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基于改进 BKA 算法优化的 WSN 定位算法∗

彭　 铎　 王永龙　 张彩银　 张明虎

(兰州理工大学计算机与通信学院　 兰州　 730050)

摘　 要:针对无线传感器网络非测距节点定位算法中,由于多跳距离和平均跳距估计方法存在仅进行简单计算而缺乏有效误差

修正的缺陷,造成计算误差累积,进而导致定位精度较低的问题,提出了一种改进黑翅鸢算法-三维距离向量跳( IBKA-3DDV-
Hop)定位算法。 首先,为减少跳数量化误差,利用多通信半径细化节点间跳数,然后引入跳距修正因子对跳距进行误差补偿。
其次,在改进黑翅鸢算法中利用最优拉丁超立方机制( OLHS)优化种群初始化,克服种群随机初始化的盲目性,并通过精英反

向学习策略生成反向种群,进一步优化初始种群质量。 最后在 BKA 的迁徙行为中融入 Levy 飞行策略增强算法寻优和全局搜

索能力,避免算法陷入局部最优。 仿真结果表明,相比传统 3DDV-Hop 算法、多通信半径算法、GOOSE-3DDDV-Hop 算法以及

WOA-3DDDV-Hop 算法,所提出的 IBKA-3DDV-Hop 定位算法的归一化定位误差平均降低了 22%、17%、11%与 6%左右,有效提

高了非测距节点定位算法的定位精度。
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Abstract:
 

Aiming
 

to
 

address
 

the
 

issue
 

of
 

suboptimal
 

positioning
 

accuracy
 

in
 

non-ranging
 

node
 

localization
 

algorithms
 

for
 

wireless
 

sensor
 

networks,
 

particularly
 

in
 

the
 

context
 

of
 

multi-hop
 

distance
 

and
 

average
 

hop
 

distance
 

estimation
 

methods
 

that
 

are
 

limited
 

in
 

their
 

capacity
 

to
 

rectify
 

errors,
 

resulting
 

in
 

the
 

propagation
 

of
 

computational
 

errors
 

and
 

consequent
 

reduction
 

in
 

positioning
 

accuracy,
 

an
 

improved
 

black-winged
 

kite
 

algorithm-3D
 

distance
 

cetor-hop
 

( IBKA-3DDV-Hop)
 

localization
 

algorithm
 

is
 

proposed.
 

First,
 

to
 

reduce
 

the
 

hop
 

quantization
 

error,
 

the
 

number
 

of
 

hops
 

between
 

nodes
 

is
 

refined
 

by
 

using
 

the
 

multi-communication
 

radius,
 

and
 

then
 

the
 

hop
 

distance
 

correction
 

factor
 

is
 

introduced
 

to
 

compensate
 

for
 

the
 

error
 

of
 

hop
 

distance.
 

Secondly,
 

the
 

optimal
 

latin
 

hypercube
 

mechanism
 

(OLHS)
 

is
 

employed
 

to
 

optimize
 

the
 

population
 

initialization
 

in
 

the
 

improved
 

black-winged
 

kite
 

algorithm.
 

This
 

approach
 

overcomes
 

the
 

limitations
 

of
 

random
 

initialization
 

and
 

generates
 

a
 

reverse
 

population
 

through
 

the
 

Elite
 

Reverse
 

Learning
 

strategy,
 

which
 

further
 

enhances
 

the
 

quality
 

of
 

the
 

initial
 

population.
 

In
 

conclusion,
 

the
 

Levy
 

flight
 

strategy
 

is
 

integrated
 

into
 

the
 

migration
 

behavior
 

of
 

BKA.
 

This
 

integration
 

serves
 

to
 

optimize
 

and
 

enhance
 

the
 

algorithm’ s
 

global
 

search
 

capability,
 

thereby
 

preventing
 

the
 

algorithm
 

from
 

attaining
 

a
 

local
 

optimum.
 

The
 

simulation
 

results
 

demonstrate
 

that,
 

in
 

comparison
 

with
 

the
 

conventional
 

3DDV-Hop
 

algorithm,
 

multi-communication
 

radius
 

algorithm,
 

GOOSE-3DDV-Hop
 

algorithm,
 

and
 

WOA-3DDV-Hop
 

algorithm,
 

the
 

proposed
 

IBKA-3DDV-Hop
 

localization
 

algorithm
 

reduces
 

the
 

normalized
 

localization
 

error
 

by
 

approximately
 

22%,
 

17%,
 

11%,
 

and
 

6%,
 

respectively.
 

