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Improved YOLOvV10 algorithm for driver fatigue detection

Yin Xupeng'®>  Zhao Xinggiang'>  Wang Xiongfei' Ruan Qi'  Zhang Wan'?
(1. School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, China;
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Abstract : Fatigue driving detection is critical for traffic safety. Real-time monitoring and accurate identification of a driver’ s fatigue
level, coupled with an early warning system, can significantly reduce the risk of accidents caused by fatigue. Addressing the challenges
of small micro-expression targets and complex background environments in current driving fatigue detection, this paper proposes an
improved driving fatigue detection model—YOLOv10-GMF. The model incorporates an enhanced global grouped coordinate attention
(GGCA) module, which improves feature representation by weighting feature maps with global information and generating attention
maps, thereby enhancing the model’ s ability to capture micro-expression features under fatigue conditions. Additionally, a multi-
dimension fusion attention ( MDFA) module is integrated, which combines multi-scale dilated convolutions with spatial and channel
attention mechanisms in parallel to strengthen the model” s recognition ability for image features in complex driving environments. To
further optimize the training process, a feedback-driven loss function (FDL) is introduced, effectively accelerating model convergence
and improving prediction accuracy. Ablation experiments demonstrate that the YOLOv10-GMF model achieves a detection accuracy of
98.1%, a 14. 5% improvement over YOLOv10, with a detection speed of 64.3 fps. Through real vehicle embedded deployment tests,
the average fatigue detection process takes 19. 0 ms, and the model fully meets the real-time monitoring needs for fatigue driving.
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Fig. 7 Embedded deployment
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Table 1 Different model detection performance

TR mAP/ % Precision/ % Recall/ % Parameters/ ( X 106) 53 &/ GFLOPs KIIJ‘]‘JEE/fps
SSD 76.0 68.7 63.3 4.9 14.1 57.1
Faster RCNN 79.4 73.4 71.6 16. 6 48.0 10.3
Mask RCNN 82.3 79.0 76.5 13.2 36.6 9.9
YOLOv7 81.6 78.5 74.8 7.0 18.8 51.3
YOLOv8 83. 1 80.8 79.9 5.3 17.2 65.3
YOLOv10 83.6 81.2 80.8 6.7 20.0 66. 7
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Table 2 Impact of GGCA module on performance

Bk mAP/% o N 3 32/ fps
YOLOv10 83.6 66.7
YOLOv10+CA 91.2 65.8
YOLOv10+GGCA 94.0 65.2

FHEETF IR YOLOvVIO 2% 7 h GGCA Bid 5 | 15i A
) mAP $2 55 10. 4%, AH LT YOLOvIO+CA 5%, mAP
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Table 3 Impact of MDFA module on performance

L7 mAP/ % Heri S 2/ fps
YOLOv10 83.6 66.7
YOLOvI0+CBAM 90.2 65.2
YOLOv10+MDFA 9.4 65.2
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Fig. 8 Loss curve
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Table 4 The performance comparison of models

trained with different loss functions (%)
EEE e mAP Precision Recall
GloU 76.2 79.7 73.1
DIoU 81.6 80.2 79.5
CloU 83.4 80. 1 80. 1
FDL 84.3 83.8 80.9
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Table 5 Model detection performance before and after improvement

A mAP/% Precision/% Recall/% o I 5/ fps
YOLOv10 83.6 80.9 80.0 66.7
YOLOv10+GGCA 94.0 84.6 85. 1 65.2
YOLOv10+MDFA 94. 4 85.2 86.3 65.2
YOLOv10+GGCA+MDFA 97.9 89.9 88.7 63.8
YOLOv10+GGCA+MDFA+FDL( GMF) 98. 1 92.6 90. 4 64.3
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Fig. 9  Visualization results of model before and after improvement
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Table 6 Comparison of comprehensive detection

performance of various models and algorithms

R B LAY mAP/ % R0 B/ fps
SCHR[3] ECG GA-SVM 87.2 18.2
SCHR[9] SSD 82.2 23.6
SCHR[10] 3DCNN 75.6 30.2
SCHR[11] LBF 93.9 15.2
SCHR[17] Btk YOLOVS 92.3 39.4

AL YOLOv10-GMF 98. 1 64.3
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Table 7 Sample testing effects under various

ambient lighting conditions
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Fig. 10 Practical driving experiment
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Table 8 Time consuming for each stage
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