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摘　 要:针对现场可编程门阵列(field-programmable
 

gate
 

array,
 

FPGA)在加速卷积神经网络、图像处理算法等近似计算领域中模

型不彻底、片上资源消耗较大、性能受限等问题,提出了 5 款近似乘法器设计方法。 该方法基于查找表(LUT)的 8
 

bit×8
 

bit 无符

号无进位链近似乘法器,通过编码 LUT 的 INIT 参数值来优化关键路径简化结构并利用压缩递归调用方法、子积重组计算方法,
提出了两款适用于不同现实场景的基于 LUT 的 8

 

bit×8
 

bit 无符号近似乘法器。 该方法在精度可接受的范围内与同类型乘法器

相比最高可节省 60%的面积、约 60. 76%的功耗、约 25. 4%的关键路径延迟(critical
 

path
 

delay,
 

CPD)。 同时,为了满足更加复杂

的场景需要,在上述基础上将乘数位数倍增,提出了两款基于 LUT 的 16
 

bit×16
 

bit 无符号近似乘法器,与同类型乘法器相比最

高可节省约 41. 2%的面积、约 77%的功耗、约 35. 4%的 CPD 并能弥补精度下降带来的损失。 此外,结合所提出的有符号数计算

模块提出了一款基于 LUT 的 16
 

bit×16
 

bit 有符号近似乘法器来替代 Xilinx(现 ADM)的 Multiplier
 

IP 核,部署至以手写数字识别

为功能的卷积神经网络卷积层中并选用 MNIST 数据集中的手写数字图片进行测试,以精度下降 3. 4%的代价换取节省约

32. 48%的面积、约 41. 21%的功耗、约 24. 28%的 CPD。 实验结果表明,这些乘法器可以较好的满足 FPGA 加速卷积神经网络的

需求并在精度与资源开销达成最优平衡。
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Abstract:
 

Five
 

approximate
 

multiplier
 

design
 

methods
 

are
 

proposed
 

to
 

address
 

the
 

issues
 

of
 

incomplete
 

models,
 

high
 

on-chip
 

resource
 

consumption,
 

and
 

limited
 

performance
 

of
 

Field
 

Programmable
 

Gate
 

Array
 

(FPGA)
 

in
 

accelerating
 

convolutional
 

neural
 

networks,
 

image
 

processing
 

algorithms,
 

and
 

other
 

approximate
 

computing
 

fields.
 

Based
 

on
 

an
 

8-bit×8-bit
 

unsigned
 

carry
 

chain
 

approximation
 

multiplier,
 

two
 

LUT
 

based
 

8-bit×8-bit
 

unsigned
 

approximation
 

multipliers
 

are
 

proposed
 

for
 

different
 

real-world
 

scenarios
 

with
 

a
 

lookup
 

table
 

(LUT)
 

to
 

optimizing
 

the
 

critical
 

path
 

simplification
 

structure
 

by
 

compressed
 

recursive
 

invocation
 

methodology
 

and
 

sub-product
 

recombination
 

computation
 

strategy.
 

This
 

method
 

can
 

save
 

up
 

to
 

60%
 

of
 

area,
 

about
 

60. 76%
 

of
 

power
 

consumption,
 

and
 

about
 

25. 4%
 

of
 

critical
 

path
 

delay
 

(CPD)
 

compared
 

to
 

similar
 

multipliers
 

within
 

an
 

acceptable
 

range
 

of
 

accuracy.
 

At
 

the
 

same
 

time,
 

in
 

order
 

to
 

meet
 

the
 

needs
 

of
 

more
 

complex
 

scenarios,
 

two
 

16
 

bit×16
 

bit
 

unsigned
 

approximate
 

multipliers
 

with
 

LUT
 

are
 

proposed
 

by
 

doubling
 

the
 

number
 

of
 

multiplies
 

digits.
 

Compared
 

with
 

similar
 

multipliers,
 

the
 

method
 

can
 

save
 

up
 

to
 

about
 

41. 2%
 

of
 

the
 

area,
 

about
 

77%
 

of
 

the
 

power
 

consumption,
 

about
 

35. 4%
 

of
 

the
 

CPD,
 

which
 

can
 

compensate
 

for
 

the
 

loss
 

caused
 

by
 

the
 

decrease
 

in
 

accuracy.
 