This
 

improvement
 

effectively
 

enhances
 

the
 

accuracy
 

of
 

the
 

non-ranging
 

node
 

localization
 

algorithm.
Keywords:non-ranging

 

node
 

localization;
 

BKA
 

algorithm;
 

optimal
 

Latin
 

hypercube;
 

elite
 

reverse
 

learning;
 

Levy
 

flight



· 66　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

0　 引　 言

　 　 无线传感器网络( wireless
 

sensor
 

networks,
 

WSN)由

大量微型传感器节点组成,能通过节点协作感知、采集并

处理网络覆盖区域中的目标信息[1] ,并将信息发送给终

端。 WSN 凭借其独特的优势,在环境监测、智慧城市、灾
害救援和目标追踪等领域展现出了巨大的应用潜力和价

值。 节点定位技术是 WSN 中的一项核心技术,也是该领

域当前研究的热点和重点[2] 。
WSN 节点定位技术主要分为两类:以到达时间( time

 

of
 

arrival,
 

TOA)、到达时间差( time
 

difference
 

of
 

arrival,
 

TDOA)、 接 收 信 号 强 度 指 示 ( received
 

signal
 

strength
 

indication,
 

RSSI)、到达角( angle
 

of
 

arrival,
 

AOA)等技术

为主的基于测距的定位算法[3] ;以近似三角形内点测

试(approximate
 

point-in-triangulation,
 

APIT)、多维尺度最

大后验概率估计 ( multidimensional
 

scaling
 

MAP,
 

MDS-
MAP)、距离向量跳(distance

 

vector-hop,
 

DV-Hop)等技术

为主的非测距定位算法[4-5] 。 前者需要测定节点之间的

各种参数,定位精度虽高,但需要额外的硬件,因此不适

合大规模的网络部署。 后者则无需距离参数,虽然定位

误差相对较大,但是适合大规模的网络部署[6] 。 对于节

点定位来说,位置信息的精确性不仅是数据解读的基石,
更是决定其实际应用效果的关键要素,失去位置信息的

数据是没有价值的[7] ,因此,制定有效的定位算法成为一

个热门的研究课题[8] 。
三维 DV-Hop(3DDV-Hop) 是一种典型的测距无关

类的定位算法,是其从二维平面向三维空间的扩展[9] ,具
有较高的实用性,但存在定位精度不高的缺点。 智能优

化算法相比于传统的定位方法而言,其复杂度低、优化结

果较为准确,因此被广泛应用于 WSN 定位中[10] 。
近年来,国内外研究人员在提升非测距节点定位精

度方面取得了显著进展。 文献[11] 提出了一种 3DDV-
Hop 改进算法,该算法利用最大路径搜索算法获取最优

路径,并利用非线性周期调整机制和精英协作策略改进

沙猫群优化算法(sand
 

cat
 

swarm
 

optimization,
 

SCSO),显
著提升了定位精度。 文献[12] 提出了一种使用最优锚

节点结合余弦定理优化其余锚节点到未知节点间距离的

方法,减少了算法的运算量,降低了平均定位误差。 文

献[13]提出了一种基于改进狮群优化算法( loin
 

swarm
 

optimization,
 

LSO) 的 3DDV-Hop 定位方法,该算法具有

较高的定位精度。 但改进过程中并未考虑平均跳数和跳

距误差较大造成定位精度低的情况。 文献[14] 提出了

一种利用遗传-禁忌搜索法改进的 3DDV-Hop 定位算法,
首先改进平均跳距和跳数,之后将禁忌搜索引入遗传算

法中,提升了算法的寻优能力和准确性。 但未考虑算法

初始种群的分布方式和质量对于算法寻优能力的影响。
文献[15]提出了一种优化跳数和跳距的改进定位算法,
通过细化通信跳数并改进信标节点的跳距计算方法,调
整权重以确定未知节点的跳距。 这种方法虽然在一定程

度上提高了节点的定位精度,但无法完全消除信标节点

引入的估计距离误差。
针对 3DDV-Hop 定位算法,由于跳数和平均跳距计

算方法的缺陷,造成计算误差累积,导致的定位精度较低

的问题,提出一种基于改进黑翅鸢算法( improved
 

black-
winged

 

