

的影响,暂时储存当前状态信息。 初步输出状态计算公

式如下:

　 　 h
~

t = tanh(W[R t·h t -1,x t] + b) (24)

式中: h
~

t 为初步输出状态信息; tanh 为双曲正切激活函

数; W 为初步更新权重矩阵; b 为循环连接偏置。
最终输出状态 h t 经过更新门加权,将信息传递至下

一时刻 GRU 单元。

h t = (1 - Z t)h t -1 + Z t h
~

t (25)

式中: h t 为传递到下一时刻的状态信息; h
~

t 为初步输出

状态信息。
本文通过添加反向 GRU 支路,构成 BiGRU 网络,如

图 7 所示。 该结构能够同时提取时间、空间特征,更加有

效地提高网络预测精度,避免有效特征信息的丢失[30] 。
计算公式具体如下:

h
➝

t = GRU(h
➝

t -1,x t)

h←t = GRU(h←t -1,x t)

h t =h
➝

t·w→t + h←t·w←t + b t

ì

î

í

ï
ïï

ï
ïï

(26)

式中: h→t 表示正向 GRU; h←t 表示反向 GRU; h t 为双向拼

接输出状态; w→t、w
←

t 分别为 t 时刻正向、反向 GRU 输出权

重; b t 为拼接偏置。

图 7　 BiGRU 示意图

Fig. 7　 BiGRU
 

schematic
 

diagram

2. 3　 注意力机制

　 　 在训练 BiGRU 过程中,由于时间序列过长,可能会

出现有效信息丢失的情况。 对此引入注意力机制,对特

征信息进行针对性筛选,增强网络对全局重要信息提取

的能力。
注意力机制的本质是对有限算力的最优分配。 依照

不同特征对预测结果的影响程度,调整特征对应的权重

值。 同时自适应性地对输入的特征信息进行学习、训练,
实时更新网络参数,突出关键特征影响,提高网络的泛化

能力。 自注意力模型结构如图 8 所示。
由图 8 可见,注意力机制通过计算各个序列元素对

于其他元素的影响分数将经过 BiGRU 网络后的特征序

列经过自注意力层,最终得到加权后的特征序列[31] 。 计

算公式如下:
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图 8　 自注意力机制

Fig. 8　 Self-attention
 

mechanism

Attention(Q,K,V) =

∑
Lx

i = 1
Softmax[Similarity(Q,K i)]·V i

(27)

式中: Attention 为影响分数; Q 为查询矩阵; K 为键矩

　 　 　 　

阵; V 为值矩阵; Lx 为键长度。 Similarity 为相关性函数,
Softmax 的作用是归一化。

3　 预测模型总体设计

　 　 总体模型设计如图 9 所示。 首先,信号采集系统将

采集到的断路器振动信号与分合闸线圈电流信号输入信

号处理模块,进行周期估计。 同时,通过 CPO 寻优算法

获得最优参数组合,利用 IFMD 对振动信号进行降噪和

分解,并经模态筛选后得到最终的特征模态。 之后,通过

CPO 寻优算法获得 BiTCN-BiGRU-AT 的最优结构超参数

组合。 接下来,用 BiTCN 网络提取特征模态的序列特

征,双向卷积层处理时间依赖特性,融合生成双向特征序

列。 然后,通过 BiGRU 双向通道进一步处理,生成双向

隐藏状态。 最后,融合特征经注意力机制对关键特征加

权后,使用全连接层输出预测结果。

图 9　 模型总体设计

Fig. 9　 The
 

overall
 

design
 

diagram
 

of
 

the
 

model

4　 实验验证

4. 1　 实验平台介绍

　 　 如图 10 所示,实验所用平台由待测模块、控制模块、
采集模块、供电模块组成。 其中待测模块为包括分合闸

线圈和断路器的动作机构;控制模块包括上位机以及智

能控制器;采集模块包含电流互感器、振动传感器和示波

器。 振动传感器固定在断路器框架外侧,合闸线圈外接

线穿过开合式电流传感器;实验平台整体由供电模块中

的直流稳压源和三相电源供电。 器件具体选型如表 2
所示。
4. 2　 数据采集

　 　 基于上述实验平台,利用上位机控制断路器进行寿

命消耗实验,并收集对应的振动、电流信号等数据构成数

据集。 首先,由上位机发出合闸指令,控制器操控断路器
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进行合闸。 同时,示波器对振动、电流信号进行实时显示

