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摘　 要:针对现有基于
 

Retinex
 

理论的低照度图像增强方法存在的缺陷,如训练方式复杂、训练过程中光照分量和反射分量真值

的获取难题,以及对于光照条件极差情况下的图像增强,往往还伴随着放大暗处噪声以及丢失图像结构细节等影响图像质量的

问题。 本文提出了端到端的两阶段图像增强网络,结合 Retinex 理论与扩散模型对低照度图像进行增强。 第 1 阶段根据 Retinex
理论,重点关注提升低照度图像亮度,提出采用卷积神经网络估计三通道光照比图,与低照度图像点积得到初步的增强处理的

结果;单纯的 Retinex 方法基本没有考虑到在点亮图像过程中藏匿于暗处的退化,将低照度图像初步提亮后,第 2 阶段侧重于利

用扩散模型优秀的去噪能力对图像进行去噪修复,提出亮度感知扩散模型,将 HSI 颜色空间的亮度图作为条件,充分利用扩散

模型的优势来修复初步增强过程中的退化,并由颜色校正模块来减轻扩散模型逆过程中可能出现的全局劣化,得到增强后的图

像。 实验结果表明,在低照度数据集上与近年来其他 10 种优秀的算法相比较,训练测试得到的结果在峰值信噪比与图像感知

相似度指标分别为 27. 517 和 0. 087,均优于进行实验的其他方法,结构相似性为 0. 874,取得次优值。 提出的方法能很好地适

应未知噪声和光照的分布,在提升图像亮度、去除图像噪声以及防止图像细节模糊等方面取得了较好的效果,能够得到更自然

以及更高质量的图像增强效果。
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Abstract:To
 

address
 

the
 

flaws
 

of
 

existing
 

low-light
 

image
 

enhancement
 

methods
 

based
 

on
 

Retinex
 

theory,
 

such
 

as
 

complex
 

training
 

procedures,
 

difficulties
 

in
 

acquiring
 

the
 

ground
 

truths
 

of
 

illumination
 

and
 

reflection
 

components
 

during
 

training,
 

and
 

issues
 

affecting
 

image
 

quality
 

by
 

amplifying
 

dark-region
 

noise
 

and
 

losing
 

structural
 

details
 

when
 

enhancing
 

images
 

under
 

extremely
 

poor
 

lighting
 

conditions,
 

this
 

paper
 

proposes
 

an
 

end-to-end
 

two-stage
 

image
 

enhancement
 

network
 

that
 

combines
 

Retinex
 

theory
 

with
 

diffusion
 

models.
 

In
 

the
 

first
 

stage,
 

guided
 

by
 

Retinex
 

theory,
 

the
 

focus
 

is
 

on
 

improving
 

the
 

brightness
 

of
 

low-light
 

images.
 

A
 

convolutional
 

neural
 

network
 

(CNN)
 

is
 

adopted
 

to
 

estimate
 

the
 

three-channel
 

illumination
 

ratio
 

map,
 

which
 

is
 

then
 

dot-multiplied
 

with
 

the
 

low-light
 

image
 

to
 

obtain
 

the
 

initial
 

enhanced
 

result.
 

Pure
 

Retinex
 

methods
 

barely
 

consider
 

the
 

degradations
 

hidden
 

in
 

dark
 

areas
 

during
 

brightness
 

enhancement.
 

After
 

initially
 

brightening
 

the
 

low-light
 

image,
 

the
 

second
 

stage
 

focuses
 

on
 

denoising
 

and
 

restoring
 

the
 

image
 

using
 

the
 

excellent
 

denoising
 

capability
 

of
 

diffusion
 

models.
 

A
 

brightness-aware
 

diffusion
 

model
 

is
 

proposed,
 

which
 

takes
 

the
 

luminance
 

map
 

in
 

the
 

HSI
 

color
 

space
 

as
 

a
 

condition
 

to
 

fully
 

leverage
 

the
 

advantages
 

of
 

diffusion
 

models
 

in
 

repairing
 

degradations
 

from
 

the
 

initial
 

enhancement.
 