kite
 

algorithm,
 

IKBA)的定位方法。 首先,通过细

化跳数、添加修正因子对节点间跳数和平均跳距进行改

进和修正。 其次,为了解决由于算法种群多样性差,进而

影响算法收敛速度和寻优能力的问题,提出一种改进黑

翅鸢算法,在提高算法的寻优能力的同时保持原有的收

敛速度。 最后,提出了一种 IBKA-3DDV-Hop 算法,解决

了 3DDV-Hop 算法定位精度低的问题。

1　 黑翅鸢算法(BKA)原理

　 　 BKA 算法是一种受自然启发的新型元启发式算

法[16] ,BKA 算法具有独特的生物启发性,不但模拟了黑

翅鸢在自然界中的飞行和捕食行为,还模拟了它们对自

然环境变化和目标位置的高度适应性。
BKA 算法自身引入了柯西变异策略,增加算法在全

局搜索阶段的寻优能力,有助于算法跳出局部最优解。
同时,BKA 集成了一种 Leader 策略,模拟了黑翅鸢种群

中领导者的领导作用,确保算法能够有效利用当前的最

佳解并加快算法的收敛速度。 BKA 算法主要由以下 3 个

阶段组成。
1. 1　 初始化

　 　 初始化阶段,BKA
 

由式(1)产生初始解。
X i = Xmin + rand(Xmax - Xmin) (1)

式中: Xmax 和 Xmin 分别为搜索空间的最大和最小值; rand
是在[0,1]之间的随机值。
1. 2　 攻击行为

　 　 黑翅鸢是草原上的一种猛禽,它们在飞行中展现出

卓越的狩猎技巧,会根据风速灵活地调整翅膀和尾巴的

角度,以盘旋姿态静静观察猎物,并在恰当的时机迅猛俯

冲发起攻击。 BKA 算法巧妙地模拟了黑翅鸢的两种狩

猎策略。 1)模拟黑翅鸢在空中盘旋时不断调整自身位置

的行为。 黑翅鸢会在空中灵活地移动,寻找最佳的攻击

位置,一旦到达最佳攻击位置,便俯冲向目标。 2)模拟黑

翅鸢在空中盘旋搜索猎物的过程。 黑翅鸢会不断地在空

域中巡视,搜寻最易捕获的目标。 一旦发现理想猎物,它
便会立即调整姿态,发起攻击。



　 第 9 期 基于改进 BKA 算法优化的 WSN 定位算法 · 67　　　 ·

攻击行为的数学模型为:

y i,j
t +1 =

y i,j
t + n × (1 + sin( r)) × y i,j

t ,p < r

y i,j
t + n × (2r - 1) × y i,j

t ,其他{ (2)

n = 0. 05 × e
-2 ×( t

T ) 2

(3)
式中: y i,j

t 和 y i,j
t +1 分别为第 i 只黑翅鸢在第 t 步和第 t + 1

步迭代中在第 j 个维度上的位置; p 为常数; T 为迭代总

数; t 为当前已完成的迭代次数。
1. 3　 迁徙行为

　 　 鸟类迁徙是自然界中一种极为复杂且深受多种环境

因素,诸如气候条件与食物供应等影响的行为模式。 在

这一壮丽而精密的过程中,领头鸟占据着非常重要的地

位,其优秀的导航和对位置的判断能力往往对迁徙的成

功与否起着决定性的作用。 BKA 算法融合了鸟类迁徙

的这一特性,并引入了 Leader 策略来模拟这一过程。
当现行种群的适应度值低于随机选取的另一种群

时,这预示着当前领导者的引领能力可能不足以支撑种

群的迁徙需求。 因此,该领导者将被替换,加入普通迁徙

种群之中。 相反,若现行种群的适应度值显著优于随机

种群,则表明当前的领导者具备出色的引领能力,能够确

保种群沿正确的方向迁徙。
这一策略的核心在于其动态性,能够根据实际情况

灵活调整领导者的选择,确保迁徙队伍始终在最优领导

者的引领下前行,从而大幅提升迁徙的成功率。 迁徙行

为的数学模型为:

y i,j
t +1 =

y i,j
t + C(0,1) × (y i,j

t - L j
t),F i < Fri

y i,j
t + C(0,1) × (L j

t - m × y i,j
t ),其他{ (4)

m = 2 × sin( r + π
2

) (5)

式中: L j
t 表示第 t 次迭代中第 j 维的黑翅鸢得分领先者;

y i,j
t 和 y i,j

t +1 分别代表第 i 只黑翅鸢在第 t 步和第 t + 1 步迭

代中在第 j 个维度上的位置; F i 为当前种群中任意一个

体的适应度值; Fri 为任意一个体的随机位置的适应

度值。
C(0,1) 为柯西变异。 一维柯西分布是具有两个参

数的连续概率分布。 一维柯西分布的概率密度函数为:

f(x,δ,μ) = 1
π

δ
δ 2 + (x - μ) 2 , - ∞ < x < ∞ (6)