和同步采集。 最后,将采集到的数据传送回上位机进行

信号处理和寿命预测。 图 11 所示为实验平台实物。
表 2　 器件及选型

Table
 

2　 Devices
 

and
 

selection
器件 型号

万能式断路器 RGW1-3200
智能控制器 RGW1-2H

加速度传感器 YK-YD500
电流互感器 JK-A802-25

示波器 DHO4808
直流稳压源 TPR3003-2D

图 10　 实验平台结构

Fig. 10　 Experimental
 

platform
 

structure
 

diagram

图 11　 平台实物

Fig. 11　 Platform
 

physical
 

map

　 　 本文实验使用 DHO4808 型示波器对断路器的单次

合闸操作进行信号采集。 具体设置如下:触发方式为上

升沿触发,采样方式为凝时获取,采样率设置为 50
 

kSa / s,
采样时间取 0. 2

 

s。 实验采集到的电流、振动信号包含

10
 

000 个数据点。 为了简化数据处理,仅截取有效波形

部分。 本文取 1
 

000 ~ 7
 

000 范围内的数据点,并每隔一

个数据点取一个数据,最终获得一组 3
 

000 个数据点的

振动、电流数据。
为了确保数据的稳定性和可靠性,重复上述步骤以

获得断路器的全寿命周期数据。 并由每次实验采集的振

动、电流数据以及其对应的操作次数共同构成数据集。
4. 3　 所提模型性能分析

　 　 首先对数据集的振动信号进行 IFMD 自适应分解,
分解后去除噪声模态,筛选出特征模态。 IFMD 分解重构

情况如图 12、13 所示。 图 12 为 IFMD 特征模态图;图 13
为分解前后信号对比,其中虚线为原始信号,实线为重构

后信号。

图 12　 特征模态分量图

Fig. 12　 Characteristic
 

modal
 

component
 

diagram

图 13　 信号重构结果

Fig. 13　 Signal
 

reconstruction
 

results

由图 13 可知,在去除噪声模态后,将剩余的模态成

分重新组合,形成一个更为清晰的信号。 它比原始信号

更纯净,更能反映真实的断路器状态信息。
之后采用 CPO 对 BiTCN-BiGRU-AT 的结构超参数
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组合进行寻优。 最终得到的最优参数组合如表 3 所示。
表 3　 BiTCN-BiGRU-AT 最优组合参数

Table
 

3　 The
 

optimal
 

combination
 

parameters
 

of
BiTCN-BiGRU-AT

参数 搜索区间 最优参数

批量大小 [20,500] 256
学习率 [0. 001,0. 1] 0. 002
丢弃率 [0,0. 5] 0. 2

膨胀系数 1、2、4、8 2
残差链接层数 2+2、4+4 4+4

BiTCN 神经元数 2、4、8 4
BiGRU 神经元数 16、32、64 64

　 　 接下来,按表 3 参数配置 BiTCN-BiGRU-AT,并用

Adam 优化器对模型内置参数进行训练。 设置训练集、测
试集划分比为 2 ∶ 1,最终采用平均绝对误差( MAE)、拟
合度 R2 和均方根误差( RMSE)来量化预测性能[32] 。 其

中,RMSE 可以反映异常波动,MAE 能够反映预测的实际

情况,R2 则用于量化曲线的吻合程度。 RMSE 和 MAE 值

越低,代表模型的精度越高。 R2 值越高,则拟合效果越

好。 各指标计算公式如下:

RMSE = 1
N ∑

N

i = 1
(R i -R̂ i)

2 (28)

MAE = 1
N ∑

N

i = 1
| R i -R̂ i | (29)

R2 =
∑

N

i
(R i -R

- ) 2

∑
N

i
( R̂ i -R

- ) 2
(30)

