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摘　 要:疲劳驾驶的检测对于确保交通安全极为重要,实时监测并识别驾驶员的疲劳程度,配合预警机制,可有效降低因疲劳驾

驶导致的事故风险。 针对目前疲劳驾驶检测过程中驾驶员表情特征目标小、背景环境复杂的问题,提出了一种基于 YOLOv10
改进的疲劳驾驶检测模型—YOLOv10-GMF。 该模型引入全局分组坐标注意力模块(global

 

grouped
 

coordinate
 

attention,
 

GGCA),
通过分组后的全局信息与局部特征处理,生成加权注意力图,实现信息压缩与特征表达,提升模型对疲劳状态下微小神态特征

的捕捉能力。 同时添加多尺度空洞融合模块( multi-dimension
 

fusion
 

attention,
 

MDFA),利用多尺度空洞卷积,并行融合空间和

通道注意力机制,有效加强模型在复杂驾驶环境中对图像特征的识别能力。 此外,为进一步优化训练过程,还设计了反馈信息

驱动损失函数(feedback-driven
 

loss,
 

FDL),有效加速模型的收敛过程,提高模型的检测效率。 经过对比与消融实验,改进后的

YOLOv10-GMF 模型的检测平均精度均值(mAP)可达到 98. 1%,较 YOLOv10 提升了 14. 5%,且检测速度为 64. 3
 

fps。 通过实际

车载嵌入式部署测试,整个疲劳检测过程总耗时 19. 0
 

ms,完全满足驾驶过程中对疲劳状态进行实时监测的需求。
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Abstract:Fatigue
 

driving
 

detection
 

is
 

critical
 

for
 

traffic
 

safety.
 

Real-time
 

monitoring
 

and
 

accurate
 

identification
 

of
 

a
 

driver’ s
 

fatigue
 

level,
 

coupled
 

with
 

an
 

early
 

warning
 

system,
 

can
 

significantly
 

reduce
 

the
 

risk
 

of
 

accidents
 

caused
 

by
 

fatigue.
 

Addressing
 

the
 

challenges
 

of
 

small
 

micro-expression
 

targets
 

and
 

complex
 

background
 

environments
 

in
 

current
 

driving
 

fatigue
 

detection,
 

this
 

paper
 

proposes
 

an
 

improved
 

driving
 

fatigue
 

detection
 

model—YOLOv10-GMF.
 

The
 

model
 

incorporates
 

an
 

enhanced
 

global
 

grouped
 

coordinate
 

attention
 

(GGCA)
 

module,
 

which
 

improves
 

feature
 

representation
 

by
 

weighting
 

feature
 

maps
 

with
 

global
 

information
 

and
 

generating
 

attention
 

maps,
 

thereby
 

enhancing
 

the
 

model’ s
 

ability
 

to
 

capture
 

micro-expression
 

features
 

under
 

fatigue
 

conditions.
 

Additionally,
 

a
 

multi-
dimension

 

fusion
 

attention
 

( MDFA)
 

module
 

is
 

integrated,
 

which
 

combines
 

multi-scale
 

dilated
 

convolutions
 

with
 

spatial
 

and
 

channel
 

attention
 

mechanisms
 

in
 

parallel
 

to
 

strengthen
 

the
 

model’ s
 

recognition
 

ability
 

for
 

image
 

features
 

in
 

complex
 

driving
 

environments.
 

To
 

further
 

optimize
 

the
 

training
 

process,
 

a
 

feedback-driven
 

loss
 

function
 

( FDL)
 

is
 

introduced,
 

effectively
 

accelerating
 

model
 

convergence
 

and
 

improving
 

prediction
 

accuracy.
 

Ablation
 

experiments
 

demonstrate
 

that
 

the
 

YOLOv10-GMF
 

model
 

achieves
 

a
 

detection
 

accuracy
 

of
 

98. 1%,
 

a
 

14. 5%
 

improvement
 

over
 

YOLOv10,
 

with
 

a
 

detection
 

speed
 

of
 

64. 3
 

fps.
 