A
 

color
 

correction
 

module
 

is
 

also
 

introduced
 

to
 

mitigate
 

potential
 

global
 

degradation
 

during
 

the
 

inverse
 

process
 

of
 

the
 

diffusion
 

model,
 

yielding
 

the
 

final
 

enhanced
 

image.
 

Experimental
 

results
 

show
 

that
 

compared
 

with
 

10
 

other
 

state-of-the-art
 

algorithms
 

on
 

low-light
 

datasets,
 

the
 

proposed
 



　 第 9 期 结合 Retinex 与扩散模型的低照度图像增强方法 ·183　　 ·

method
 

achieves
 

a
 

peak
 

signal-to-noise
 

ratio
 

( PSNR)
 

of
 

27. 517
 

and
 

a
 

structural
 

similarity
 

index
 

( SSIM)
 

of
 

0. 874
 

( a
 

near-optimal
 

value),
 

along
 

with
 

an
 

image
 

perception
 

similarity
 

of
 

0. 087-all
 

outperforming
 

the
 

compared
 

methods.
 

The
 

proposed
 

method
 

can
 

well
 

adapt
 

to
 

the
 

distributions
 

of
 

unknown
 

noise
 

and
 

illumination,
 

achieving
 

excellent
 

performance
 

in
 

brightness
 

enhancement,
 

noise
 

removal,
 

and
 

detail
 

preservation,
 

and
 

generating
 

more
 

natural
 

and
 

high-quality
 

enhanced
 

images.
Keywords:image

 

enhancement;
 

low-light
 

images;
 

Retinex;
 

diffusion
 

model;
 