式中: N 为总样本数; R i 为第 i 个预测寿命值; R̂ i 为第 i

个真实寿命值; R- 为真实寿命均值;
本文所提方法的预测结果如图 14 所示。 其中虚线

为拟合目标,实线为拟合曲线。 计算各量化指标得 R2、
MAE、RMSE 分别为 99. 28%、80. 326、98. 165。

图 14　 模型预测结果对比

Fig. 14　 Comparison
 

of
 

model
 

prediction
 

results

另外,需要声明的是虽然在断路器总操作次数一定

的情况下,预测目标曲线是线性的,但本文提出的剩余寿

命预测模型拟合的是振动信号特征模态与剩余寿命之间

的非线性关系。 为使预测曲线美观,对预测结果进行了

平滑处理,以消除波动并获得更平滑、易于理解的结果。

5　 模型验证

　 　 为了验证 IFMD 与 BiTCN-BiGRU-AT 模型的有效性,
以及 CPO 对整体模型的优化效果,从而突出本文所提模

型对断路器剩余寿命预测的精准度和速度优势。 本章采

用对比验证的方法,将本文模型与其他预测模型进行对

比分析。
5. 1　 IFMD 有效性验证

　 　 为验证 IFMD 的有效性,本文将采集到的振动信号

分别用 FMD、VMD、SVMD、IFMD
 

4 种方法进行处理,并
将分解结果输入 BiTCN-BiGRU-AT 模型进行寿命预测。
以平均相关系数 Rav

[33] 、预测精度指标 R2、以及完成一次

振动信号处理的时间 t 作为评价指标来进行方法分析。
Rav 表征了信号处理后对有效特征的保留情况。 其计算

公式如下:

Rav = ∑
m

j = 1

∑
n

k = 1
imf i(k) si(k)

∑
n

k = 1
( imf i(k)) 2∑

n

k = 1
s2
i(k)

( ) / m (31)

式中:m 为模态总个数; imf i(k) 为第 i 个模态分量, i ∈
(1,m) ; si(k) 为原始信号与 imf i(k) 的差值。

图 15 所示为各指标的可视化对比。 从图 15 可以直

观看出,尽管 VMD 处理信号用时最短,但其最终的预测

精度偏低,导致整体预测效率低;此外,就指标 Rav 而言,
FMD 远小于 IFMD,证明 FMD 处理非周期信号能力较

弱,而经改进后的 IFMD 弥补了这一不足,且计算时间增

幅较小;另外,经 IFMD、SVMD 预处理后均可大幅提高

BiTCN-BiGRU-AT 模型的预测精度。 虽然两者精度接

近,但 SVMD 在分解过程中耗费的计算时间和资源远大

于 IFMD,导致 SVMD 分解的整体效率降低。
综上所述,足以验证改进特征模态分解法的有效性

及其效率优势。 另外,4 种模型的 R2 与 Rav 呈正相关,在
一定程度上可以说明 BiTCN-BiGRU-AT 模型具有较好的

预测稳定性。
5. 2　 CPO 有效性验证

　 　 为验证 CPO 对模型预测效率的优化效果,本文用

CPO 分 别 对 BiTCN-BiGRU-AT 模 型 及 CNN-LSTM 模

型[34] 的超参组合进行寻优,并比较各模型的预测性能。
各预测准确性指标及训练时间如表 4 所示。
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图 15　 指标对比

Fig. 15　 Index
 

comparison
 

chart

表 4　 预测结果对比

Table
 

4　 Comparison
 

of
 

prediction
 

results

预测模型 R2 / % MAE RMSE 训练时间 / s
CPO-BiTCN-BiGRU-AT 99. 28 80. 326 98. 165 457

BiTCN-BiGRU-AT 92. 55 258. 821 310. 196 578
CPO-CNN-LSTM 86. 83 308. 360 381. 215 425

CNN-LSTM 84. 60 335. 692 429. 341 512

　 　 分析表 4 可知,经过 CPO 寻优后,BiTCN-BiGRU-AT
模型训练时间缩减 20. 9%, R2 提高 6. 9%, MAE 降低

68. 9%,RMSE 降低了 68. 9%。 证明了 CPO 算法优化

BiTCN-BiGRU 网络可以提高模型预测效率;CNN-LSTM
受限于模型自身的预测能力,经 CPO 寻优后训练时间

缩减 17. 0%, R2 提高 2. 6%,MAE 降低 8. 2%,RMSE 降

低了 10. 7%。 由此可证明 CPO 对模型预测性能显

著优化。
另外,由于 CPO-BiTCN-BiGRU-AT 模型结构复杂,

相较于 CPO-CNN-LSTM 模型,训练时间增加,但预测指

标 R2 提 高 14. 3%, MAE、 RMSE 分 别 降 低 73. 9%、
74. 2%。 在断路器寿命预测领域,更高的预测精度能够

降低故障的概率和损失。 因此,本文所提模型仍然具

有应用价值。
5. 3　 BiTCN-BiGRU-AT 模型有效性验证

　 　 为了验证 BiTCN-BiGRU-AT 预测模型的有效性,本
文对该模型进行消融实验, 并与 LSTM[35] 、 TCN-GRU-
AT[36] 、CNN-LSTM