Through
 

real
 

vehicle
 

embedded
 

deployment
 

tests,
 

the
 

average
 

fatigue
 

detection
 

process
 

takes
 

19. 0
 

ms,
 

and
 

the
 

model
 

fully
 

meets
 

the
 

real-time
 

monitoring
 

needs
 

for
 

fatigue
 

driving.
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0　 引　 言

　 　 2021 年世界卫生组织调查发现,每年约 130 万人死

于道路交通事故。 到 2024 年,交通事故已成为全球第二

大伤亡原因。 而疲劳驾驶是其主要诱因之一。 预防驾驶

疲劳对于保障道路安全至关重要。 如何有效识别和评估

疲劳驾驶状态从而及时预警,已成为重要课题。
早期研究者尝试借助行车数据来判断驾驶员的疲劳

状态。 Alkinani 等[1] 通过监测车辆行驶轨迹和方向盘压

力数据来检测驾驶员的疲劳情况,但这类方法易受驾驶

员习惯和环境因素干扰,准确率较低。
另一类方法基于生理参数,通过专用的信号采集仪

接收前额、心脏或肌肉部位电极贴片发出的信号[2] ,并传

输至检测系统进行实时分析。 Chui 等[3] 提出的一种基

于支持向量机(SVM)算法的脑电信号处理方法,可以将

检测延迟降低到 0. 55
 

ms 以内。 但该类方法在实际操作

时需要借助外部昂贵的信号采集设备,设备的一端必须

与人体皮肤相连,会制约驾驶员的驾驶动作,且会占用部

分车内空间,无形中加剧了事故的发生。
随着计算机视觉技术的发展,研究人员开始利用视

觉方法检测疲劳驾驶。 较之前两种方法,视觉方法具有

成本低、非侵入的特点,对驾驶员的正常驾驶过程没有干

扰,具有极大优势。 根据处理流程的不同,视觉检测方法

可分为一阶段和二阶段两类。 一阶段算法如 SSD[4] 、
YOLO[5] ,而 二 阶 段 算 法 则 主 要 包 括 卷 积 神 经 网

络(CNN) [6-8] 等方法。 胡习之等[9] 通过优化 SSD 算法和

连续自适应均值漂移跟踪算法来检测人脸区域,但其算

法计算量庞大,无法进行嵌入式部署。 秦康等[10] 针对驾

驶员相似背景下的细微动作的识别过程,结合知识蒸馏

方法,提出了一种基于 X3D 卷积神经网络 X3D-M-GC-
AE,可以适配车载硬件,但其检测精度仍存在较大提升

空间。 闫保中等[11] 基于改进的局部二值特征法计算人

眼闭合程度和视线方向判断驾驶员注意力是否分散,平
均检测精度达到了 93. 9%,但需要大量的数据进行训练,
耗时较大且成本高昂。 Ansari 等[12] 提出一种基于线性修

正单元层的双向长短期记忆(LSTM)疲劳检测神经网络,
平均检测精度较高,但处理过程不够自动化,过程较为繁

杂,不利于移动终端的移植。
近几年,YOLO 系列算法[13-16] 凭借其高效的实时检

测能力,已成为视觉检测领域的研究热点。 Zhou 等[17] 利

用改进的 YOLOv8 网络将疲劳检测精度提高到 92. 3%,
检测帧率提高到 39. 4

 

fps,但仍存在参数量较大、面对复

杂样本时泛化能力不足的问题,检测效率还可以进一步

提升。 YOLOv10 作为该系列中的新版本,在驾驶疲劳检

测任务中,能够兼顾检测精度与速度,精准识别并锁定驾

驶员的眼部、嘴部等关键面部特征,以便依据疲劳驾驶判

定指标进一步做出准确判断。
在如何选择更加合理的疲劳驾驶判定指标方面,国

内外研究者开展了大量相关研究。 1994 年,美国联邦公

路管理局和美国国家公路交通安全管理局通过模拟真实

驾驶环境,对 9 种疲劳检测指标进行了比较,发现驾驶员

的眼睛闭合程度与疲劳状态的关系最为密切。 基于此,
卡内基梅隆大学提出了“ PERCLOS” ( percentage

 

of
 

eyelid
 

closure
 

over
 

time)指标,即单位时间眼睛闭合所占比例,
该指标被广泛应用于衡量驾驶者是否疲劳。 近年来,我
国也推出了多个疲劳驾驶检测系统的商用产品。 例如,
比亚迪的 BAWS 视觉系统通过关注驾驶员的眼球运动,
形成了眼球运动重复率指标;虹软科技则将目光方向与

聚焦点位置量化为目光移动指标;清研微视研发的疲劳

驾驶视觉预警系统通过判断驾驶员的头部摆动角度与频

率指标,实现对疲劳驾驶的实时预警。 这些指标在疲劳

驾驶状态的识别和判定方面已显示出较高的准确性,为
后续研究提供了有益的参考。 然而,需要指出的是,单一

指标用于判断疲劳状态可能存在偶然性问题。 因此,本
文尝试引入了眼部与嘴部多指标综合分析的方法,以更

全面、准确地判断驾驶员的疲劳状态。
针对实际行车过程中驾驶员面部微表情特征目标小

且背景环境复杂的问题,本文提出了一种基于 YOLOv10
改进的疲劳检测算法。 引入全局分组坐标注意力模

块(global
 

grouped
 

coordinate
 

attention,
 

GGCA),利用分组

特征图在空间维度上的全局信息经压缩后生成注意力

图。 嵌入多尺度空洞融合模块 ( multi-dimension
 

fusion
 

attention,
 

MDFA),提高模型对各种小尺度特征的适应性

和识别能力。 最后,优化原始模型的损失函数为反馈信

息驱动损失函数( feedback-driven
 

loss,
 

FDL),并进行嵌

入式部署和测试,通过实验测试结果证明改进算法成功

提升模型精度及检测速度,适合应用于实时疲劳驾驶检

测场景。

1　 改进 YOLOv10 算法

1. 1　 YOLOv10 算法

　 　 YOLOv10 采用轻量级分类头、空间通道解耦下采样

和排序引导块设计,以减少明显的计算冗余。 传统的

YOLO 模型使用非极大值抑制( NMS) 来过滤重叠的预

测,这增加了推理延迟。 而 YOLOv10 引入了一种双重分

配策略,消除了 NMS 的需求,从而实现更快、更高效的目

标检测。 其网络结构由 4 个主要模块组成,即输入预处

理层、主干网络、颈部网络和输出端。 输入预处理层负责

处理输入的图片数据,包括数据增强与归一化等预处理

操作。 主干网络部分采用改进的 CSPDarknet 网络结构,
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以进一步增强特征提取能力。 颈部网络部分使用改进的