In
 

addition,
 

based
 

on
 

the
 

signed
 

number
 

calculation
 

module,
 

proposed
 

a
 

16
 

bit
 

×
 

16
 

bit
 

signed
 

approximate
 

multiplier
 

with
 

LUT
 

is
 

proposed
 

to
 

replace
 

Xilinx’ s
 

( now
 

ADM)
 

Multiplier
 

IP
 

core,
 

which
 

is
 

deployed
 

in
 

the
 

convolutional
 

neural
 

network
 

convolutional
 

layer
 

with
 

handwritten
 

number
 

recognition
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function
 

and
 

tested
 

using
 

handwritten
 

number
 

images
 

in
 

the
 

MNIST
 

dataset.
 

It
 

saves
 

about
 

32. 48%
 

of
 

area,
 

about
 

41. 21%
 

of
 

power
 

consumption,
 

and
 

about
 

24. 28%
 

of
 

CPD,
 

at
 

the
 

cost
 

of
 

a
 

3. 4%
 

decrease
 

in
 

accuracy.
 

It
 

is
 

shown
 

that
 

these
 

multipliers
 

can
 

effectively
 

meet
 

the
 

requirements
 

of
 

FPGA
 

accelerated
 

convolutional
 

neural
 

networks
 

and
 

achieve
 

the
 

optimal
 

balance
 

between
 

accuracy
 

and
 

resource
 

overhead.
Keywords:multiplier;

 

FPGA;
 

approximate
 

fault-tolerant
 

computation;
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0　 引　 言

　 　 当前,基于深度学习的图像处理模型(如卷积神经网

络)普遍面临参数量庞大、计算复杂度高的问题,这给硬

件资源的高效利用带来了巨大挑战。 因此,如何在现有

硬件条件下实现模型加速已成为研究热点[1] 。 在该领域

中主流的硬件加速器有 3 款, 图形处理器 ( graphics
 

processing
 

unit, GPU ), 现 场 可 编 程 门 阵 列 ( field-
programmable

 

gate
 

array, FPGA ) 和 专 用 集 成 电

路(application
 

specific
 

integrated
 

circuit,ASIC) [2] 。 对比

上述 3 款加速器,GPU 虽拥有较多计算资源,性能占优,
但其需要根据特定的结构进行开发,因此效率低下。
ASIC 的运行速度在 GPU、FPGA 三者较快,但 ASIC 的结

构固定,其开发和设计需要较强的硬件电路背景,且研发

周期较长。 相比之下,FPGA 设计灵活、具备并行设计和

能源效率高等优势,因此 FPGA 逐渐成为硬件加速的理

想选择[3] 。
使用 FPGA 来加速卷积神经网络等算法,其运行速

度与 FPGA 的片上资源有较大关联。 当前大多的 FPGA
加速方案须调用大量的 Multiplier

 