2　 IBKA-3DDV-Hop 算法

　 　 IBKA-3DDV-Hop 算法首先对 BKA 算法的种群多样

性和寻优能力进行改进。 然后通过修正因子修正跳距误

差的方法对算法进行优化。
2. 1　 改进 BKA 算法

　 　 1 ) 最 优 拉 丁 超 立 方 ( optimal
 

lardin
 

hypercube
 

sampling,
 

OLHS)优化种群多样性

在智能优化算法计算未知节点位置的过程中,种群

分布会影响到算法收敛速度和寻优能力。 BKA 算法使

用随机分布的初始化,使初始种群具有随机性和盲目性,
增加寻优时间,降低寻优效率,从而对定位性能产生

影响。
OLHS 是一种高级的抽样技术,通过优化空间中采

样点的位置,进一步提高抽样的效率和精度[17] 。 OLHS
可以弥补普通抽样方法随着采样点个数的增加从而丢失

部分采样区域的缺点,其采样点比之有更好的均匀性和

均衡性[18] 。 OLHS 在每一维内交换元素,因为在维度内

交换只改变维度间的组合,而不会改变每一维中的抽样

结果。 在衡量充盈度时,使用评价函数 F 表示:

F = ∑
s

i = 1
N id

-p
i[ ]

1
p (7)

式中: p 为正整数; d 为距离值; N 为由 d 分隔的点对的

数量; s 为不同距离值的数量。
在 BKA 算法中引入 OLHS 时,先将黑翅鸢种群平均

分成若干个相同的抽样区间,并在每个抽样区间中随机

抽取一个黑翅鸢个体组成搜索空间,其公式如下:
OLHS = MAXwi,w j∈Xd(w i,w j) (8)

式中: X 为黑翅鸢种群集合;w i,w j 为抽样区间中的两个

不同点; d(w i,w j) 为点 w i 和 w j 之间的特征距离。 当

BKA 算法生成初始种群时,将此种群作为算法的初始输

入,此时的式(1)更新为:
X i = Xmin + OLHS·(Xmax - Xmin) (9)

式中: Xmax 和 Xmin 分别为搜索空间的最大和最小值;
OLHS 为通过最优拉丁超立方抽样的得到的相对位置

参数。
由于 OLHS 遵循最大最小距离准则,对于每一个黑

翅鸢个体而言其相较于之前抽样的几个黑翅鸢个体的最

小值为该个体的特征距离,运用 OLHS 能够使这一特征

距离保持最大,进而促使黑翅鸢种群在整体搜索空间内

呈现出更为均匀的离散分布状态,有效避免出现过度聚

集的情况,以此来确保种群分布的均匀性和随机性。
优化后的种群分布示意图如图 1 所示,图 1(a)为随

机初始化分布,图 1(b)为最优拉丁超立方初始化分布。
2)精英反向学习策略优化种群质量

精英反向学习策略会基于当前解生成一个反向解,
通过比较这两个解的目标函数值,选择性能更优的解进

行下一次迭代。 这种方法有助于在优化过程中保持种群

的多样性,同时促进解的快速收敛。 假设 x ∈ [a,b] 且

x ∈ R ,其反向数为:
x∗ = a + b - x (10)
若点 p = (x1,x2,…,xN) 为任意 N 维搜索空间中的

点, 其中每个维度的 x i 都属于区间 x ∈ [x imin,x imax ]、
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图 1　 初始化分布效果对比

Fig. 1　 Comparison
 

of
 

initialization
 

distribution
 

effects

x i ∈ [a i,b i] ,则其反向解为:
P∗ = (x∗

1 ,x∗
2 ,…,x∗

D )

x∗
i = x imin + x imax - x i

{ (11)

式中: P∗ 为对点 p 每个维度的坐标进行反向操作得到的

反向点; x∗
i 为每个维度的反向坐标。

将精英反向学习策略引入黑翅鸢算法时,首先利用

OLHS 在搜索空间内确定个体的相对位置,再结合搜索

空间的实际范围生成反向解,通过比较更新后个体和原

个体的适应度,选择适应度较好的个体作为最终的个体

位置,以保留更优的个体,提高种群的整体质量。 改进后

黑翅鸢种群初始化公式在式(9)的基础上更新为:
X i = Xmin + OLHS·(Xmax - Xmin) (12)
X′i = OLHS × (Xmin + Xmax ) + X i (13)

式中: X i 代表第 i个黑翅鸢个体的初始位置; X′i 代表第 i
个个体对应的反向解; Xmin 为搜索空间的最小值;OLHS
为最优拉丁超立方抽样得到的相对位置参数; Xmax 为搜