 

3 组传统预测模型进行模型对比实

验。 其中 消 融 实 验 各 组 对 象 设 置 为 BiTCN-BiGRU、
BiGRU-AT、BiTCN-AT 模型。 图 16( a) ~ ( f)为平滑处理

后各对比模型的预测结果。
表 5 为各模型预测精度指标数值并进行具体分析。

表 5　 不同预测模型对比

Table
 

5　 Comparison
 

of
 

different
 

prediction
 

models
实验编号 预测模型 R2 MAE RMSE

1 BiTCN-BiGRU-AT 99. 28 80. 326 98. 165
2 BiTCN-BiGRU 96. 70 140. 335 209. 551
3 BiGRU-AT 85. 52 332. 593 439. 375
4 BiTCN-AT 83. 59 385. 364 467. 705
5 LSTM 76. 28 439. 004 562. 354
6 TCN-GRU-AT 92. 15 262. 849 315. 204
7 CNN-LSTM 84. 60 335. 692 429. 341

　 　 首先是消融实验,本文所提模型预测精度指标 R2 较

2 ~ 4 号消融实验分别提高了 2. 67%、16. 09%、18. 77%,
MAE、RMSE 指标也均降低 50%以上。 证明了模型各个

部分的有效性与必要性,共同为预测准确性提供了保障。
另外,1、2、6、7 号实验在各性能指标上优于 3、4、5 号实

验,这也一定程度上证明了复合型预测网络的显著优势。
再与传统模型的预测结果进行对比分析可知,1 号

实验的拟合度 R2 达到了 99. 185%,比 5 ~ 7 号模型分别提

高了 30. 15%,7. 63%和 17. 23%;MAE 相比其他模型分

别降低了 81. 70%、69. 44%、76. 07%。 从整体误差规模

来看, RMSE 相 比 其 他 模 型 分 别 降 低 了 82. 54%、
68. 86%、77. 14%。 由此验证了 BiTCN-BiGRU-AT 预测模

型的有效性,同时说明向 TCN-GRU 网络引入双向结构可

以提高网络的预测性能。
为了进一步体现本文模型预测性能,绘制误差曲线

以直观反映整体预测的误差规模,如图 17 所示。 由图 17
可知,相较于其他模型,本文模型的 RMSE 增幅最小且变

化稳定。 由此证明本文预测模型具有稳定的预测性能。

6　 结　 论

　 　 为了制定合理的维修计划,实现对断路器剩余寿命

的高效预测, 本文提出一种基于冠豪猪寻优算法的

IFMD-BiTCN-BIiGRU-AT 预 测 方 法。 首 先, 针 对 传 统

FMD 局限于处理周期性信号的问题,通过融合适应度函

数改进 FMD,并利用 CPO 搜索 IFMD 的最优参数组合,
实现 FMD 自适应分解。 然后与 FMD、VMD、SVMD 进行

实验对比,验证了 IFMD 提升模型预测性能的有效性与

优越性;另外,通过引入双向并行结构,大幅提升了预测

模型对时序特征的提取能力,并且向模型中引入注意力

机制,聚焦于重要特征的提取,从而提高模型预测精度。
最后与多种预测模型进行对比分析及进行消融实验,证
明了 IFMD、CPO 可以实现模型预测性能的显著提升及

BiTCN-BiGRU-AT 预测模型各个部分的有效性与必要

性。 然而本文研究的断路器寿命衰减为线性拟合,忽略

了故障会导致寿命损耗增大的因素。 在今后的研究中应
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图 16　 多模型预测结果对比

Fig. 16　 Comparison
 

of
 

multi-model
 

prediction
 

results

该考虑各种常见故障对断路器寿命的影响。
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