IP 核进行计算,存在着

FPGA 资源尤其是有限的 DSP 数字信号处理器资源和查

找表(LUT)资源消耗量较大甚至被耗尽而导致应用程序

性能下降等问题[4] 。 蒋康宁等[5] 对数据量化为位 16
 

bit
的定点数后,采用输入输出通道并行展开的流水线处理

方式在宇航级的 FPGA 上部署了 YOLOv5s 算法,其片上

DSP 消耗量达到了 85%。 陈昌川等[6] 采用动态定点量化

的方式将 32
 

bit 的权重和特征图数据定点量化为 8
 

bit,
并采用通道剪枝技术将岩渣分类卷积神经网络部署在

FPGA 上进行加速,其片上 DSP 消耗量达到了 99%。 黄

沛昱等[7] 将卷积神经网络模型中的权重、偏置项、和输入

输出的特征值量化为 16
 

bit 定点数,采用循环展开和分

块的方法将卷积神经网络部署在 FPGA 上进行加速,其
片上 LUT 的消耗量达 73. 2%,片上 DSP 资源消耗量达到

66. 8%。 Zhang 等[8] 对数据进行 8
 

bit 量化,采用双符号

乘法校正电路在 FPGA 上对 YOLOv2-tiny 网络模型进行

加速,其片上 LUT 消耗量达到约 40%,片上 DSP 资源消

耗量达到 95. 2%。 戴伟杰等[9] 将 32
 

bit 浮点数量化为

16
 

bit 定点数,通过并行计算后重组的技术将铝片识别功

能的卷积神经网络部署在 FPGA 上,其片上 LUT 的消耗

量近 70%,片上 DSP 资源消耗量达到 68. 64%。
为了解决上述问题的制约,诸多学者提出了基于

FPGA 的近似计算方法。 虽然该方法只是精确结果的近

似,但是由于卷积神经网络模型的鲁棒性,即便计算结果

略有偏差也可以确保模型的准确率在可接受范围内。 同

时,采用近似计算代替精确计算带来的性能提升、功耗增

益也非常明显。 Ullah 等[10] 针对上述问题,提出了基于

LUT 的 8×8
 

bit 的无符号近似乘法器来降低资源消耗,但
其面积、功耗和 CPD 仍然较高。 文献[11-12]通过去除

进位链的方式,提出了基于 LUT 的 8×8
 

bit 无符号无进位

链近似乘法器,其资源消耗较低但精度亦较低。 Waris
等[13] 通过输入操作数的概率分布,提出了基于混合部分

积的 8×8
 

bit 无符号近似乘法器,其性能依然有改进的空

间。 Guo 等[14] 提出了 3 款基于 LUT 的 16×16
 

bit 无符号

近似乘法器,其精度较高但资源节省量较少。
在保证精度和资源开销方面,诸多学者在卷积神经

网络特征值和计算量优化方面做出了贡献,但利用 8 或

16
 

bit 有符号定点数设计近似乘法器时,大多无法同时权

衡性能、精度和位数的需求。
针对上述问题,本文所作如下改进。
1)Proposed8×8_1:基于 LUT 的 8×8

 

bit 无符号近似

乘法器。 通过编码 INIT 参数值、简化输入参数结构的方

式对无进位链近似乘法器中的近似加法器关键路径做出

改进。 在构建高阶乘法器时,本文提出压缩调用的方法

替代传统递归调用低阶乘法器,以此较大幅度减少资源

消耗。
2)Proposed8×8_2:基于 LUT 的 8×8

 

bit 无符号近似

乘法器。 为了权衡精度和资源消耗以适应不同应用,本
文提出了子积重组计算模块代替 Proposed8×8_1 方法中

的近似加法器。
3)Proposed16×16_1:基于 LUT 的 16×16

 

bit 无符号

近似乘法器。 为了应对卷积参数为 16
 

bit 无符号定点数

的情况,在 Proposed8×8_1 乘法器基础上,本文提出了基

于压缩调用技术的 Proposed16 × 16_1 近似乘法器,该乘

法器在保证计算精度的同时消耗较少资源。
4)Proposed16×16_2:基于 LUT 的 16×16

 

bit 无符号

近似乘法器。 为了保证乘法器资源消耗与精度的均衡化

以适应要求为复杂的应用场景,在 Proposed8 × 8_2 的基

础上提出了 Proposed16×16_2 近似乘法器。
5)Proposed16×16_3:基于 LUT 的 16×16

 

bit 有符号
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近似乘法器。 为了适应有符号运算的特殊情况, 在

