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基于 SA-ResNet 的室内指纹定位算法∗
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摘　 要:
 

室内定位在全球导航卫星系统无法到达的传感器网络中实现基于位置的服务方面起着至关重要的作用。 在无线定位

系统中,基于无线指纹的定位方法只需要将待定位的设备的信号与已知特征进行比较来确定位置,因其复杂度低而在室内场景

中得到广泛应用。 然而,
 

由于室内环境的复杂多变引起的衰落和多径效应问题会导致室内信号值波动,
 

从而降低定位精度,
 

目前大部分的指纹定位方法都忽略了采集指纹的时间和空间上的信息,
 

为了解决这些问题,
 

提出了一种结合深度残差网

络(residual
 

network,
 

ResNet)和室内指纹定位的算法模型,首先,在 ResNet 的残差模块中引入了自注意力机制,改进了卷积神经

网络只能局部提取信号特征的问题,然后再将粒子滤波和自注意力机制结合起来,针对室内信号随机波动的问题,采用粒子滤

波能够更好地适应动态环境的变化,并且用自注意力机制算法来动态调整粒子权重,使得所提出的算法模型能够更好捕捉在室

内的信号特征,从而提高定位精度以及鲁棒性。 最后,进行了相应的实验验证,实验结果表明,SA-ResNet 室内定位算法模型的

平均定位误差在 0. 56~ 0. 62
 

m 波动,具有很好的稳定性。
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Abstract:
 

Indoor
 

positioning
 

plays
 

a
 

crucial
 

role
 

in
 

enabling
 

location-based
 

services
 

in
 

sensor
 

networks
 

that
 

cannot
 

be
 

reached
 

by
 

GNSS.
 

In
 

the
 

wireless
 

positioning
 

system,
 

the
 

wireless
 

fingerprint-based
 

positioning
 

method
 

only
 

needs
 

to
 

compare
 

the
 

signal
 

of
 

the
 

device
 

to
 

be
 

located
 

with
 

the
 

known
 

features
 

to
 

determine
 

the
 

location,
 

which
 

is
 

widely
 

used
 

in
 

indoor
 

scenes
 

because
 

of
 

its
 

low
 

complexity.
 

However,
 

due
 

to
 

the
 

fading
 

and
 

multipath
 

effects
 

caused
 

by
 

the
 

complex
 

and
 

changeable
 

indoor
 

environment,
 

which
 

will
 

lead
 

to
 

the
 

fluctuation
 

of
 

indoor
 

signal
 

values,
 

thereby
 

reducing
 

the
 

positioning
 

accuracy,
 

most
 

of
 

the
 

current
 

methods
 

ignore
 

the
 

temporal
 

and
 

spatial
 

information
 

of
 

fingerprint
 

collection,
 

in
 

order
 

to
 

solve
 

these
 

problems,
 

this
 

paper
 

proposes
 

an
 

algorithm
 

model
 

combining
 

deep
 

residual
 

network
 

(ResNet)
 

and
 

indoor
 

fingerprint
 

positioning.
 

In
 

order
 

to
 

solve
 

the
 

problem
 

of
 

random
 

fluctuation
 

of
 

indoor
 

signals,
 

the
 

particle
 

filter
 

can
 

better
 

adapt
 

to
 

the
 

changes
 

of
 

the
 

dynamic
 

environment,
 

and
 

the
 

self-attention
 

mechanism
 

algorithm
 

is
 

used
 

to
 

dynamically
 

adjust
 

the
 

particle
 

weight,
 

so
 

that
 

the
 

algorithm
 

model
 

proposed
 

in
 

this
 

paper
 

can
 

better
 

capture
 

the
 

signal
 

features
 

in
 

the
 

room,
 

so
 

as
 

to
 

improve
 

the
 

positioning
 

accuracy
 

and
 

robustness.
 