FPN+PAN 架构,以提升多尺度目标检测的效果。 最后,
输出端集成了多个检测头,采用 Anchor-Free 设计,实现

更精准的目标定位和分类。
1. 2　 改进的 YOLOv10 算法

　 　 本文在 YOLOv10 算法基础上作了 3 个方面改进:首
先,在 YOLOv10 的 Backbone 部分嵌入创新设计的全局

分组坐标注意力机制模块 GGCA,解决单一的注意力机

制[18] 在捕捉特征信息时有局限性,不能同时利用多维度

的全局信息的问题;然后,针对当前广泛使用并行通道空

间注意力模块[19] ( convolutional
 

block
 

attention
 

module,
 

CBAM),在疲劳驾驶检测的应用中存在部分特征的过拟

合问题且在不同尺度图像特征捕捉方面存在局限性[20] ,
本文在 CBAM 的基础上进行改进,提出了多尺度空洞融

合模块 MDFA;最后,本文将 YOLOv10 的损失函数替换

为 FDL 损失,在训练过程中动态调节模型的优化方向,
帮助模型在不同阶段集中关注最关键特征,从而优化模

型训练过程并最终提高检测精度。 改进后的模型整体的

算法框架如图 1 所示。

图 1　 改进 YOLOv10-GMF 算法结构

Fig. 1　 Improved
 

YOLOv10-GMF
 

algorithm
 

structure

　 　 1)GGCA 模块结构与机理分析

GGCA 模块旨在利用特征图在空间维度上的全局信

息来生成注意力图,并通过这些注意力图对输入特征图

进行加权,增强特征表达能力。 该模块的具体结构如

图 2 所示。
设置训练过程中每次迭代中用于计算梯度和更新模

型参数的样本特征图数量为 B 。 特征图的高度和宽度分

别为 H 和 W ,最初通过 C 个通道输入网络。 即对于输入

特征图 X ,可表示为:
X ∈ RB×C×H×W (1)

首先,按照通道数将输入特征图分为 G 组,每组包含

C / G 个通道。 旨在将样本图中的高维特征划分为多个小

维度组,以保留局部通道信息。 分组后的特征图表示为:

X ∈ R
B×G× C

G ×H×W
(2)

这一预先分组操作使得每组特征可以在后续分别进

行空间维度的注意力计算,从而提高注意力的计算效率

和泛化能力。 分组后,为兼顾特征图的整体强度分布与

局部显著性,在高度方向和宽度方向对其分别进行全局

平均池化 ( AvgPool) 和全局最大池化 ( MaxPool) 操作,
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图 2　 GGCA 网络结构

Fig. 2　 GGCA
 

network
 

architecture

得到:

Xh,avg | = AvgPool(X) ∈ R
B×G× C

G ×H×1
(3)

Xh,max | = MaxPool(X) ∈ R
B×G× C

G ×H×1
(4)

Xw,avg | = AvgPool(X) ∈ R
B×G× C

G ×1×W
(5)

Xw,max | = MaxPool(X) ∈ R
B×G× C

G ×1×W
(6)

式中: Xh,avg 表示在高度方向上对分组后的特征图进行全

局平均池化操作得到的特征图,该操作会将每个通道的

高度维度压缩为一个特征值,保留整体强度分布信息;
Xh,max 表示在高度方向上对分组后的特征图进行全局最

大池化操作得到的特征图,该操作会提取每个通道在高

度方向上的最大值,突出局部显著性特征。 在宽度方向

上得到的 Xw,avg 与 Xw,max 同理。
全局分组池化后,将上述 4 个池化结果输入至共享

卷积层中,进行信息压缩与特征提取操作。 共享卷积层

由两个 1×1 卷积层、批量归一化层和 ReLU 激活函数组

成,两个卷积层分别用于降低和恢复通道维度。 通过共

享卷积操作,在高度和宽度方向上得到的特征结果可表

示为:
Yh,avg = Conv(Xh,avg ) (7)
Yh,max = Conv(Xh,max ) (8)
Yw,avg = Conv(Xw,avg ) (9)
Yw,max = Conv(Xw,max ) (10)
进而将共享卷积层的输出相加,应用 Sigmoid 激活函

数 σ ,生成高度方向和宽度方向的注意力权重图:

Ah | = σ(Yh,avg + Yh,max ) ∈ R
B×G× C

G ×H×1
(11)

Aw | = σ(Yw,avg + Yw,max ) ∈ R
B×G× C

G ×1×W
(12)