Proposed16×16_2 乘法器基础上提出了增加补码计算模

块的 Proposed16×16_3 近似乘法器。

1　 相关工作

　 　 目 前 主 流 的 FPGA 由 可 编 程 逻 辑 功 能

块(configurable
 

logic
 

blocks,
 

CLB) 作为基本逻辑单元组

成各种功能电路。 每个 CLB 包含两个 SLICE, 每个

SLICE 由 4 个 6 输入的 LUT、8 个触发器和 1 个进位链

组成[15] 。
LUT 可以配置成带有一个 6 输入的 LUT6,6 输出的

O6 端口作为其输出位。 也可以配置成 LUT6_2,两个 5
输入的端口 I0 ~ I4 作为其输入,O5 端口和 O6 端口作为

其输出,如图 1(a)所示。 用户使用 FPGA
 

LUT 原语来定

义 INIT 参数从而修改 LUT 的逻辑功能。 INIT 参数由十

六进制数组成,其实际上为输入端口逻辑表达式真值表

的结果。 此外 LUT 还被用来控制进位链以实现更为强

大的逻辑功能。 例如使用 O5 端口作为进位生成信号,
O6 端口作为进位传播信号,以此来实现超前进位加法

器(carry-lookahead
 

adder),如图 1(b)所示。

图 1　 查找表与进位链结构

Fig. 1　 LUT
 

and
 

carry
 

chain
 

structure

为节省 LUT 的消耗量,文献[16] 提出了两种方法。
第 1 种是删除 LUT,则输出值只能是 0 或者 1,如式(1)
所示。 第 2 种是当两个 LUT 的输入参数相同时,可以采

用合并的方法将其中一个的输入信号设为 1,由此来产

生 LUT6_2,如式(2)所示。
O6 = f( I5,I4,I3,I2,I1,I0) → O6 = 0or1 (1)
O61

= f1( I5,I4,I3,I2,I1,I0)

O62
= f2( I5,I4,I3,I2,I1,I0)

→
O6 = f′1( I4,I3,I2,I1,I0)
O5 = f′2( I4,I3,I2,I1,I0){

(2)
Intel 等 FPGA 供应商以 DSP 的形式提供高性能乘

法器。 由于 DSP 资源较少并且使用 DSP 模块可能会导

致应用程序性能下降。 因此,FPGA 供应商还提供了基

于 LUT 的 Multiplier
 

IP 核用来进行乘法计算。

2　 基于 LUT 查找表的高效近似乘法器

2. 1　 基于 LUT 的 4×4
 

bit 无符号近似乘法器设计

　 　 传统二进制乘法在计算原理上和十进制的乘法相

似,即进行移位操作后产生部分乘积然后相加得到最终

结果。 例如,4
 

bit 二进制数 A4A3A2A1 和 B4B3B2B1 进行相

乘,如图 2 所示。 第 1 步是 4
 

bit 二进制数 A 和 4
 

bit 二进

制数的每个位都通过运算产生部分乘积,第 2 步是对生

成的部分乘积进行累加操作得到最终结果。 在基于 LUT
的近似乘法器中并不是以此法计算二进制乘法,而是直

接把 A 和 B 的每一位送进 LUT 中进行计算生成部分结

果,最后在使用进位链的情况下生成最终乘法结果。

图 2　 二进制乘法图示

Fig. 2　 Binary
 

multiplication
 

diagram

进位链是 CLB 中的一种基本结构,它被用来进行进

位加法,但是使用进位链会带来额外的 CPD。 进位链在

基于 LUT 的近似乘法器中会造成 33. 6% ~ 55. 2% 的

CPD[11] 。 在基于 ASIC 的近似乘法器中,通过 OR-based
压缩技术可以有效减少乘积的 CPD,这种方法也同样适

用于 FPGA 上[17] 。
基于这种方法,Yao 等[11] 提出了基于 LUT 的无进位

链无符号 4×4
 

bit 近似乘法器,该近似乘法器由 6 个 LUT
组成。 将乘数和被乘数进行分割,每个 LUT 完成不同的

运算分工。 LUT1 ~ LUT5 使用 OR 运算来储存部分乘积,
在 LUT6 中确保最终结果的精确性,每个 LUT 对应的功

能如表 1 所示。

表 1　 基于 LUT 的 4×4
 

bit 无符号近似乘法器结构

Table
 

1　 4×4-bit
 

unsigned
 

approximate
multiplier

 