Finally,
 

the
 

corresponding
 

experimental
 

verification
 

is
 

carried
 

out,
 

and
 

the
 

experimental
 

results
 

show
 

that
 

the
 

average
 

positioning
 

error
 

of
 

the
 

SA-ResNet
 

indoor
 

positioning
 

algorithm
 

model
 

fluctuates
 

between
 

0. 56
 

and
 

0. 62
 

m,
 

which
 

has
 

good
 

stability.
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0　 引　 言

　 　 随着无线通信和物联网技术的快速发展,定位技术

作为收集空间物联网数据的基础技术引起了众多研究学

者的广泛关注。 在超市、地铁站、地下车库等空间结构复

杂的室内环境中,接收精确的卫星信号非常困难,全球定

位系统等卫星定位系统无法满足室内环境精确定位的需

求。 室内定位技术[1] 在当今数码化社会中变得愈发重

要。 无线通信技术的不断发展为实现精确的室内定位提

供了新的机遇。 目前室内常用的定位信号有射频识

别(radio
 

frequency
 

identification,
 

RFID) [2] 、蓝牙[3] 、超宽

带(ultra-wideband,
 

UWB) [4] 、WiFi[5] 等。
根据是否需要测量距离,室内定位方法可以分为基

于测距和非测距两类。 基于测距的定位方法已广泛应用

于室外环境中,其中距离可以通过信号到达时间( time
 

of
 

arrival,
 

TOA) [6] 、到达时间差( time
 

difference
 

of
 

arrival,
 

TDOA) [7] 、到达角度( angle
 

of
 

arrival,
 

AOA) [8] 和路径损

耗模型方法来测量。 但这些方法时间同步要求高,且易

受外界环境影响。 因此,本文使用无需测距的室内定位

方法基于指纹定位方法[9] 。 基于指纹的定位方法的工作

原理是从被测位置中提取特征信息,称为“指纹”,然后,
在实时定位阶段中,将待定位的设备的信号与已知特征

进行比较以确定位置。 传统的室内指纹定位通常使用信

号强度指示值(received
 

signal
 

strength
 

indicator,
 

RSSI)测

量发射器和接收器之间的特征距离,然后匹配位置[10] 。
传统的指纹定位算法主要基于 WiFi 或蓝牙等无线网络

技术,然而,这些技术在室内环境中存在信号衰减、多径

效应和阴影效应等问题,限制了其定位精度和鲁棒性。
相对于传统的无线网络技术,UWB 技术具有较大的带宽

和更低的信号传输功率,能够提供更准确和可靠的位置

信息。 因此,将 UWB 技术应用于室内指纹定位算法成为

当前的研究热点之一。
指纹定位是室内定位中最重要的技术之一,它被用

于不同的研究项目,使用 RSSI 的方法不需要额外的成本

或功耗,并且实现简单,因此在室内定位技术中往往比其

它方法更流行。 近几十年来,指纹定位技术在机器学习

方法的帮助下实现了良好的定位精度,许多机器学习算

法已被证明对于 RSSI 特征提取方面是有效的[11] ,该方

法能够提取并在其模型中存储测量数据的主要特征。 例

如支持向量机( support
 

vector
 

machine,
 

SVM) 和逻辑回

归(logistic
 

regression,
 

LR)算法被用于训练和估计目标位

置,然而,由于在线阶段采样数据不足,精度相对较低。
为了克服室内环境中由障碍物引起的无线电信号的扰

动,很多研究人员使用各种滤波方法作为预处理和后处

理过 程。 Yuan 等[12] 提 出 通 过 机 器 学 习 ( machine
 

learning,
 

ML)和粒子滤波器(particle
 

filter,
 

PF)的结合来

提高预测位置的精度,这种滤波器的设计能够高计算能

力和复杂性[13] 。 Tseng 等[14] 将高斯滤波器 ( Kalman
 

filter,
 

KF)也用于室内定位中,来减少 RSSI 变化的影响。
通过仿真,证明了利用卡尔曼滤波器和跟踪算法对 RSSI
进行校准的能力,在 RSSI 变化剧烈的环境下,可以获得