最后,将输入特征图按注意力权重进行加权,得到特

征提取后的输出特征图 O :
O = X × Ah × Aw ∈ RB×C×H×W (13)
GGCA 模块利用分组注意力机制和共享卷积层,生

成高度和宽度方向的注意力图的同时,实现信息压缩与

特征加权。 使得模型能更好地关注局部特征,增强疲劳

驾驶图像中眼部、嘴部等重要特征的表达,并抑制驾驶室

内环境背景等噪声的影响。 针对性解决微小神态特征目

标占总图比例小,容易被环境背景、光线噪声等干扰的问

题。 通过增强感受野提升了模型的提取能力与融合

效果。
2)MDFA 模块结构与机理分析

MDFA 模块设计的核心在于结合多尺度特征提取和

注意力机制,针对性解决复杂视觉任务如实时驾驶特征

检测中局部细节和全局上下文信息的综合问题。
模块分为两部分,第 1 部分是多尺度空洞卷积部分,

第 2 部分是通道和空间注意力的融合。 这种结构设计既

保留了不同尺度的信息,又通过注意力机制显著提高了

特征表达能力。
多尺度空洞卷积结构通过 5 个并行的卷积分支来实

现不同尺度的特征提取,每个分支配置有不同的空洞率。
第 1 分支,使用 1×1 卷积核,主要作用是线性投影与特征

压缩;第 2 ~ 4 分支,使用 3×3 卷积核,空洞率分别为 6、
12、18,空洞率的渐增设置保证了感受野从局部到全局的

递进式扩展,捕获不同范围的空间关系;第 5 分支,使用

一个额外的全局平均池化分支在多尺度特征中引入全局

背景,有效提高对整体语义的理解能力。
通道和空间特征合并与校准通过通道维度拼接,形

成一个综合的特征图,整合各个分支的特征,提升对目标

的全方位理解能力。 在处理复杂的驾驶图像时,某些通

道可能包含比其他通道更有用的信息。 传统的卷积操作

不能动态地调整通道的重要性。 此外,不同的空间位置

包含的信息重要性可能不同。 例如,目标对象的区域比

背景更重要等。 本文引入的 MDFA 模块通过多尺度空洞

卷积的设计捕捉驾驶场景中的细微特征(如眼部、嘴部的

小幅变化)。 再调整通道注意力,突出关键信息通道;同
时应用空间注意力,进一步聚焦目标区域。 通过动态权
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图 3　 MDFA 网络结构

Fig. 3　 MDFA
 

network
 

architecture

重实时校准通道与空间注意力机制的使用,突出驾驶员

的脸部特征等关键区域,抑制背景噪声(如驾驶室内环

境、窗外光线干扰等),帮助网络更好地理解图像中的每

一个部分与整体的关系。 从而确保即使在特征稀疏或目

标特征微弱的情况下,MDFA 模块也能表现出较好的鲁

棒性和特征表达能力。
3)损失函数设计

在疲劳驾驶检测中,驾驶员的微表情特征具有较小

的图像面积,同时背景环境中包含大量的动态变化和干

扰信息(如车内景物、光线变化等),这给模型的训练优

化过程带来了不确定性。 原 YOLOv10 算法的损失函数

以及目前主流的损失函数无法针对驾驶员的微小表情特

征,动态优化模型收敛过程,训练过程中会出现过度关注

背景噪声而出现误检和漏检的问题。
为此,本文提出使用反馈信息驱动的 FDL 损失函数

优化模型训练过程,该损失函数可以动态调控检测过程

小目标损失在总体损失中的权重,根据反馈信息自适应

调整模型的学习策略,引导模型更加专注于驾驶员面部

的微表情特征,并减小背景噪声的干扰。 从而帮助模型

最终更准确、快速地完成疲劳驾驶检测。
设总体损失为 Loss( total) ,小目标损失为 Loss( small) ,并

定义反馈系数 ,并将其引入高斯函数 f( ) 中,用以实

时计算损失函数中的时间依赖性,得到最终的反馈驱动

损失函数:

=
Loss( small)

Loss( total)
(14)

Loss(location)= λ∑
s2

i = 0
∑

B

j =0
Iobjij f( )[(xi -

 

x̂i)
2 + (yi -

 

ŷi)
2] +

λ∑
s2

i = 0
∑

B

j = 0
Iobjij f( )[(w i -

 

ŵ i)
2 + (h i -

 

ĥ i)
2] (15)