structure
 

based
 

on
 

LUT

LUT 编号 对应功能

1 P0 =
 

A0B0 　 P1 =A1B0 |A0B1

2 S=A2B1 |A1B2 | A2B0A1B1 ;P2 =A2B0 |A1B1

3 P3 =S |A3B0 |A0B3

4 P4 =A3B1 |A2B2 |A1B3

5 P5 =A3B2 |A3B2 |A1B3A3B1

6 P6 =A3B3 ⊕ A3B2A2B3 ;P7 =A3B3&A3B2A2B3
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2. 2　 基于 LUT 的 8×8
 

bit 无符号近似乘法器整体设计

传统的基于 LUT 的 8×8
 

bit 无符号近似乘法器,其原

理是递归调用基于 LUT 的 4×4
 

bit 无符号近似乘法器,如
图 3 所示。

首先进行分块计算来产生部分乘积结果,然后在基

于 LUT 的近似加法器中进行处理产生最终的结果。 例

如,8
 

bit 二进制数 A 与 8
 

bit 二进制数 B 相乘,首先将 A
的低四位分割为 AL,高四位分割为 AH,将 B 的低四位分

割为 BL ,高四位分割为 BH, 如图 3(a)所示。 其次,对基

于 LUT 的 4
 

bit×4
 

bit 无符号近似乘法器进行递归调用,
对 AL、AH 和 BL、BH 分别两两相乘得到部分乘积结果 P1 ~
P4,如图 3( b) 所示。 最后,如图 3 ( c) 所示,调用基于

LUT 的近似加法器模块对上述部分乘积做处理得到最终

的乘法结果 R 。

图 3　 基于 LUT 的 8×8
 

bit 无符号近似乘法器原理

Fig. 3　 Overall
 

design
 

of
 

8×8-bit
 

unsigned
approximate

 

multiplier
 

based
 

on
 

LUT

传统的递归调用法是将一次 8×8
 

bit 的运算调用 4
次 4 个功能相同的 4×4

 

bit 的算子,如电路计算复杂将增

加额外的 CPD 和资源消耗。 为了改善上述问题,本文将

4 个 4×4
 

bit 的算子功能压缩进一个算子中提出了改进

型的压缩递归调用方法。 通过扩大算子的输入输出数

量,将乘数与被乘数分割完成后只需调用一个算子即可

同时完成计算并输出部分乘积结果 P1 ~P4。
近似加法器对所有乘法器的最后收尾工作,其面积、

功耗、CPD 等性能直接影响到近似乘法器整体的性能。
Ullah 等[18] 提出了带有 3 个进位链的加法器,其功耗较

高且 CPD 较长。 文献[10]提出了无进位链的近似加法

器,但其结构复杂仍然有改进的空间。 首先,通过对该近

似加法器进行剪枝并修改 8 个 LUT 的逻辑功能使其输

出端口 O6 = I0 | I1 | I2。 通过 OR 运算只对输入的前 3 个

参数进行处理,由此可以简化结构并提升近似加法器性

能。 其次,为了规避由 B [3]到 R [6]关键路径带来的较

高 CPD,本文使用原语将第 2 个 LUT 的 INIT 参数编码为

64′hFEFEFEFEFEFEFEFE 用来处理 P1 [ 5 ]、 P2 [ 1 ]、
P3[1]共 3 个部分乘积。 最后,该近似加法器对部分乘

积 P1 ~ P4 进行处理。 将生成的结果 Y1 ~ Y5 与 P1 的低

四位和 P4 的高四位通过拼接操作得到最终的乘法结果

R 。 改进基于 LUT 的无进位链近似加法器的其功能结构

如图 4 所示。

图 4　 基于 LUT 近似加法器原理

Fig. 4　 Based
 

on
 

the
 

LUT
 

approximate
 

adder
 

principle

结合上述压缩递归调用方法及改进的基于 LUT 的

无进位链近似加法器,本文提出了改进的基于 LUT 的

8
 

bit×8
 

bit 无符号近似乘法器 Proposed8×8_1,结构如图

5(a) 所示。 其结构更为简单,在精度略微下降的情况

下,与同类型乘法器相比其面积、功耗和 CPD 均有较大

改善,适用于资源较为紧张的实际情况。
将 8

 