color
 

corrector

0　 引　 言

　 　 图像,作为计算机视觉领域不可或缺的信息载体,承
担着准确传达信息的重任。 然而在许多低光照的场景中

进行拍摄时,往往难以得到高质量的图像,视觉效果也大

打折扣。 低照度图像给人的视觉感知带来了挑战,同时

也阻碍着如目标检测、医学图像分割等一系列下游计算

机视觉任务发展。
现有传统的低照度图像增强方法在大体上可以分为

直方 图 均 衡 化 ( histogram
 

equalization
 

HE ) [1] 和 基 于

Retinex 理论[2] 的方法两大类。 直方图均衡化根据图像

灰度值概率密度分布计算得到累计直方图,然后进行区

间转换, 得到具有均匀灰度概率密度分布的图像。
Retinex 理论由来已久,该理论于 20 世纪 70 年代前后提

出,模拟人类视觉系统,此后大量对于 Retinex 理论的研

究不断发展,到现今 Retinex 理论主要应用于数字图像的

增强,使图像更接近人眼视觉效果。 基于原始的 Retinex
理论,研究人员将其改进后提出了多尺度 Retinex 算

法(multi
 

scale
 

retinex,
 

MSR),对不同尺度的 Retinex 输出

进行加权求和,最后进行修正来修复颜色失真,在多尺度

Retinex 算法的基础之上,多尺度 Retinex 彩色恢复算

法(multi
 

scale
 

Retinex
 

with
 

color
 

restoration,
 

MSRCR),采
用多尺度 Retinex 增强的同时保持图像细节,使用对数颜

色恢复因子校正图像颜色,一定程度保持图像的颜色恒

常性[3] 。
传统的 Retinex 方法容易引入严重的噪声并且扭曲

图像的颜色,导致增强的图像不符合真实曝光条件下的

图像场景。
深 度 学 习 近 年 来 迅 速 发 展, 卷 积 神 经 网

络(convolutional
 

neural
 

network,
 

CNN) [4] 也在低照度图

像增强中得到了广泛的应用。 深度学习在低照度图像增

强等图像增强的问题中的表现相较于传统的方法有更为

出色的表现,逐渐成为主流。
Fu 等[5] 提出了基于生成对抗网络的无监督低光图

像增强网络 LE-GAN,其中设计了光照感知注意力模块,
空间照明注意力和全局照明注意力两个分支更好地利用

图像上下文及全局信息,提升增强图像的视觉质量。 Guo
等[6] 提出将低照度图像增强任务以深度学习估计图像特

定曲线的方式进行,提高了图像增强的质量以及网络的

计算效率和泛化能力。
由于通过数据驱动的深度学习方法忽略了图像增强

过程中反射分量与照度分量的数学建模以及人类视觉上

的颜色感知。 因此也有研究者提出了结合 Retinex 与深

度学习的低照度图像增强方法。
结合 Retinex 的深度学习方法,Guo 等[7] 提出的低照

度图像增强方法 LIME 仅对光照图进行优化,其优化过

程首先计算 R、G、B 通道中的最大值作为初始光照图,再
利用结构先验优化光照图。 Wei 等[8] 提出用于低照度图

像增强的 Retinex 深度神经网络 Retinex-Net,模型包含分

解网络和光照调整网络,实现了更有效更高质量的低照

度图像增强。 Zhang 等[9] 提出的 KinD + +模型将图像分

解为光照图和反射图分别及进行优化,灵活调整光照强

度,得到更自然,细节更丰富的图像。 Ma 等[10] 自校准光

照学习框架 SCI,通过级联的方式学习光照,各阶段共享

权重以及通过自校准的方式对光照进行优化,收敛每个

阶段实验结果,提升了图像的视觉质量以及网络计算效

率。 Cai 等[11] 提出 Retinexformer 框架首先估计光照初步

提升图像亮度,并设计了光照引导的自注意力机制修复

初步提亮图像过程中产生的噪声、细节模糊等退化。 但

是同时处理两个分量容易导致图像细节的丢失,训练过

程也较为繁琐,更重要的是在监督学习中光照图和反射

图真值的获取本身也是一个难题。
扩散模型自提出以来,在图像生成领域取得了优异

的表现,扩散模型也陆续用于低照度图像增强。
Jiang 等[12] 提出了基于小波的扩散模型( DiffLL),将

图像小波域低频分量通过扩散模型进行增强,设计高频

恢复模块利用图像水平和垂直细节补充结构信息。 Yi
等[13]设计基于 Transformer 的网络分解图像为光照图与

反射图,通过双路径的扩散模型重建正常光照图以及修

复退化的反射图,使增强的图像细节更清晰,扩散模型带

来了更好的泛化性能。 Zhou 等[14] 提出金字塔扩散的方

法,通过逐步提高分辨率来使扩散模型拥有更快的速度,
并采用全局校正模块减轻逆采样过程的退化。 而这些方

法并没有很好利用到扩散模型的去噪的优势,并且训练

方式复杂,需要分模块分布训练再进行微调。
综上所述,传统的 HE 和基于 Retinex 的方法容易放

大噪声,造成细节模糊,而现有的基于 Retinex 的深度学

习方法由于光照图和反射图的真值图像难以获取,从而

导致网络训练困难,并且容易产生色偏、伪影等问题。
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基于以上问题,本文结合 Retinex 理论与扩散模型进