索空间的最大值。

在生成黑翅鸢个体位置的反向解后,通过比较原始

位置和更新后位置的适应度来决定保留哪一个位置,若
原始位置的适应度值小于更新后位置的适应度值(即原

始位置更优),那么保留原始位置。 否则,使用更新后的

位置来更新黑翅鸢个体的位置。 比较公式为:

X i =
X′i,fit(X′i) < fit(X i)
X i,其他{ (14)

式中: X i 代表第 i 个黑翅鸢个体的初始位置; X′i 代表第 i
个个体对应的反向解; fit(X′i) 表示更新后位置 X′i 的适

应度值; fit(X i) 表示原始位置 X i 的适应度值。
3)Levy 飞行策略

Levy 飞行策略是一种随机搜索策略,其原理基于具

有重尾特性的 Levy 分布。 Levy 飞行策略允许算法在迭

代过程中进行偶然的长距离跳跃,以及更多的短距离局

部搜索[19] 。 这种策略能够帮助算法跳出局部最优解,探
索更广泛的搜索空间,适用于解决全局优化问题。 由于

Levy 飞行的长距离跳跃特性,它可以使黑翅鸢种群在迁

徙行为阶段时探索到远离当前位置的潜在有利领导者,
从而提高找到全局最优解的概率。 这种策略是在传统的

局部搜索方法之外的有益补充,可以有效地平衡算法的

探索和开发行为[20] 。 Levy 飞行的随机步长生成公式为:

Levy(λ) = α × μ × σ
| ν | 1 / λ (15)

σ μ = ( Γ(1 + λ)·sin(πλ / 2)
2(λ -1) / 2·λ·Γ((1 + λ) / 2)

) 1 / λ (16)

式中: μ ~ N(0,σ 2
μ);ν ~ N(0,1);Γ(X) 为 Gamma 函

数。 使用 Levy 飞行后的黑翅鸢个体迁徙行为领导者更

新公式由式(4)更新为:
y i,j
t +1 = y i,j

t + L(s)·(L i
t - m × y i,j

t ) (17)

L(s) = λΓ(λ)sin(πλ / 2)
π

· 1
s1+λ (18)

式中: y i,j
t +1 为个体下一次更新的位置; y i,j

t 为个体当前迭

代的位置; L(s) 为 Levy 飞行步长; L i
t 为个体中领导者

的位置; sin(πλ / 2) 为相位调节项; λ 为常数。 由于

Levy 飞行的步长分布遵循幂定律,即大多数步长较短,但
偶尔会出现较长的步长。 这种分布使得 Levy 飞行的运

动轨迹具有高度的随机性和不可预测性。 因此在当前位

置 y i,j
t 的基础上加入一个随机方向 (L j

t - m × y i,j
t ) ,即可

让黑翅鸢种群进行一次随机距离和方向的搜索,融入“多

数短跳+偶尔长跳”的重尾特性,从而找到更有利的领导

者 y i,j
t +1。

2. 2　 改进 BKA 算法描述

　 　 利用最优拉丁超立方和精英反向学习策略优化种群

多样性和质量,并利用 Levy 飞行跳出局部最优解的改进

BKA 算法。 改进 BKA 算法步骤如下。
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步骤 1)初始化 BKA 参数,使用最优拉丁超立方初

始化黑翅鸢种群,优化种群分布;
步骤 2)对种群进行排序,选取精英个体求出精英种

群的反向种群,并与精英种群合并形成新的初始种群;
步骤 3)黑翅鸢的攻击行为,利用不同的攻击方式进

行全局探索和搜索;
步骤 4)黑翅鸢的迁移行为,利用 Levy 飞行搜索更广

泛搜索空间中的最优领导者,使算法跳出局部最优解;
步骤 5)迭代结束。
改进 BKA 算法的流程如图 2 所示。

图 2　 IBKA 算法流程

Fig. 2　 IBKA
 

algorithm
 

flowchart

2. 3　 3DDV-Hop 算法优化

　 　 1)细化通信半径

通信半径内节点分布如图 3 所示,以锚节点 A 作为

坐标原点,R为通信半径,点 B、C、D为锚节点 A通信范围

内的跳数为 1 的未知节点。 由于 AB、AC、AD 之间的直线

距离相差较大,传统的广播方式储存的跳数就会随之增

大。 为解决这一问题,对锚节点 A 的通信半径进行细化,

锚节点 A 通信半径设置为 r= R
4

、r= R
2

、r= 3R
4

、r= 4R
4

。

图 3　 通信半径内节点分布

Fig. 3　 Node
 

distribution
 

diagram
 

within
 

communication
 

radius

2)跳距加权设计

由 3DDV-Hop 误差分析可知,节点间平均跳距计算

的误差在很大程度上影响定位的性能。 因此,通过添加

修正因子的方式对平均跳距的误差进行修正。
未知节点到锚节点的距离 d i,j 为平均跳距 Hop i,j 和最

小跳数 h i,j 的乘积:
d i,j = Hop i,j·h i,j (19)
节点间的实际距离可由其坐标计算得到:

d′i,j = (x i - x j)
2 + (y i - y j)