bit 二进制乘数 A 与 8
 

bit 二进制乘数 B 分割为

AL、AH、BL、BH 后根据二进制数的原理可知 A = AH × 4 +
AL,B = BH × 4 + BL 。 在 FPGA 中直接使用乘法运算

符(“∗”)进行乘法会造成产生较大的 CPD 和功耗,因
此采用 FPGA 中擅长的位移操作进行运算,如式 ( 3)
和(4)所示。

A = (AH ≪ 2) + AL (3)
B = (BH ≪ 2) + BL (4)
结合上述生成的部分乘积结果 P1 ~ P4,由此可推出

A × B 的数学关系在 FPGA 中如式(5)所示。
A × B = (P4 ≪ 8) + P1 + (P3 + P2) ≪ 4 (5)
根据该关系,本文提出了一种新的子积重组计算模

块代替了乘积近似加法器来对生成的部分乘积结果进行

处理,并名为 Proposed8×8_2,如图 5( b)所示。 相较于同

类型乘法器,该乘法器可以较好的取得资源开销与精度

之间取得平衡,增加了方法的普适性,更加适应于复杂的

实际场景。
2. 3　 16×16

 

bit 近似乘法器整体设计

　 　 本文在上述基础上提出了两款基于 LUT 的 16 ×
16

 

bit 无符号近似乘法器和一款基于 LUT 的 16 × 16
 

bit
有符号近似乘法器。 这不仅增强了乘法器的功能和现实
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图 5　 改进型基于 LUT 的 8×8
 

bit 无符号近似乘法器原理

Fig. 5　 An
 

improved
 

LUT-based
 

8×8-bit
 

unsigned
approximate

 

multiplier
 

principle

意义而且更适用于 FPGA 加速卷积神经网络算法。
其工作结构如图 6 所示。 在步骤 1)中采用 2. 2 节提

出的分块计算的方法对 16
 

bit 乘数 A 和 B 进行分块,产
生 8 位分块乘数 AL、AH 和 BL、BH。 在步骤 2)中,调用本

文提出的基于 LUT 的 8×8
 

bit 无符号近似乘法器对分割

后的乘数进行计算,最终生成部分乘积结果 P1、P2、P3、
P4。 在传统的递归调用方法中须累计调用 16 次 4×4

 

bit
近似乘法器,而采用本文提出的压缩递归调用方法只需

调用 4 次 4×4
 

bit 近似乘法器,可减少重复调用时额外的

CPD 和资源消耗。 在步骤 3)中调用改进的近似加法器

或者子积重组计算模块对部分乘积进行组合得到最终结

果。 两者原理已在上文给出,此处不再赘述。
根据上述步骤,在 Proposed8×8_1 的基础上,结合改

进的近似加法器提出了基于 LUT 的 16×16
 

bit 无符号近

似乘法器 Proposed16× 16_1。 在 Proposed8 × 8_2 的基础

上,结合子积重组计算模块提出了基于 LUT 的 16×16 位

无符号近似乘法器 Proposed16×16_2。 由于负数在 FPGA
中以补码的形式表示,而有符号数的最高位为符号位,正
数的原码、补码、反码一致[19] 。 基于上述补码原理,提出

图 6　 基于 LUT 的 16×16
 

bit 无符号近似乘法器原理

Fig. 6　 Overall
 

design
 

of
 

16×16-bit
 

unsigned
approximate

 

multiplier
 

based
 

on
 

LUT

了基于 LUT 的 16×16
 

bit 有符号近似乘法器 Proposed16×
16_3。

3　 实验结果与分析

3. 1　 资源消耗实验方法

　 　 首先,采用文献[10-13]的方法将本文提出的 5 款不

同类别的近似乘法器在 Vivado19. 2 中进行布局布线。
对面积、功耗、CPD 等参数进行静态测量后计算出 PDAP
参数值用来综合衡量乘法器的资源消耗并与对比文献中