行低照度图像增强,通过端到端的训练提升图像生成的

质量。 首先,针对现有方法通过深度学习训练神经网络

直接估计光照图和反射图难以得到真值图像的问题,提
出利用正常光与低光照图像的比值训练光照比估计网

络,实现低光照图像的初步亮度提升,从而避免了两个分

量真值的获取。 其次,为了改善初步点亮图像的噪声退

化、细节模糊等问题,提出亮度感知扩散模型,进行图像

去噪修复,得到细节清晰的高质量图像,同时引入颜色校

正(color
 

corrector,
 

CC)模块[14] 缓解扩散过程逆采样造成

的色偏。
本文提出了 ReLight-Diff 框架,一种二阶段端到端的

低照度图像增强方法,第 1 阶段提升图像亮度,第 2 阶段

采用亮度感知扩散模型修复第 1 阶段产生的噪声退化以

及细节模糊的问题。 根据 Retinex 理论公式,训练网络估

计三通道光照比图像,避免了光照图和反射图真值难以

获取的问题,同时三通道图与低照度图像进行点积的过

程中提高了增强时 RGB 三通道非线性程度。 本文提出

的方法在低照度数据集( low-light
 

dataset,
 

LOL) [7] 上进

行实验,实验结果得到峰值信噪比( peak
 

signal-to-noise
 

ratio, PSNR )、 结 构 相 似 性 ( structural
 

similarity
 

index
 

measure,SSIM) 和图像感知相似度 ( learned
 

perceptual
 

image
 

patch
 

similarity,LPIPS)指标均得到优化。

1　 本文方法

　 　 针对现有基于 Retinex 理论的低照度图像增强方法

存在的缺陷,提出了端到端的两阶段图像增强网络,结合

Retinex 理论与扩散模型对低照度图像进行增强。
1. 1　 整体框架

　 　 针对现有基于 Retinex 理论的深度学习方法存在的

训练方式复杂,细节丢失,色偏等问题,本文提出结合

Retinex 理 论 与 扩 散 模 型 的 低 照 度 图 像 增 强 方

法(ReLight-Diff),该方法整体框架如图 1 所示,包括光照

比估计网络( L-RNet)以及亮度感知扩散模型( I-DM)两

个部分。

图 1　 ReLight-Diff 总框架结构

Fig. 1　 Network
 

architecture
 

of
 

ReLight-Diff

　 　 给定低照度图像 x low ,首先计算其 RGB 均值得到

HSI 颜色空间的亮度分量 I ,然后与低照度图像进行通道

拼接后输入光照比估计网络。 将正常光照与低光照图像

的比值作为网络训练过程的真值,在无需光照图和反射

图真值的条件下实现低光照图像的亮度提升。 其次将光

照比估计网络的输出与输入图像进行点积,得到初步亮

度提升的结果图像 x light 。 由于低照度图像本身存在退化

和噪声等,导致初步增强结果会出现噪声放大、细节模糊

等退化现象。 因此,本文将初步增强的图像 x light 与亮度

分量 I 作为扩散模型的条件输入,训练亮度感知扩散模

型,并生成细节清晰的去噪图像。 为了减轻逆过程的颜

色偏移,在扩散模型训练过程中接入 CC 模块。
1. 2　 光照比估计网络

　 　 原始的 Retinex 理论认为一幅彩色图像可以分解为

光照图和反射图,光照图反映了图像受光照的影响,而反

射图则是图像固有颜色的反映,其分解公式如下:
x = R·L (1)

式中: x、R 和 L 分别表示输入彩色图像、反射图和光照

图。 反射图包含了图像场景信息,在不同光照条件下保

持一致,光照图表示图像中场景在不同光照下的不同

状态。
根据 Retinex 理论基于颜色恒常性理论,理论上不同

光照条件下图像的反射图相同,正常光状态下的图像与

低照度图像之比(简称光照比) Lr ∈ RH×W×3,Lr 即正常光

图像与低照度图像之比,公式如下:
xhigh

x low

=
LH·RH

LL·RL
(2)

式中: xhigh ∈RH×W×3 和 x low ∈RH×W×3 分别表示正常光和低
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照度图像; RH 和 LH 分别表示正常光图像的反射图和光

照图; RL 和 LL 分别表示低照度图像的反射图和光照图。
根据以上理论推理过程,设计采用神经网络估计低

照度图像增强至正常光图像所需光照比,将低照度图像

x low 以及低照度图像在 HSI 颜 色 空 间 的 亮 度 分 量

I ∈ RH×W×3 作为输入,亮度分量计算公式如下:

I =
R(x low) + G(x low) + B(x low)

3
(3)

由于 xhigh 和 x low 已知,通过二者的比值训练网络

ε(·) 估计光照比,这样可以避免两个分量真值的获取。

因此,本文设计光照比估计网络,该网络由 4 个简单的卷

积层以及激活函数组成,网络训练损失 Lossir 表示如下:

Lossir =
xhigh

x low

- ε(x low,I) 1 (4)

为了提高光照图的非线性,获得更好的点亮效果,网
络估计输出三通道光照比图,图 2 所示为由光照比估计

网络得到的光照比图 Lr 的过程。 由此得到仅点亮的初

步结果图 x light 为:
x light = x low·Lr (5)