2 + ( zi - z j)
2 (20)

根据式( 19) 和( 20) 可得节点间实际距离的误差

D i,j 为:
D i,j =| d i,j - d′i,j | (21)
由距离误差 D i,j 可得修正因子 γ 为:

γ =
∑
i≠j

D i,j

∑
i≠j

h i,j

(22)

此时,引入修正因子 γ 可得优化后的平均每跳距

离为:

Hop′i,j =
∑
i≠j

Hop i,j - γ

n
(23)

使用式(23)中的平均跳距 Hop′i,j 对节点间的估计距

离 d 进行计算:
d = Hop′i,j·h i,j (24)
3)坐标优化

利用改进 BKA 算法对未知节点位置估计进行优化,
能够很好的减小误差。 此时,未知节点坐标的求解问题

可以转换为适应度函数最优值的求解问题,其适应度函
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数为:

F = ∑
n

1
(x - x i)

2 + (y - y i)
2 + ( z - zi)

2 - d i

(25)
经过式(25)计算后得到的最佳适应度的解,即为最

佳位置坐标。
IBKA-3DDV-Hop 算法的步骤如下:
步骤 1)设定实验中所需的参数;
步骤 2)对通信半径进行细化,由式(23)计算平均每

跳距离;
步骤 3)利用得到的平均跳距计算进行距离估计;
步骤 4)设定初始种群数、迭代次数等参数,引入最

优拉丁超立方初始化和精英反向学习机制优化多样性,
生成并存储种群信息;

步骤 5)计算目标函数值;
步骤 6)黑翅鸢的攻击行为,利用不同的攻击方式进

行全局探索和搜索;
步骤 7)黑翅鸢的迁移行为,利用 Levy 飞行机制,搜

索更广泛搜索空间中的最优领导者;
步骤 8)重复步骤 5) ~ 7),直到寻到最优个体即未知

节点坐标。

3　 仿真分析

3. 1　 实验参数设置

　 　 为检验算法的性能,利用 MATLAB
 

2018b 进行仿真

实验。 在选取对比算法时侧重对速度、鲁棒性等连续优

化问题的性能对比,因此聚焦于智能优化算法这一轻量

级范畴内的对比,而非需要大量计算资源的机器学习和

深度学习方法。 选取鲸鱼优化算法( whale
 

optimization
 

algorithm,
 

WOA),因其参数少易实现,具有独特的搜索

机制(包围猎物、气泡网攻击、随机搜索),鲸鱼算法的全

局搜素能力和优化能力突出所以是被广泛应用的热门优

化算法。 鹅优化算法(GOOSE
 

algorithm,
 

GOOSE)收敛速

度快求解精度高,且具有与 BKA 算法类似的算法机制,
能够更清晰的对比出 BKA 算法的改进效果。 并与传统

3DDV-Hop 算法和传统多通信半径算法进行对比,凸显

所提算法的性能。 实验设置是在 Window10 操作系统上

实现的,CPU 为 i5-9300H@ 2. 40
 

GHz 和 2
 

GB
 

RAM。 实

验参数配置如表 1 所示,设定所有算法均运行 30 次,初
始种群数为 50,迭代次数为 500 次。
3. 2　 评价指标

　 　 在实验阶段,通过调整锚节点数、通信半径以及节点

总数,来测试并验证所提出算法的可行性和有效性。 为

了客观地量化评估性能,采用了各节点的归一化定位误

差作为核心评价指标,其计算公式如下:

表 1　 实验参数设置

Table
 

1　 Experimental
 

parameter
 

settings
参数设定 数值

网络环境 / m 100×100×100
总节点数 70 ~ 130
锚节点数 10 ~ 45

通信半径 / m 20 ~ 50
初始化跳数 0

运行循环次数 500
节点能量 充足

节点分布 随机分布

　 　 error = 1
N ∑

n

i

(x - x i)
2 + (y - y i)

2 + ( z - zi)
2

R
(26)