较高的跟踪精度。 在复杂环境下实现高精度定位是室内

指纹定位任务中的一个长期挑战。 由于各种因素,包括

巨大的信号波动、高噪声水平、多径效应和器件的多样

性,尽管机器学习模型在处理室内指纹定位问题方面取

得了重大进展,但仍存在某些局限性。 随着深度学习技

术的快速发展,基于深度学习的指纹定位算法[15] 被提出

用于指纹定位,极大地提高了定位精度。 陈禹等[16] 提出

一种基于长短时记忆网络(LSTM)的室内定位方法,利用

定位过程中的时域信息以提高定位精度。 Zhang 等[17] 提

出了一种基于标准深度神经网络的 WiFi 指纹定位方法,
并证明了所提出的 4 层网络结合隐马尔可夫模型可以有

效地提取 RSSI 的信号特征并生成初始定位估计。 然而,
在大量的研究中,可以发现由于 RSSI 信号在室内环境中

传播不稳定的的特点,传统的模型如递归或卷积网络的

性能有限。 因此,需要研究在室内环境中从 RSSI 序列中

找到特征的方法,来提高室内指纹定位的精度。 Ibrahim
等[18] 提出了一种基于卷积神经网络( convolutional

 

neural
 

networks,
 

CNN) 的方法, 从不同的 WiFi 的信号接入

点(access
 

point,
 

AP)中提取 RSSI 序列特征,完成室内定

位。 Wang 等[19] 提出了一种结合 ResNet 和长短时记忆网

络的时空定位算法。 该方法提取不同 WiFi 信号之间的

空间关系和连续指纹数据在不同时间片内的时间关系。
Song 等[20] 提出利用堆叠式自动编码器 ( stacked

 

auto-
encode,

 

SAE)从 RSSI 数据中提取关键特征。 Wang 等[21]

设计了用卷积自动编码器编码器从输入指纹中提取隐藏

特征的方法。 Ye 等[22] 使用去噪自动编码器提取特征,
通过使用基于极限学习机的自动编码器进行特征提取,
来提高室内定位精度。

但是,在上述的基于 RSSI 的室内指纹定位方法中,
由于传统深度学习的定位算法直接通过卷积神经网络提

取原始指纹的特征,只能捕捉指纹序列的局部特征并没

有充分提取 RSSI 的有用的特征。 因此,本文设计了一个

指纹注意力特征提取模块,从指纹序列中全局捕获 RP
和 AP 的时间与空间位置信息,从而提高模型的深度特

征提取能力。 改进了深度残差网络 ( residual
 

network,
ResNet)中的残差模块,又因为在室内 RSSI 与环境的非

线性关系, 引入粒子滤波并将其与自注意力 ( self-
attention,SA)机制结合,使得模型在复杂的室内环境中

能更好地处理非线性和非高斯特性的信号,该算法增强

了深度神经网络对于全局信号的特征提取能力,并且能
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够更好地在动态环境中的进行特征提取,显著提高了室