其中, λ 为收敛比例系数,用于在宏观上实时调整损

失函数中不同部分的权重,以平衡模型训练过程中的损

失分布。 如图 4 所示, (x i,y i,w i,h i) 用以描述真值框,

而 (
 

x̂ i,
 

ŷ i,
 

ŵ i,
 

ĥ i) 用以描述预测框。 x i 和 y i 表示真值框

的中心点坐标, w i 与 h i 分别表示真值框的宽度和高度。
 

x̂ i 和
 

ŷ i 表示预测框的中心点坐标,
 

ŵ i 与
 

ĥ i 分别表示预测

框的宽度和高度。 s 表示网格的大小,计算中将待处理的

图像划分为 s × s 的网格。 B 表示网格预测的边界框的数

量, Iobjij 是指示函数,如果单元 i 中的第 j 个边界框包含对

象,则为 1,否则为 0。

图 4　 检测边界框示意图

Fig. 4　 Schematic
 

diagram
 

of
 

detecting
 

bounding
 

boxes

FDL 损失函数可以综合考虑训练过程小目标特征真



· 46　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

值框和预测框的重叠程度、中心点距离和形状等因素,通
过引入反馈参数,利用损失分布信息作为反馈信号,实时

指导模型进行下一步更新,增强模型对复杂环境中小目

标检测的泛化能力,提高检测效率。
1. 3　 疲劳驾驶判定指标设计

　 　 针对疲劳检测中因单一评价指标导致检测结果不准

确的问题,本文引入眼宽高比( eye
 

aspect
 

ratio,
 

EAR)与

嘴宽高比(mouth
 

aspect
 

ratio,
 

MAR)双指标,通过监测驾

驶员在一定时间内的眨眼频率和打哈欠次数来判断其是

否疲劳。
首先利用改进的 YOLOv10-GMF 网络模型定位脸部

并标记眼睛和嘴部特征,以匹配关键点。 常规人脸关键

点有 68 个,但鉴于实际检测中过多关键点不利于模型轻

量化,且仅需眼睛和嘴巴信息即可判断疲劳状态,本文选

其中 18 个关键点评估疲劳状态:左右眼共 12 个(编号

37 ~ 48),嘴部 6 个 ( 编号 49、51、53、55、57、59),如图

5 所示。

图 5　 人脸关键点

Fig. 5　 Face
 

key
 

points

根据眼部关键点的 x、 y 坐标得出眼睛的长宽比

EAR。 参考 PERCLOS 的 P80 标准,当眼睑覆盖瞳孔面积

超 80%时,视为眼睛闭合,据此将 EAR 阈值设为 0. 2,即
EAR<0. 2 时,判定眼睛闭合,公式如下:

EAR =
‖y38 - y42‖ + ‖y39 - y41‖

4‖x40 - x37‖
+

‖y44 - y48‖ + ‖y45 - y47‖
4‖x46 - x43‖

(16)

fe =
te

Te

× 100% (17)

通过界定 fe 来评估驾驶员的眼部疲劳状况,其中 te
是检测时段内的闭眼帧数, Te 是检测时段的总帧数。 通

常情况下,单次眼睑闭合时长在 0. 1 ~ 0. 2
 

s;疲劳状态下,
该时长会超过 0. 45

 

s。 所以,当 fe 的阈值被设定为 0. 45
时,即单位时间内闭眼频率超过 0. 45,便可判断驾驶员

处于疲劳状态。
类比眼部状态指标,嘴部状态指标通过嘴部关键点

的 x、y 坐标计算 MAR。 定义 fm 来判断驾驶员嘴部疲劳

状态,该指标通过计算嘴部关键点的欧氏距离得出,公式

如下:

MAR =
‖y51 - y59‖ + ‖y53 - y57‖

2‖x55 - x49‖
(18)

fm =
tm

Tm

× 100% (19)

式中: tm 表示检测时间内张嘴的帧数; Tm 表示检测时间

的总帧数。 一般情况下,人打哈欠的持续时间约为 4
 

s。
设定单位检测时间为 30

 

s,那么在 30
 

s 内打哈欠超过两

次(即累计 8
 

s)则视为疲劳驾驶。 因此,本文将 fm 的参

数阈值设置为 0. 27,即单位时间内打哈欠频率>0. 27 时,
可判断驾驶员处于疲劳状态。

2　 实验与分析

2. 1　 数据集

　 　 本文采用公开数据集 Drowsy-Driving-Det1-AFLW 和

CEW。 前者来源于国外开源数据集,约 25
 

000 张;后者

来源于国内开源数据集,约 2
 

000 张。 这两个数据集合

并后约共 27
 

000 张,包含不同姿态、表情、光照和种族等

因素影响的驾驶员行车照片,十分符合疲劳驾驶实际的

应用场景。
为了使模型更好地适应实际行车中的复杂环境,本

文在原始数据集的基础上,随机选取部分图像进行了包

含亮度调整、噪声添加、旋转变换、镜像处理的一系列预

处理操作。 具体而言,亮度调整是通过将图像亮度随机

设置为原始亮度的 0. 8 ~ 1. 2 倍来模拟不同的光照条件;
噪声添加方面,随机向图像中添加均值为 0、标准差在

0. 05 ~ 0. 15 的高斯噪声,或者密度为 0. 05 ~ 0. 2 的椒盐

噪声;旋转变换则是-20° ~ +20°的范围内,以 2°为步长对

图像进行旋转;镜像处理通过随机对图像进行水平或垂

直方向的镜像翻转来增加数据多样性。
经过上述操作,最终生成了 40

 