式中: (x,y,z) 为计算得到的待定位节点坐标; (x i,y i,
zi) 为真实的待定位节点坐标; R 为最大通信半径; N 为

待定位节点个数。
3. 3　 实验结果及分析

　 　 图 4 所示为在不同锚节点个数、不同节点总数以及

不同通信半径的场景中,5 种算法的平均归一化误差。
在锚节点数量、通信半径以及节点总数等场景参数发生

变化的情况下,IBKA-3DDV-Hop 算法相较于其他 4 种算

法有较好的定位精度。 证明 IBKA-3DDV-Hop 算法能够

灵活适应不同场景的变化,表现出更强的鲁棒性和更出

色的定位精度。

图 4　 不同场景的平均归一化误差

Fig. 4　 Average
 

normalized
 

error
 

in
 

different
 

scenarios

这是由于所提算法通过优化种群初始化和种群质

量,增强了算法的寻优效率,通过 Levy 飞行结合 BKA 算

法本身集成的柯西变异和 Leader 策略有效平衡了算法的

探索和开发行为。 并且使用修正因子对跳距误差进行修

正,进一步提升了定位精度。
1)不同锚节点数量对定位精度的影响

在 WSN 覆盖区域内随机布撒 150 个节点,锚节点个

数从 10 个变化至 45 个时,对比 5 种算法的定位精度,如
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图 5 所示。 从图 5 可以看出,随着锚节点数量的增加,
IBKA-3DDV-Hop 在对比算法中具有较好的定位精度,归
一化定位误差始终保持最小。

图 5　 不同锚节点数量对定位精度的影响

Fig. 5　 The
 

impact
 

of
 

different
 

numbers
 

of
 

anchor
nodes

 

on
 

localization
 

accuracy

随着锚节点的数量逐渐增加,5 种算法的平均归一

化定位误差均呈现出总体下降的趋势。 平均归一化定位

误差的降低是由于锚节点数量的增加,意味着有更密集

的参考点,使得距离估计更加准确,所以各节点的平均跳

距误差降低,从而提高了未知节点和锚节点之间距离估

计的准确性。 在相同的参数设置下,本文提出的 IBKA-
3DDV-Hop 算法在所有对比算法中的平均归一化定位误

差最低,相对于 3DDV-Hop 算法,平均误差降低 24%;相
对于多通信半径算法, 平均误差降低 17%; 相对于

GOOSE-3DDV-Hop 算法, 平均误差降低 13%; 相对于

WOA-3DDV-Hop 算法,平均误差降低 7%。
2)不同通信半径对定位精度的影响

在 WSN 覆盖区域内随机布撒 150 个节点,设置锚节

点数量为 30 个,通信半径从 20
 

m 递增到 50
 

m,结果如图

6 所示。
从图 6 可以观察到,随着通信范围的递增,5 种算法

的平均归一化误差呈现出整体下降的趋势。 这种下降趋

势是由于通信半径与跳数之间存在类似负相关的关系,
即通信半径的扩大会使跳数减少,进而使得未知节点的

定位误差降低。 在相同的实验参数下, 本文提出的

IBKA-3DDV-Hop 算法在所有对比算法中的归一化定位

误差最低,相对于 3DDV-Hop 算法、多通信半径算法、
GOOSE-3DDV-Hop 算法以及 WOA-3DDV-Hop 算法,归一

化定位误差分别降低了约 22%、16%、11%和 6%。
3)不同节点总数对定位精度的影响

在 WSN 覆盖区域内随机布撒 30 个锚节点,通信半

径设置为 30
 

m,当节点总数从 70 个变化到 130 个时,结
果如图 7 所示。

图 6　 不同通信半径对定位精度的影响

Fig. 6　 The
 

impact
 

of
 

different
 

communication
radius

 

on
 

localization
 

accuracy

图 7　 不同节点总数对定位精度的影响

Fig. 7　 The
 

impact
 

of
 

different
 

total
 

node
counts

 

on
 

localization
 

accuracy

从图 7 可以观察到,随着节点总数的递增,5 种算法

的定位误差整体呈现出下降趋势。 这种趋势是由于当节

点总数增加时,未知节点可以同更多的节点进行信息交

换,从而获取到更多的辅助信息,使得定位误差降低。 在

相同的实验条件下,在所有对比算法中,IBKA-3DDV-Hop
算法的归一化定位误差最低,相对于其他 4 种对比算法,
归一化定位误差分别降低了约 23%、18%、11%和 7%。