内指纹定位精度以及鲁棒性。
针对传统卷积神经网络只能捕捉指纹序列的局部特

征,而无法进一步挖掘信号深层特征的问题,本文提出了

一种新的指纹特征提取模型 SA-ResNet,将一种改进的自

注意力机制引入 ResNet 残差模块中,利用自注意力机制

提高对全局 RSSI 信号特征的提取能力。 针对室内信号

波动问题,以及信号的非线性和非高斯噪声特性,设计了

自适应特征提取模块,将粒子滤波融入到自注意力机制

中,并且使用自注意力机制来调整粒子权重,使得粒子滤

波在提取随环境变化的信号特征时更具适应性。 这种动

态加权能力可以帮助粒子滤波更好地适应环境的变化,
从而提高模型定位精度以及稳定性。

1　 算法模型

1. 1　 改进的 self-attention 模块

　 　 PF 的基本思想是基于蒙特卡罗方法,它使用粒子集来

表示概率。 PF 的核心思想是通过一组“粒子”或样本来表示

和估计系统的状态。 粒子滤波器将大量粒子散射到目标区

域,并让粒子根据接收到的信号强度来移动它们的位置。 通

过计算粒子的加权平均值来获得预测位置,由于大量的粒子

参与了预测,因此可以在一定程度上控制每个粒子的错误估

计。 简单来说,PF 方法就是通过寻找一组在状态空间中传

播的随机样本来逼近概率密度函数,并用样本均值代替积分

运算。 最后得到了状态的最小方差分布。
基于信号与室内环境的非线性关系,本文在 SA-

ResNet 定位模型中引入粒子滤波,将粒子滤波与自注意

力机制结合起来,在这些粒子经过预测和更新步骤,反映

了系统状态的分布,并通过加权来优化估计,帮助处理非

线性和非高斯特性的系统的状态估计问题。
自注意是一种注意机制,它使模型能够捕获序列中

每个位置与所有其他位置之间的关联程度。 通过计算每

个位置相对于所有其他位置的注意力权重,该模型能够

选择性地关注输入序列中最相关的部分,并生成更精确

的预测或表示。 因此,本文将粒子滤波与自注意力机制

算法结合,用粒子滤波来提取动态环境中 RSSI 序列的特

征,并且使用自注意力机制来调整粒子滤波的状态和权

重更新,能够使得更新粒子更好地适应室内复杂环境的

变化,通过这种方式,可以更好地捕捉到不同 AP 和 RP
之间的相关性,从而提高 SA-ResNet 室内指纹定位模型

的定位精度以及鲁棒性。
自注意机制基于查询矩阵(Query,Q)、键矩阵( Key,

K)和值矩阵(Value,V)。 给定输入序列 X,注意力机制使

用 3 个可训练的权重矩阵 WQ、WK 和 WV 分别计算查询

矩阵、键矩阵和值矩阵。 通过计算 Q 和 K 之间的点积,

并使用 softmax 函数对所得分数进行归一化,可以获得注

意力权重系数,其可以表示为:

AW(Q,K) = softmax(QK
T

d
) (1)

式中:d 是指键和查询矩阵中隐藏层的维度。 由于当查

询矩阵和键矩阵的维度高时它们的潜在大点积,在训练

期间可能发生数值不稳定性的情形,为了解决这个问题,

将点积除以 d 可以在所有维度上规范化乘积的规模,从
而增强模型的稳定性和性能。 此外, 基于关注权重

AW(Q,K),关注值可以表示为:

A(Q,K,V) = softmax(QK
T

d
)V (2)