000 张驾驶疲劳检测

图像。 随后,使用 LabelImg 工具对这些图像进行标注,依
照前文所述 EAR 和 MAR 的判定标准将图像分为清

醒(Awake)和疲倦(Fatigue)两类,并按照
 

3 ∶ 1
 

的比例将

数据集划分为训练集和测试集,分别用于模型的训练和

评估。
2. 2　 实验环境和算法评价指标

　 　 实验模型的训练与参数优化过程在配置有 4 块



　 第 10 期 基于改进 YOLOv10 的驾驶疲劳检测算法 · 47　　　 ·

图 6　 疲劳驾驶数据集

Fig. 6　 Drowsy
 

driving
 

datasets

GeForce
 

RTX
 

3050Ti 显卡的专用服务器上进行,操作系

统为 Ubuntu,使用 PyTorch 框架。 模型训练的超参数设

置为学习率 0. 01,训练轮次 300,批量大小 16,优化器选

择 SGD。
学习率影响模型收敛与性能。 学习率过高导致模型

梯度发散,过低则延长训练时间。 本文通过预实验得出,
0. 01 的学习率在本文的疲劳检测任务中可平衡收敛速

度与稳定性,且保证较高的检测精度。
训练迭代次数取决于数据集规模和模型复杂度。 本

文数据集含约 40
 

000 张图像,300 轮迭代可充分学习特

征并防止过拟合。
批次大小受显存和泛化能力限制。 在本研究的实验

环境下,每批次 16 张图像在显存使用和梯度稳定性上最

佳。 优化器选择对收敛性和泛化能力关键。
SGD 的动量项(Momentum = 0. 9) 可加速模型收敛,

其简单的更新规则可以增强模型稳定性。

　 　 为贴近疲劳驾驶检测实际应用的硬件条件,更准确

地进行模型性能评估,本研究将训练后的模型移植到
 

Jetson
 

Xavier
 

NX
 

嵌入式平台进行应用测试。 测试使用的

硬件摄像头选取三合一体感摄像头,输入的实时视频流

图像在 Xavier 嵌入式平台上直接进行分析和计算。 实际

部署平台及软硬件如图 7 所示。

图 7　 实际部署平台及软硬件设备

Fig. 7　 Embedded
 

deployment

实验中重点关注的算法指标包括平均精度均

值(mAP)、准确率( precision)、召回率( recall)、模型参数

量(parameters)、计算量、检测速度。
2. 3　 实验过程

　 　 1)各类原始模型或算法的检测性能对比

在统一的实验设置下,首先对当下较经典的和较流

行的目标检测算法进行对比分析。 使用 SSD、 Faster
 

RCNN、Mask
 

RCNN、YOLOv7、YOLOv8 和 YOLOv10 算法

对相同的数据集进行测试。 最终各算法和模型疲劳检测

的各项性能指标结果如表 1 所示。

表 1　 不同模型检测性能

Table
 

1　 Different
 

model
 

detection
 

performance
模型 mAP / % Precision / % Recall / % Parameters / ( ×106 ) 计算量 / GFLOPs 检测速度 / fps
SSD 76. 0 68. 7 63. 3 4. 9 14. 1 57. 1

Faster
 

RCNN 79. 4 73. 4 71. 6 16. 6 48. 0 10. 3
Mask

 

RCNN 82. 3 79. 0 76. 5 13. 2 36. 6 9. 9
YOLOv7 81. 6 78. 5 74. 8 7. 0 18. 8 51. 3
YOLOv8 83. 1 80. 8 79. 9 5. 3 17. 2 65. 3

YOLOv10 83. 6 81. 2 80. 8 6. 7 20. 0 66. 7

　 　 根据表 1 可知,YOLOv10 的 mAP 可达 83. 6%,相比

SSD、Faster
 

RCNN、Mask
 

RCNN 有显著提升,较 YOLOv7
和 YOLOv8 也有明显优化。 此外,YOLOv10 不仅在准确

率和召回率方面优于其他模型,在参数量、计算量上也具

有优势,检测帧率达 66. 7
 

fps,在上述算法中是最快的。
通过上述分析,YOLOv10 凭借 YOLO 系列算法单阶

段的处理方式以及 v10 版本精简高效的架构,在检测精

度、速度和资源利用率上表现出色,对于疲劳驾驶检测领

域优势明显,因此后续研究选定 YOLOv10 作为基础模型

进行改进。
2)GGCA 模块的性能评估对比实验

在 YOLOv10 模型的颈部网络后、预测网络前添加

GGCA 模块,与原算法以及添加经典坐标注意力 CA 模块

算法的 mAP 和检测速度进行比较, 实验结果如表 2
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所示。
表 2　 GGCA 模块的性能评估对比

Table
 

2　 Impact
 

of
 

GGCA
 

module
 

on
 

performance
算法 mAP / % 检测速度 / fps

YOLOv10 83. 6 66. 7
YOLOv10+CA 91. 2 65. 8

YOLOv10+GGCA 94. 0 65. 2

　 　 相比于原 YOLOv10 网络,添加 GGCA 模块后,模型

的 mAP 提高 10. 4%。 相比于 YOLOv10 +CA 算法,mAP
提高 2. 8%。 实验结果证明,基于 GGCA 全局坐标注意力

模块的改进,在保证检测帧率的条件下,使网络的平均检

测精度有了一定提高。
3)MDFA 模块的性能评估对比实验

在 YOLOv10 算法中引入多尺度空洞融合模块

MDFA,并与原算法及添加 CBAM 模块的算法在 mAP 和

检测帧率方面进行对比,实验结果如表 3 所示。
表 3　 MDFA 模块性能评估对比

Table
 

3　 Impact
 

of
 

MDFA
 

module
 

on
 

performance
算法 mAP / % 检测速度 / fps

YOLOv10 83. 6 66. 7
YOLOv10+CBAM 90. 2 65. 2
YOLOv10+MDFA 94. 4 65. 2

　 　 相比于原 YOLOv10 网络,添加多尺度空洞融合模块

MDFA 后,mAP 提高 10. 8%。 相比于添加 CBAM 的算

法,mAP 提升 4. 2%。 实验证明通过基于 MDFA 的特征

融合改进,综合性能更优,在检测精度和速度上位于一个

平衡的位置,更适应于实时性的高精度疲劳检测。
4)各损失函数对训练过程的影响对比

为了评估 FDL 损失函数对模型训练过程的影响,分
别将损失函数 GIoU、DIoU、CIoU 和 FDL 应用于 YOLOv10
的模型训练。 上述 4 种损失函数的训练损失曲线如图 8
所示,表 4 是采用不同损失函数训练模型后进行检测的