图 2　 光照比估计网络

Fig. 2　 The
 

network
 

of
 

estimating
 

illumination-rate
 

image

　 　 低照度图像理论上拥有与正常光图像一致的反射

图,由于光照条件不好的情况下图像的成像设备会不可

避免地引入噪声和伪影等。 可视化结果如图 3 所示,图
3(a)是低照度输入图像,图 3(b)是网络估计得到的光照

比图像,图 3(c)是由光照比图得到的初步增强图像。 由

图 3 可以看出,得到光照比图时暗区图像噪声也会被分

解为光照比图的一部分,容易导致图像增强过程中较严

重的噪声干扰。 扩散模型在图像生成时出色的去噪和生

成能力,采用扩散模型重建图像,能充分发挥扩散模型的

去噪生成能力。

图 3　 初步增强过程的图像可视化结果

Fig. 3　 Visualization
 

results
 

of
 

the
 

initial
 

enhancement
 

process

1. 3　 亮度感知扩散模型

　 　 亮度图像中的亮度以及结构信息对于低照度图像增

强过程中的去噪修复非常重要本文的亮度感知扩散模型

输入初步增强的图像以及 HSI 颜色空间的亮度分量 I 作

为扩散模型的条件输入,亮度信息能更好地为扩散模型

的去噪生成过程提供亮度以及结构信息,使扩散修复的

图像更加自然,细节更清晰。
初始 的 扩 散 模 型 ( denoising

 

diffusion
 

probabilistic
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models,DDPM) [15] 将图像生成描述为正向加噪过程与逆

向去噪过程两个步骤。 正向过程中,给定需要生成的正

常光图像 x0 样本分布 x0 ~ p(x0) ,通过 T 步的马尔可夫

链逐步添加高斯噪声,使样本图像最终呈现为一幅遵循

高斯分布的纯噪声图。 加噪过程如下:
q(x t | x t -1) = x t; α t x t -1, (1 - α t) I( ) (6)

式中: x t 与 x t -1 分别是时间步为 t 和 t - 1 对 x0 加噪的图

像; α t = 1 - β t,β t ∈ (0,1) ,并且 α t -1 ≥α t,α
-
t = 􀰒 t

i
α i。

根据公式推理,样本图像添加噪声 􀆠 得到纯噪声图像的

过程简化为:

x t = α- t x0 + 1 - α- t 􀆠 (7)
逆向去噪过程是逆转正向过程中的加噪过程,学习

将纯噪声图像样本还原为原始清晰图像样本。 在训练过

程中,真值图像正向过程添加噪声,逆向过程通过网络估

计正向过程添加至图像的噪声。 从噪声样本 xT 开始逐

步去噪,但由于真实但后验分布 p( x̂ t -1 | x̂ t) 难以直接计

算,通过变分推断计算得到近似概率分布 q( x̂ t -1 | x̂ t, x̂0)
是可行的,至此逆向去噪过程转化为网络可学习的过程。
由当前状态下近似分布表达式如下:

q( x̂ t -1 | x̂ t,x̂0) = ( x̂ t -1;μ􀮨t( x̂ t,x̂0),β􀮨tI) (8)

式中: β􀮨t 为方差项通常为固定值或简单的时间相关函数;

μ􀮨t(·) 为均值,取决于当前 x̂ t 和 x̂0;而x̂ t、x̂ t -1、x̂0 分别表示

第 t、t - 1 以及逆向过程中由式(7)推理得到的近似正常

光图。 x̂0 的计算过程如下:

x̂0 = 1

α- t

x̂ t + 1 - α- t 􀆠θ( x̂ t,x light, I, t) (9)

为了在不影响图像生成质量的情况下减少生成图像

采样的步数,加速图像的生成速度,本文方法采用对

DDPM 逆向采样生成过程改进后的降噪扩散隐式模

型(denoising
 

diffusion
 

implicit
 

models,DDIM) [16] ,该方法

将通过构造新的分布,得到一个跳出马尔可夫链的采样

过程。 重新建模并得到逆向采样过程表达式如下:

q( x̂ t -1 | x̂ t,x̂0) = N( x̂ t -1;k t x̂ t + λ t x̂0,σ2
t I) (10)

x̂ t -1 = k t x̂ t + λ t x̂0 + σ t􀆠θ( x̂ t,x light, I,t) (11)

式中: 􀆠θ x̂ t,x light, I,t( ) 表示由网络估计加噪过程在第 t
步的噪声,后写作 􀆠θ。 整个逆向去噪过程将转变为深度

学习网络拟合均值计算过程中所需噪声 􀆠 的过程,与

DDPM 中的逆过程分布保持一致,由生成 x̂ t -1 的逆采样

公式中逆向推导可以分别得到 k t 和 λ t ,其方差 σ t 参数

通常由人工定义为:

k t =
1 - α- t - σ2

t

1 - α- t

(12)