的同类型近似乘法器进行对比。 PDAP 等于面积、功耗、
CPD 三者乘积,其值越小则证明综合资源消耗越少。

其次,在动态测试中,测试平台选用以手写数字识别

为功能的卷积神经网络,该卷积神经网络在上位机中进

行训练,将偏置和参数量化为 16
 

bit 定点数部署在 FPGA
上并通过 HDMI 进行视频输出。 在该平台上选用 MNIST
数据集[20] 中数字 0 ~ 9 的手写数字图片各 50 张进行识

别,数字图片以 1
 

s 为时间间隔进行滚动播放。 在 1
 

min



　 第 9 期 基于 FPGA 的高效近似乘法器设计 ·229　　 ·

内 FPGA 识别出图片上的数字即为识别成功,以此方法

来计算识别成功次数、识别成功率和平均识别成功率。
最后,因卷积层在整个卷积神经网络中计算量占比

较大,提高卷积层中乘法的运算效率可以直接提升加速

器的整体性能[21] 。 因此将本文提出的基于 LUT 的 16×
16

 

bit 的有符号近似乘法器封装为 IP 核后,在相同实验

环境下部署在该卷积神经网络中乘法计算较为密集的卷

积层中以代替 Multiplier
 

IP 核。 采用上述测试方法计算

出识别成功次数、识别成功率和平均识别成功率并与之

前结果进行比较。 本文的开发平台为 Vivado19. 2,FPGA
型 号 为 ZYNQ7000 系 列 的 xc7z020, 摄 像 头 型 号

为 OV5640。
3. 2　 精度实验方法

　 　 本文引入文献[ 10-13] 用来量化评估精度的参数

ED、RED 和 MRED 在相同测试环境下进行仿真乘法

实验。
误差距离 ED 是基本的误差度量方式,其值等于精

确乘法结果 M 与近似乘法结果 M′ 的距离,如式 ( 6)
所示。

ED =| M - M′ | (6)
RED 表示为相比于精确结果的相对距离,如式(7)

所示。

RED = ∑
22n

i = 1

ED i

M i
(7)

最终以参数 MRED 来较为客观全面的评估近似乘

法器的精准度,其值越小则表明误差越小[22] ,如式( 8)
所示。

MRED = RED
22n (8)

3. 3　 基于 LUT 的 8×8
 

bit 无符号近似乘法器测试

　 　 根据 3. 1 与 3. 2 节中的实验方法测得本文提出的两

款基于 LUT 的 8×8
 

bit 无符号近似乘法器与前人同类型

乘法器的相关数据,如表 2 所示。
　 　 为了更加客观的表示资源消耗量与精度之间的关

系,采用文献[10-13]的方法绘制了 Pareto
 

Optimal 图由

图 7 所示。 图 7 中在 Pareto
 

Front 上的点证明其精度和

资源消耗取得了较好的平衡,并且最靠近原点的点即为

取得了最好的平衡[23] 。
由图 7 可 知, 本 文 提 出 的 Proposed8 × 8 _ 1 与

Proposed8×8_2 均在 Pareto
 

Front 上。 Proposed8× 8_2 最

靠近原点,证明其精度和资源消耗相较之下达到了最优

平衡,Proposed8×8_1 资源消耗量相较之下最少,可弥补

精度下降带来的损失。 与文献[12] 的 Ax8_1 相比其面

积、功耗、CPD 可节省 60%、约 60. 76%、约 25. 4%。

表 2　 基于 LUT 的无进位链 8×8
 

bit 无符号

近似乘法器测试结果

Table
 

2　 Test
 

results
 

of
 

8×8-bit
 

unsigned
 

approximate
multiplier

 

of
 

uncarried
 

chain
 

based
 

on
 

LUT
方法 面积 / LUTs 功耗 / W CPD / ns MRED PDAP

文献[10] 32 0. 253 11. 893 0. 143 96. 29
NCCA444[11] 44 0. 574 11. 897 0. 108 302. 75
MODA444[11] 45 0. 696 14. 588 0. 065 456. 90
ACCA444[11] 45 0. 809 14. 591 0. 059 531. 19

Ax8_1[12] 80 0. 581 15. 162 0. 079 704. 73
Ax8_2[12] 81 0. 318 14. 305 0. 127 368. 47