性能结果对比。

图 8　 损失曲线

Fig. 8　 Loss
 

curve

表 4　 使用不同损失函数训练模型的检测性能对比

Table
 

4　 The
 

performance
 

comparison
 

of
 

models
trained

 

with
 

different
 

loss
 

functions (%)
损失函数 mAP Precision Recall

GIoU 76. 2 79. 7 73. 1
DIoU 81. 6 80. 2 79. 5
CIoU 83. 4 80. 1 80. 1
FDL 84. 3 83. 8 80. 9

　 　 由图 8 可以看出,损失函数在训练中最终都实现了

收敛,但 FDL 收敛速度更快,并且在收敛后损失值最低。
因此,该损失函数对图像特征的利用率较高。 同时由表

4 可得,与其他损失函数相比,采用 FDL 损失函数训练的

模型在平均检测精度、精确率和召回率方面更具优势。
综上所述,将损失函数 FDL 应用于 YOLOv10 中训练优化

过程,能够有效提升疲劳驾驶的检测效果。
5)综合消融实验分析

为进一步验证改进后算法检测效果,在 YOLOv10 原

模型基础上,分别添加 GGCA、MDFA 模块,并引入 FDL
损失函数,进行综合消融实验,分析改进效果。 结果如表

5 所示。
表 5　 改进前后模型检测性能

Table
 

5　 Model
 

detection
 

performance
 

before
 

and
 

after
 

improvement
模型 mAP / % Precision / % Recall / % 检测速度 / fps

YOLOv10 83. 6 80. 9 80. 0 66. 7
YOLOv10+GGCA 94. 0 84. 6 85. 1 65. 2
YOLOv10+MDFA 94. 4 85. 2 86. 3 65. 2

YOLOv10+GGCA+MDFA 97. 9 89. 9 88. 7 63. 8
YOLOv10+GGCA+MDFA+FDL(GMF) 98. 1 92. 6 90. 4 64. 3

　 　 分析表 5 发现,同时添加 GGCA 和 MDFA 模块,较两

模块单独添加,在模型检测精度、精确率、召回率方面均

有提高,证明两模块同时使用性能更佳。
此外,较之实验中其他模型,融合 GGCA 与 MDFA 模

块且更换损失函数的 YOLOv10-GMF 模型在疲劳驾驶实

时特征检测过程中的算法指标表现最好。 模型检测精

度、精确率和召回率进一步提升,较 YOLOv10 原模型算

法分别提高了 14. 5%、11. 7%和 10. 4%。
将本文提出的 YOLOv10-GMF 和原 YOLOv10 模型进

行实际疲劳驾驶面部特征检测对比,并进行检测结果可

视化,如图 9(a) ~ (c)所示。
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图 9　 改进前后模型检测效果

Fig. 9　 Visualization
 

results
 

of
 

model
 

before
 

and
 

after
 

improvement

　 　 可以发现,原始的 YOLOv10 模型在疲劳驾驶检测的

眼部、嘴部的特征目标较小、模糊或者有遮挡的情况下出

现了漏检,而 YOLOv10-GMF 模型在同样情况下成功完

成检测任务。 在清醒疲倦的两种驾驶状态检测中置信度

均高达 0. 95,且与驾驶员实际状态完全相符。
这种提升不仅体现在视觉效果上,还反映在算法指

标的量化结果中。 将 YOLOv10-GMF 与其他先进检测算

法进行综合性能对比,如表 6 所示。 可以发现,较文

献[3]、文献[9]、文献[10]和文献[11]的检测算法和模

型,YOLO 系列算法在平均检测精度和帧率上展现了极

大的优势。 同时,相比于改进 YOLOv8 算法[17] ,本文的

模型 YOLOv10-GMF 在 mAP 和检测帧率上进一步提升。
可以满足驾驶过程中的实时检测需求。

表 6　 各模型及算法综合检测性能比较

Table
 

6　 Comparison
 

of
 

comprehensive
 

detection
performance

 

of
 

various
 

models
 

and
 

algorithms
来源 模型 mAP / % 检测速度 / fps

文献[3] ECG
 

GA-SVM 87. 2 18. 2
文献[9] SSD 82. 2 23. 6
文献[10] 3DCNN 75. 6 30. 2
文献[11] LBF 93. 9 15. 2
文献[17] 改进 YOLOv8 92. 3 39. 4