λ t = α- t -1 -
α- t · 1 - α- t - σ2

t

1 - α- t

(13)

σ2
t = η·

(1 - α t) 1 - α- t -1( )

1 - α- t

(14)

当 η = 1 时,逆向采样过程基本与 DDPM 相同;而当

η = 0 时,采样过程中没有引入随机噪声,生成图像的过

程是一个更具确定性的过程,即 DDIM。 当前状态下 x̂ t

的分布已知, η = 0,将 k t 和 λ t 代入式(11)中得到:

x̂ t -1 = α- t -1

x̂ t - 1 - α- t 􀆠θ

α- t
( ) + 1 - α- t -1 􀆠θ (15)

DDIM 采用确定性的采样过程,减少了生成的随机

性,即模型在相同的初始条件下会得到相同的输出,其最

终的采样过程如式(15) 所示。 扩散模型训练的损失函

数如下:
Lossdiff = ‖􀆠 - 􀆠θ‖1 (16)

1. 4　 颜色校正模块

　 　 在扩散模型进行逆向图像生成过程中,采用 CC 模

块在不影响图像生成质量的同时减轻扩散模型忽视的

RGB 颜色偏移。 扩散模型估计的噪声 􀆠θ 与实际上需要

的噪声 􀆠 存在微小的误差,而当时间步 t 较大的时候, 􀆠
前面的系数也相应的较大,放大了误差,导致 RGB 偏移

的现象,采用颜色校正模块对逆向扩散过程产生的 RGB
偏移进行修复。

颜色校正模块如图 4 所示,模块中计算输入噪声嵌

入,计算输入图像的条件特征并生成对应的缩放和偏移

参数,并将输入图像经过卷积操作后进行相应的仿射变

换和缩放平移操作。 进行 3 次以上操作后,最终返回校

正后的输出。 损失计算过程如下:

Losscc = ‖x̂0 - x0‖1 (17)
训练过程中,损失函数均采用 L1 损失,最终网络训

练过程中的总损失函数如下:
Loss = Lossdiff + Losscc + Lossir (18)
完整的模型训练过程如算法 1 所示,在亮度提升阶

段,输入低照度图像 x low ,并计算得到亮度分量,通道拼

接后一同输入光照比估计模块,得到光照比图与低照度

图像进行点积得到初步的增强图像 x light 。 在退化修复阶

段,图像 x light 与亮度分量 I 作为扩散模型的条件,并随机

采样得到时间步 t ,通过前向过程的加噪公式,得到由正

常光图像经过 t 指时间步加噪后的图像 x t ,由 Unet 网络

估计前向过程中添加的噪声,并得到去噪后的结果图像。
计算逆向过程的系数,当大于阈值时,通过颜色校正模块

得到增强的图像,本文实验阈值设置为 γ = 1。
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图 4　 颜色校模块结构

Fig. 4　 The
 

structure
 

of
 

color
 

corrector
 

module

算法 1.
 

训练过程

1:
 

　 输入:低照度 / 正常光图像对( xlow, x0 ),噪声时刻表 α,校正阈
值 γ。

2:
 

　 重复
3:

 

　 　 采样图像对
 

(xlow, x0 )
4:

 

　 　 采样
 

t~Uniform(1, … ,T)
5:

 

　 　 采样
 

􀆠~ (0,I)

6:
 

　 　 I =
R(xlow) +G(xlow) +B(xlow)

3
7:

 

　 　 xlight = xlow·ε(xlow,I)

8:
 

　 　 xt = α- t x0 + 1-α- t 􀆠
9:

 

　 　 采用梯度下降法
▽θ{􀆠-􀆠θ(xt, xlight,I,t) 1 +Lossir}

10:
 

　 　 if
 

1-α- t

α- t

>γ
 

then

11:
  