现有的神经网络知识表明,网络层次越深,学习能力

越好。 然而,有时由于梯度扩散和梯度爆炸问题,深层神

经网络的测试误差比浅层神经网络的测试误差大,这种

现象称为退化。 为了解决这一问题,提出了残差模块的

概念。 其核心设计理念是引入了捷径机制,通过直接连

接输入和输出,有效解决了随着网络深度增加而出现的

性能下降问题。 ResNet 模型的基本残差块结构如图 1 所

示。 残差块的核心在于它的残差连接,它将前一层的输

出添加到当前层的输出中,使当前层能够合并前一层的

信息。 该设计有效地缓解了梯度消失的问题,使模型更

易于训练和优化。 残差块分为直接映射部分和残差部分

两部分,其中 x 是直接映射,F( x) 是残差部分。 残差结

构的设计使用了跨层连接的思想,跨层连接是通过将前

一层的输出直接作为输入通过快捷方式传递到后一层的

结果来执行的。 在跨层连接操作之后,就变成了对残差

F(x)的学习和优化,使得梯度不会随着网络深度的增加

而消失,在反向传播过程中始终保持较大的值,便于优

化,从而达到更好的分类效果。 ResNet 将学习问题转移

到残差映射。 为了方便神经网络和更新梯度,ResNet 在
这些块之间建立了多个直接路径。 因此,上残差块的层

可以直接将梯度信息传送到下残差块的层。 图 2 为本文

设计改进的自注意力机制模块,从基本残差块的输入添

加额外的连接并连接两个分支的输出,然后在求和操作

之后将连接的特征送到下一个特征残差块中。 首先,用
自注意力机制对于经过卷积层提取的 RSSI 时间序列特

征进行加权,然后利用加权后的特征作为粒子滤波的输

入,在粒子滤波的预测步骤中,自注意力机制的输出特征

可以用来调整粒子的状态。 具体来说,可以通过将自注

意力机制生成的特征作为输入,更新粒子的状态转移模

型,进而更新粒子的状态预测。 在粒子滤波的更新步骤

中,自注意力机制可以生成 Q、K 和 V 对,将这些特征用

于计算每个粒子的加权分数,进而计算每个粒子与实际

观测之间的匹配度。 这样,粒子的权重会根据自注意力

机制的加权进行调整,从而提高滤波的精度。
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图 1　 普通的残差模块

Fig. 1　 Common
 

residual
 

block

1. 2　 SA-ResNet 模型框架及实现

　 　 图 3 所示为本文的室内指纹定位框图,共分为两个

阶段,即离线阶段和在线位置估计阶段。 在离线阶段,本
文从每个 RP 处收集 RSSI 值,对数据进行预处理并将它

们存储在数据库中,然后将其放入 SA-ResNet 模型中进

行训练。 在在线定位阶段,从 RP 中获取 RSSI 值然后对

数据进行处理,并将其输入到以训练好的定位模型中进

行位置的预测。 本文的定位模型使用 ResNet-18 作为基

　 　 　 　

图 2　 改进后的残差模块

Fig. 2　 Improved
 

residual
 

block

础架构,网络结构如图 4 所示。 在 ResNet-18 中,每个残

差模块有 4 个卷积层,加上第一个卷积层和最后一个全

连接层,总共有 18 层。

图 3　 基于 SA-ResNet 的指纹定位模型

Fig. 3　 Fingerprint
 

localization
 

model
 

based
 

on
 

SA-ResNet

图 4　 ResNet-18
 

架构

Fig. 4　 ResNet-18
 

architecture
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　 　 图 5 所示为本文提出的 SA-ResNet 模型整体架构。
首先,输入经过最开始的卷积层,卷积核的大小为 7×7,
输出通道数为 64,卷积步长为 2,接下来经过整流线性单

元(rectified
 

linear
 

unit,ReLU)的激活函数,来增加特征空

间的维度,然后进入最大池化层,最大池化层的内核大小

为 3×3,步长为 2。 卷积层主要用于提取局部区域特征,
为了防止过拟合问题的出现,通常会添加池化层,目的是

减少所需的特征参数的数量,去除冗余信息,增强模型的

训练效率。 本文所设计的 SA-ResNet 模型在阶段 1、2、3
和 4 中的每个阶段都包含多个改进的残差块,我们从基

本残差块的输入添加额外的连接,在本文的室内定位模

型算法中,考虑到室内信号与环境的非线性特性以及非

高斯噪声特性,设计将粒子滤波与自注意力机制结合引

入到深度神经网络的残差模块中,来增强模型特征提取

能力,从而提升模型的定位性能。 首先,输入经过卷积运

算得到初始权重 Q、K 和 V。 然后,对粒子滤波中的粒子

进行初始化,设采样粒子数量为 N,为了确保粒子能覆盖

到每个区域,采用均匀分布的方法初始化粒子状态,粒子

的初始权重为:

ω( i)
0 = 1

N
(3)

然后用动态模型来对粒子进行预测,用观测模型来

更新,过程如下:
Xk = f(xk-1) + Qk (4)

Zk = h(xk) + qk (5)
式中:f(·) 和 h( ·) 分别代表状态转移模型和观测模

型;Qk 和 qk 分别表示过程噪声和观测噪声。 在这之后,
使用自注意力机制权重来调整粒子权重,然后将权重归

一化,最后,经过重采样,从现有的粒子集合中获得新的

粒子集合,具体实现过程如下:

ω􀮨( i)
k = ω( i)

k ·ω( i)
k-1·A(x( i)

k ,Xk,Zk) (6)