本文 YOLOv10-GMF 98. 1 64. 3

3　 测试与应用

　 　 本文选取晴朗、雾霾、雷雨的多种天气条件下的日间

和夜间环境进行实际嵌入式部署测试。 在不同天气条件

下,选取上午 7: 00 ~ 9: 00, 中午 12: 00 ~ 14: 00, 下午

17:00 ~ 19:00,夜间 22:00 ~ 24:00 的 1
 

d 的 4 个时段构建

实际视频流样本,每个时段持续 2
 

h,验证模型在长时间

运行中的稳定性和可靠性。 黑暗的夜间环境或雾霾、雷
雨天气将导致驾驶室内为低照度环境;路灯以及后车灯

光干扰将导致驾驶室内为高照度环境。
设置摄像头在行车过程中以 50

 

fps 的速度获取视频

流图像,以测试模型对连续且快速图像输入的处理能力。
将获取的视频流图像按照驾驶室内环境的光照强度分为

3 类(中照度环境、低照度环境、高照度环境),为保证实

验样本的多样性与普适性,每类随机选取 1
 

200 张图像

作为实验样本,测试效果如表 7 所示。

表 7　 不同环境光照条件下的样本测试效果

Table
 

7　 Sample
 

testing
 

effects
 

under
 

various
ambient

 

lighting
 

conditions
环境光照条件 实验样本总数 真阳性样本数 完成率 / % 准确率 / %
中照度环境 1

 

200 1
 

200 100 100
低照度环境 1

 

200 1
 

200 100 100
高照度环境 1

 

200 1
 

159 100 96. 5

　 　 分析表 7 可以发现,测试中没有出现漏检问题,完成

率达 100%。 中照度环境和低照度环境下,模型表现完

美,所有样本均被正确识别,准确率为 100%。 高照度环

境下,模型准确率略降至 96. 5%,可能由于强光导致的图
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像过曝或细节丢失,影响了部分样本的识别。 但由于驾

驶员动作的连贯性,若某一帧图像显示驾驶员处于疲劳

状态,则其前后几帧图像通常也会呈现相同的疲劳动作

或神态特征。 通过分析连续多帧图像的检测结果,可以

准确地判定驾驶员的真实状态。 且在后续工作中可以通

过在镜头添加偏振片等方法减弱强照度复杂光源的影

响,从而实现精准检测。
模型在不同光照条件下均表现出色,尤其在中和低

照度环境下达到满分表现,表明模型具有良好的鲁棒性

和适应性。 将检测结果进行可视化,如图 10 所示,图 10
(a)为中照度环境、图 10( b)为低照度环境、图 10( c)为

高照度环境。

图 10　 实际驾驶测试模型检测效果可视化

Fig. 10　 Practical
 

driving
 

experiment

本文在将模型移植到嵌入式系统后,统计了各帧视

频流图像在 Xavier 平台上进行疲劳驾驶检测处理全过程

的各阶段平均耗时。 结果如表 8 所示。 其中,第 1 阶段

为基于 YOLOv10-GMF 模型的人脸定位与关键点获取,
其平均处理速度达到 64. 3

 

fps,相当于每帧图像的平均处

理耗时为 15. 5
 

ms。 第 2 和第 3 阶段在 Xavier 平台上的

总耗时为 3. 5
 

ms。 综上, 3 个阶段的处理总耗时为

19
 

ms。 而人体正常眨眼、打哈欠等动作的通常耗时在

30
 

ms 以上。 由此可见,该模型的检测效率能够满足日

常驾驶的实际需求。

表 8　 疲劳检测各阶段耗时

Table
 

8　 Time
 

consuming
 

for
 

each
 

stage
序号 阶段 平均耗时 / ms

1 人脸定位与关键点获取 15. 5
2 疲劳特征置信度计算 3. 0
3 综合结果输出 0. 5

4　 结　 论

　 　 针对当前疲劳驾驶检测中驾驶者微表情目标小、环
境背景复杂,导致检测效果不理想的问题,本文提出了一

种基于 YOLOv10 改进的检测算法 YOLOv10-GMF。 首

先,引入全局分组坐标注意力模块 GGCA,进行信息压缩

的同时,分组提取全局特征信息。 解决局部注意力机制

在捕捉特征信息时不能同时利用多维度全局信息的问

题,使检测精度比原始模型提高 10. 4%。 进而,针对小目

标严重降采样的问题,在原始模型中引入多尺度空洞融

合 MDFA 模块,针对多尺度目标特征,进行空洞融合并行

处理,重点关注小目标特征,使检测精度较原模型提高了

10. 8%。 最后针对原始算法中损失函数仅依据固定参数

优化训练过程的不合理之处,引入 FDL 损失函数,借助

反馈信息实现动态优化模型训练过程的目标。
本文还将基于 YOLOv10-GMF 的疲劳驾驶检测系统

部署到 Jetson
 

Xavier
 

NX 嵌入式平台。 实验测试表明,该
模型的平均精度均值达到了 98. 1%,相比 YOLOv10 提升

了 14. 5%,同时其检测速度为 64. 3
 

fps。 通过计算各阶段

耗时评估发现,整个疲劳检测过程平均耗时 19. 0
 

ms,能
够满足实时驾驶监管系统的检测需求。 后续研究将着重

于进一步轻量化模型架构。 初步计划是运用模型剪枝技

术,去除网络中的冗余连接和非关键特征通道,降低模型

的复杂度。 同时,通过量化感知训练,将模型参数和激活

值转换为低精度格式,以减少存储需求和计算资源占用。
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