　 　 　 梯度下降法

▽θ‖η( x̂0 ) -x0 ‖1

12:　 end
 

if
13:　 直至收敛

　 　 测试过程的算法 2 所示。 计算低照度图 HSI 颜色空

间的亮度分量 I 低照度图像作为输入,经由光照比图估

计网络得到光照比图,计算得到初步增强结果,再将其作

为扩散模型的条件输入进行退化修复。 由网络估计得到

噪声 􀆠θ ,并进行由逆向采样计算得到增强的图像。 同

时,当系数计算大于阈值 γ 时使用颜色校正网络对生成

过程进行颜色校正,以减轻图像的颜色偏移。

2　 实验结果与分析

2. 1　 实验设置

1)数据集

本文方法在 LOLv1 数据集上进行训练和评估,其中

包含训练集 485 对配对的低照度与正常光图像以及 15
对配对的测试集图像,分辨率为 400×600,均为真实场景

中不同曝光条件下拍摄的图像。 在进行比较的方法中,
采用其在 LOL 数据集上预训练的模型参数。

2)模型训练设置

扩散模型借鉴了 Saharia 等[17] 提出的超分辨率网络

　 　 　算法 2
 

测试过程

1:　 输入:
 

低照度图像
 

xlow,噪声时刻表 α,校正阈值 γ,隐式采样间

隔 S
2:　 采样

 

x̂T ~N(0,I)

3:　 I =
R(xlow) +G(xlow) +B(xlow)

3
4:　 xlight = xlow ε(xlow,I)
5:　 for

 

i
 

=
 

T / S:0

6:　 x̂t-1 ← α- t-1
x̂t- 1-α- t 􀆠θ

α- t
( ) + 1-α- t-1 􀆠θ

7:
 

　 if
 

1-α- t

α- t

>γ
 

then

8:
 

　 　 x̂0 ←η( x̂0 )
9:　 　

 

end
 

if
10:

 

end
 

for
11:

 

返回
 

x̂0

SR3 中条件扩散模型的思想,使用 PyTorch 框架实现,在
搭载两块 NIVDIA

 

RTX2080Ti
 

GPU 的计算机上进行训

练。 实验过程中,batch
 

size 设置为 12,patch
 

size 设置为

160×160,训练过程共迭代 100 万次,使用 Adam 优化器

对网络参数进行优化,初始学习率设置为 3×10-5。 扩散

模型时间步 T 取值 1
 

000,训练过程中 β 由 0. 000
 

1 线性

增加到 0. 02,损失函数均采用 L1 损失。 逆过程采用

DDIM 采样方式,逆向采样迭代得到生成结果。 本文所

提模型计算量为 646. 60
 

GFLOPs,参数量为 55. 48×106。
3)评价指标

对于模型增强低照度图像质量的评估,采用了 PSNR
测量增强图像与真值图像之间的平均像素相似性,SSIM
对图像结构相似性进行测量,LPIPS 测量图像对的感知

差异。
2. 2　 实验结果

　 　 将本文的方法与多种先进的方法进行比较,表 1 为

不同低照度图像增强方法的定量结果指标对比,可以看

到 PSNR 与 LPIPS 两个指标均优于其他方法。 图 5 所示

为 LOLv1 数据集上评估的可视化结果,并且对一些细节

部分及进行了放大,便于视觉评估。 如图 5( b)和( c)所
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示,EnlightenGAN 和 Zero-DCE 在亮度提升的方面比较