ω̂( i)
k =

ω̂( i)
k

∑ N

i = 1
ω̂( i)

k

(7)

式中: ω( i)
k 代表第 k 步第 i 个粒子权重; ω􀮨( i)

k 代表自注意

力机制更新后的粒子权重; ω̂( i)
k 代表归一化权重。

在本文设计的改进的残差块中,输入之后添加额外

的连接路径,两个分支各自经过卷积层体提取的局部特

征以及自注意力机制融合粒子滤波路径提供的全局特征

后,将两个分支的输出连接起来,然后将连接起来的特征

在求和操作之后馈入下一个特征重用残差块,通过以上

联合特征的形式,可以增强模型的特征表达能力,在残差

模块中,每个残差块有 2 个卷积层。 卷积核的大小为 3×
3,步长为 2。 第 1 阶段的输入通道数和输出通道数均为

64,从第 2 阶段开始的输出通道数增加 1 倍,一直到第 4
阶段的输出通道数成为 512。

图 5　 SA-ResNet 整体架构

Fig. 5　 SA-ResNet
 

architecture

　 　 本文利用基于 RSSI 的特征数据集对 SA-ResNet 模

型进行训练,保存定位误差最小的模型参数,用于室内预

测位置。 经过 4 个阶段的残差模块之后,再经过平均池

化层,平均池化层将输入的每个位置的矩形领域内的平

均值作为输出。 它可以通过降低张量的维数来降低计算

复杂度。 在最后一层中,采用全连接层将输入转换为位

置坐标,本文中的 SA-ResNet 室内定位模型的损失函数

采用欧氏距离来衡量。

2　 实验

2. 1　 实验环境与数据采集

　 　 本文选取信息工程学院的走廊作为实验数据采集

点,在选取的定位区域定位区域内,一共部署了 9 个

UWB 模块,图 6 所示为实验 UWB 基站部署的平面示意

图,五角星表示为 UWB 基站设置点,圆点为参考点设置,
实验中使用南京如歌电子科技有限公司的 PulsOn

 

440 作
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为 UWB 定位基站和目标模块。 在实验过程中,收集的所

有数据被用作训练集和测试集。 训练集和测试集的比例

设置为 7 ∶ 3,符合深度学习划分训练集和测试集的一般

经验。 表 1 为实验的具体参数设置,实验中,实验者手持

设备以均匀的速度沿着规定的轨迹移动,产生的轨迹以

及轨迹点上 RSSI 值如图 7 所示。

图 6　 实验环境以及轨迹示意图

Fig. 6　 Diagram
 

of
 

the
 

experimental
 

environment

表 1　 实验参数设置

Table
 

1　 Parameter
 

settings
参数 值

定位范围 27×32
 

m
发射功率 2. 0

 

W
接收功率 2. 1

 

W
信号中心频率 4. 3

 

GHz
AP 的数量 9
RP 的数量 116

图 7　 轨迹点以及 RSSI 值
Fig. 7　 Trajectory

 

points
 

and
 

RSSI
 

values

2. 2　 实验结果分析

　 　 为了验证本文提出的 SA-ResNet 模型的效率和优越

性,并且便于分析,对比实验分为机器学习算法和神经网

络算法两部分。 将本文提出的 SA-ResNet 定位算法与

ResNet[23] 、CNN[24] 、WKNN[25] 和 KNN[26] 算法进行比较,

得到的移动轨迹结果如图 8 所示,可以看出本文提出的

SA-ResNet 算法计算下的定位精度明显高于另外 4 种算

法,为了进行进一步对比,将 5 种定位算法的定位精度采

用更直方图来表示,图 9 所示为不同算法的定位准确率。
图 10 所示为实验的平均定位误差,可以看出,在一定训

练样本数量下, KNN 的平均定位误差范围在 2. 3 ~
2. 44

 

m,WKNN 的平均定位误差为 1. 85 ~ 2. 02
 

m,CNN
的平均定位误差为 1. 52 ~ 1. 70

 