4)不同噪声强度对定位精度的影响

在 WSN 覆盖区域内随机布撒 200 个节点,其中 30
个锚节点,通信半径设置为 30

 

m,当噪声强度系数从 0. 1
变化到 0. 5 时,结果如图 8 所示。

从图 8 可以观察到,随着噪声系数的递增,5 种算法

的平均归一化误差整体呈现出上升趋势。 这种趋势是由

于当噪声系数变大时,环境干扰加剧,导致节点间距离信

息估计的准确性下降, 从而导致定位误差变大。 在

3DDV-Hop 算法和 MRW-3DDV-Hop 算法中,未知节点通
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图 8　 不同噪声强度对定位精度的影响

Fig. 8　 The
 

impact
 

of
 

different
 

noise
 

intensities
on

 

localization
 

accuracy

过锚节点的多跳信息获取位置信息,通过最小二乘法求

解坐标值。 每跳的误差会随跳数逐级累积,噪声越大,单
跳测距误差越大,所以噪声导致的异常距离值会使坐标

的求解偏离真实解。 而智能优化算法的种群在解空间内

广泛分布,噪声影响被分散,且智能优化算法的步长调节

机制在初期探索阶段能够跳过部分噪声干扰,在后期收

敛阶段能更加逼近真实解。 IBKA-3DDV-Hop 算法在具

备上述优势的同时,IBKA 算法的黑翅鸢个体能够被独立

评估,异常测量值能够被多数正常值覆盖,因此它的最优

解不会受到单次噪声的影响,降低环境噪声的影响。
在相同的实验条件下,在所有对比算法中, IBKA-

3DDV-Hop 算法的归一化定位误差最低,相对于 GOOSE-
3DDV-Hop 算法和 WOA-3DDV-Hop 算法,归一化定位误

差分别降低了约 13%和 8%。
3. 4　 算法分析

　 　 1)算法性能分析

为了验证所提出算法的有效性,通过实验仿真对不

同节点总数、不同锚节点个数以及不同通信半径下对算

法的性能影响进行了分析,如图 9 所示。 折线三角形接

近坐标轴中心点的程度,能够反应其性能的好坏。 越接

近中心点说明其平均归一化误差越小,定位的精度越高。
从图 9 可以看出,IBKA

 

-3DDV-Hop 算法的折线三角形相

比其他 4 种算法最接近中心点,说明其定位精度最高。
2)算法复杂度分析

为了全面评价算法的性能,仅考虑定位精度是不足

的,还必须对算法的复杂度进行深入分析。 假设 n 为节

点总数, m 为锚节点数量。 已知的 3DDV-Hop 算法的时

间复杂度达到了 O(n3) 。 基于多通信半径的 3DDV-Hop
算法,其时间复杂度上比 3DDV-Hop 算法增加 O(n·
m)。 而本文提出的 IBKA-3DDV-Hop 算法与 3DDV-Hop
算法进行比对,其时间复杂度增加了 O(n·m) +O(n2)。

图 9　 不同场景对比

Fig. 9　 Comparison
 

of
 

different
 

scenarios

为直观地对算法进行时间维度的分析,图 10 所示为

通信半径为 30
 

m,锚节点数 30 个,节点总数从 200 个增

加到 500 个时,本文中各算法在不同节点总数下的平均

时耗。 由图 10 可以看出,原始 3DDV-Hop 算法与多通信

半径算法的运行时间最短。 而本文提出的 IBKA-3DDV-
Hop 算法的运行时间相较 GOOSE 算法和 WOA 算法略有

增加,这是由于对算法的主要部分进行了优化改进,虽然

提升了算法的定位精度,但算法的计算成本有所增加。
但是随着半导体技术的发展为 WSN 定位算法提供了更

高效的硬件支持,使得 WSN 节点在能耗方面有了显著的

降低,所以并不影响算法的实际应用。

图 10　 算法运行时间

Fig. 10　 Algorithm
 

runtime

4　 结　 论

　 　 针对 3DDV-Hop 算法在三维空间中,由于计算误差

累计,导致定位精度较低的问题,提出了一种基于改进黑

翅鸢算法的三维 WSN 定位算法。 算法通过细化跳数和

添加修正因子的方式对 3DDV-Hop 中的节点间跳数和平
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均跳距进行改进和修正。 然后采用改进 BKA 算法计算

待定位节点位置的最优解。 为进一步提高 BKA 算法的

优化性能,使用最优拉丁超立方和精英反向学习策略优

化初始种群的多样性,最后加入
 

Levy 飞行策略提高了算

法的全局搜索能力,同时平衡了算法的探索和开发行为。
仿真结果表明,所提算法较其他算法的定位精度有明显

提升。 需要注意的是,仿真所考虑的场景较为理想化,在
实际应用中,定位精度将会受到多种环境因素的影响。
未来将进一步研究如何在复杂环境中提高算法的定位

精度。
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