差,而且没有很好地处理暗区的噪声,导致增强结果仍然

较为昏暗模糊。 由图 5 ( d) 和( e) 可知, SNR-Aware 和

URetinex-Net 虽然有更好的亮度提升效果但边缘模糊,同
时与真值图像对比能够看出比较明显的颜色偏差。 由图

5(f)和( h)可知,LLFlow 和 PyDiff 方法的增强结果在阴

影区域的结构纹理模糊,并且也存在较为明显的颜色偏

移现象。 由图 5( g)可知,Retinexformer 方法同样有颜色

偏移现象并且噪声的存在模糊了图像细节。

图 5　 LOL 数据集上不同算法进行低照度图像增强的可视化结果对比

Fig. 5　 Comparison
 

of
 

visualization
 

results
 

of
 

different
 

algorithms
 

for
 

low-light
 

image
 

enhancement
 

on
 

LOL
 

dataset

　 　 与许多近年来优秀低照度图像相比,由表 1 可以看

出,本文所提出的方法增强图像在指标上获得了较好的

表现。 所有方法都没有在 3 个指标上均优于其他方

法,而且可以看到所提出的方法同时在 PSNR 与 LPIPS
两个指标优于其他方法。 实验结果对比表明本文的方

法能够达到更为自然效果,并且更好地保留了图像的

细节特征。
2. 3　 消融实验

　 　 本文在有无颜色校正模块和亮度图条件的情况下进

行了消融实验,以研究网络中颜色校正模块以及亮度图

条件对图像增强结果的影响,表 2 是实验结果的定量分

析,可以看出颜色校正模块和亮度分量对 PSNR、SSIM 以

及 LPIPS 三个定量指标均有一定提升作用。

表 1　 不同模型在 LOLv1 数据集结果的定量比较

Table
 

1　 Quantitative
 

comparisons
 

of
 

different
methods

 

on
 

LOLv1
模型 PSNR↑ SSIM↑ LPIPS↓

Zero-DCE[6] 14. 861 0. 562 0. 335
LIME[7] 16. 760 0. 560 0. 350

RetinexNet[8] 16. 770 0. 462 0. 474
EnlightenGAN[18] 17. 483 0. 652 0. 335

KinD[19] 20. 870 0. 799 0. 207
KinD++[9] 21. 300 0. 820 0. 175

URetinex-Net[20] 21. 592 0. 718 0. 290
LLFlow[21] 25. 132 0. 872 0. 117

LLFormer[22] 25. 758 0. 823 0. 167
DiffLL[12] 26. 336 0. 845 0. 217

SNR-Aware[23] 26. 811 0. 853 0. 147
PyDiff[14] 27. 090 0. 930 0. 100

Retinexformer[11] 27. 168 0. 850 0. 125
ReIight-Diff(本文) 27. 517 0. 874 0. 087
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表 2　 在 LOLv1 数据集上的消融实验

Table
 

2　 Ablation
 

experimental
 

result
模块 PSNR↑ SSIM↑ LPIPS↓

w / o
 

HSI 亮度图 26. 203 0. 853 0. 103
w / o

 

颜色校正 26. 964 0. 867 0. 096
ReIight-Diff(本文) 27. 517 0. 874 0. 087

　 　 图 6 所示为消融实验的可视化结果对比,从人类视

觉的主观观察来看,可以发现无亮度图作为条件产生的

结果会产生明显的伪影、色差以及图像结构模糊等现象。
而没有颜色校正模块的增强结果会导致颜色不够鲜艳,
色偏的现象依旧存在。

图 6　 LOL 数据集上有无颜色校正的可视化结果对比

Fig. 6　 Comparison
 

of
 

visualization
 

results
 

with
 

and
 

without
 

color
 

correction
 

on
 

the
 

LOL
 

dataset

3　 结　 论

　 　 本文围绕低照度图像增强方法的讨论,针对许多低

照度图像增强方法不能保证图像亮度和质量的同时提升

的关键问题,提出了 Retinex 理论应用于图像增强的深度

学习方法。 采用了三通道光照比图的概念,提出了端到

端的两阶段图像增强网络,在第 1 阶段重点关注了低照

度图像的亮度提升,获得将低照度图像初步提亮的结果,
在第 2 阶段侧重于利用扩散模型优秀的去噪能力对图像

进行去噪修复。 利用 Retinex 理论,采用卷积神经网络估

计三通道光照比图,摆脱了获取 Retinex 分解需要光照图

和反射图真值的不适定问题。 扩散模型的采用保证了增

强图像的质量,将 HSI 颜色空间的亮度图作为条件,使网

络能够更加关注图像结构细节,同时在扩散过程中进行

颜色校正来修复增强过程中容易出现的 RGB 偏移,使两

阶段增强网络在提升图像亮度的同时保障了图像的清晰

度以及优化了细节呈现。 未来可进一步探索如何不受限

于低照度与正常照度配对数据集,以及减小网络结构的

复杂程度两个方面,摆脱配对数据的限制,并且使低照度

图像增强网络更适合在资源受限的边缘设备或实时系统

中部署。
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