m,ResNet 的平均定位误

差为 1. 10 ~ 1. 21
 

m,SA-ResNet 的平均定位误差为 0. 56 ~
0. 63

 

m。 计算可得,本文提出的 SA-ResNet 算法相较于

其他算法,相较于其他定位算法,平均定位误差减小了

42. 73% ~ 77. 05%, 图 11 所 示 为 误 差 累 积 分 布 函

数(CDF)图,由 CDF 曲线可以看出,在定位误差在 2
 

m
内,SA-ResNet 算法的误差累积概率可以达到 97%,显

然,SA-ResNet 和其他方法相比具有更好的定位性能。 不

同算法的均方根误差( RMSE)对比结果如表 2 所示。 可

以看出,在训练样本数量一定的情况下,基于 KNN 的室

内指纹定位算法的 RMSE 值为 2. 52
 

m,基于 WKNN 的室

内指纹定位算法的 RMSE 值为 2. 26
 

m,基于 CNN 的室内

指纹定位算法的 RMSE 值为 1. 79
 

m,基于 ResNet 的室内

指纹定位算法的 RMSE 值为 1. 32
 

m。 而基于本文提出的

SA-ResNet 室内指纹定位算法的 RMSE 值为 0. 88
 

m,较
于 KNN 算法,定位误差降低了 65. 08%,较于 WKNN 算
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图 8　 不同算法的定位结果对比

Fig. 8　 Comparison
 

of
 

positioning
 

results
 

of
 

different
 

algorithms

法,定位误差降低了 61. 06%,较于 CNN 算法,定位误差

降低了 50. 84%, 较于 ResNet 算法, 定位误差降低了

33. 33%,不过在定位时间方面,由于深度学习网络模型

相较于其他机器学习方法复杂度更高,因此时间会稍长

一些。
　 　 在深度学习中,学习率是一个重要的超参数,它决定

了目标函数是否能收敛到局部极小值,以及何时收敛到

极小值。 如图 12 所示,随着学习率的增加,模型的定位

精度先增加后降低。 在训练模型的过程中,可以发现,当

图 9　 不同方法定位准确率对比

Fig. 9　 Accuracy
 

of
 

different
 

methods

图 10　 平均定位误差

Fig. 10　 Average
 

positioning
 

error

图 11　 误差累积分布函数对比

Fig. 11　 The
 

CDF
 

of
 

positioning
 

error

学习率设置得太大时,梯度会在最小值附近大幅振荡。
而当学习率设置得太小时,收敛过程又会变得非常缓慢,
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这大大增加了训练时间,并且定位精度不是很令人满意。
因此,在经过实验对比分析后发现,本文将学习率设置为

0. 001 时定位模型效果最好。
表 2　 不同定位方法性能对比

Table
 

2　 Comparison
 

of
 

positioning
 

performance
of

 

different
 

algorithms
算法 时间 / s 均方根误差 / m 准确率 / %
KNN 0. 49 2. 52 54

WKNN 0. 66 2. 26 67
CNN 2. 43 1. 79 71

ResNet 2. 89 1. 32 84
SA-ResNet 4. 52 0. 88 96

图 12　 不同学习速率的定位精度对比

Fig. 12　 Positioning
 

accuracy
 

with
 

different
 

learning
 

rate

3　 结　 论

　 　 本文设计了一种 SA-ResNet 定位模型,用于在复杂

的室内环境中,深度提取信号的在室内传播特征,来实现

高精度的室内定位。 为了实现系统更高的自适应特征提

取能力,在 ResNet 网络的残差模块中引入了 SA 机制算

法,并且,该过程通过引入粒子滤波,更高效的处理了信

号中非高斯噪声,通过自注意力机制算法来动态的调整

粒子滤波的状态和权重更新,以此使得模型能够更好地

适应室内环境的动态变化。 最后,本文通过实验对比分

析,将提出的 SA-ResNet 定位算法模型和其他机器学习

以及深度学习定位算法进行比较,进一步地验证了该模

型在室内指纹定位中具有较高的准确性以及更好地鲁

棒性。
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