Ref[13] 44 0. 574 11. 987 0. 108 302. 75
Proposed8×8_1 32 0. 228 11. 309 0. 146 82. 51
Proposed8×8_2 41 0. 441 13. 866 0. 091 252. 41

图 7　 基于 LUT 的 8×8
 

bit 无符号近似

乘法器 Pareto
 

Optimal 图
Fig. 7　 LUT-based

 

8×8-bit
 

unsigned
 

approximate
multiplier

 

Pareto
 

Optimal
 

diagram

3. 4　 基于 LUT 的 16×16
 

bit 近似乘法器整体测试

　 　 按照上述方法对 Proposed16×16_1、Proposed16×16_
2、Proposed16×16_3 以及前人同类型的乘法器进行测试,
如表 3 所示。

表 3　 基于 LUT 的无进位链 16×16
 

bit
无符号近似乘法器测试结果

Table
 

3　 Test
 

results
 

of
 

16×16-bit
 

unsigned
approximate

 

multiplier
 

of
 

uncarried
 

chain
 

based
 

on
 

LUT

面积 /
LUTs

功耗 / W CPD / ns MRED PDAP

HSLP_1134_16[13] 225 2. 571 17. 479 0. 121 10
 

105. 98
MODA_1334_16[13] 217 3. 35 18. 788 0. 115 13

 

647. 09
ACCA_1111_16[13] 245 3. 994 20. 359 0. 001

 

3 19
 

912. 11
NCCA_1134_16[13] 220 2. 424 15. 192 0. 121 8

 

090. 56
Ca_16x16[21] 245 3. 574 10. 312 0. 112 9

 

029. 49
Proposed16×16_1 144 0. 919 13. 160 0. 213 1

 

742. 33
Proposed16×16_2 197 2. 061 0. 101 0. 091 7

 

421. 34
Proposed16×16_3 199 1. 715 15. 382 0. 213 5

 

255. 71
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　 　 根据表 3 中数据绘制了 Pareto
 

Optimal 图,如图 8 所

示。 本文提出的 Proposed16 × 16_1 与 Proposed16 × 16_2
均在 Pareto

 

Front 上,而 Proposed16×16_3 由于增加了有

符号数计算模块因此与其他近似乘法器类型不同。 结合

表 3 与图 8 可知,Proposed16×16_2 相较于其他同类型乘

法器,其在资源消耗和精度上取得了最优平衡。 相较之

下,Proposed16×16_1 实现了资源节约的最大化可弥补精

度下降带来的损失。 其最高可节省约 41. 2%的面积、约
77%的功耗、约 35. 4%的 CPD。

图 8　 基于 LUT 的 16×16
 

bit 近似乘法器 Pareto
 

Optimal 图
Fig. 8　 LUT-based

 

16×16-bit
 

approximate
multiplier

 

Pareto
 

Optimal
 

diagram

3. 5　 动态测试

　 　 动态测试平台由 FPGA 开发板、上位机、HDMI 显示

屏、数字显示屏组成,如图 9 所示。

图 9　 实机测试平台

Fig. 9　 Real
 

machine
 

testing
 

platform

按照 3. 1 节的实机测试方法分别在卷积层部署

Proposed16×16_3、Multiplier
 

IP 核后进行数据测算。 与部

署了 Multiplier
 

IP 核(Speed
 

Optimized)的卷积层相比,面
积减少了约 23. 7%,功耗下降了 46. 88%,卷积层中 CPD
增加了约 9. 3%。 本文与部署了 Multiplier

 

IP 核 ( Area
 

Optimized)的卷积层相比,面积减少了约 32. 48%,功耗下

降了 41. 21%,卷积层中最大 CPD 下降了约 24. 28%如表

4 所示。

表 4　 积层测试结果

Table
 

4　 Convolutional
 

layer
 

test
 

results
卷积层面积 卷积层功耗 卷积层 CPD

Multiplier
 

IP
(Speed

 

Optimized)
4

 

013 0. 239 12. 383

Multiplier
 

IP
(Area

 

Optimized)
4

 

538 0. 216 17. 881

Proposed16×16_3 3
 

064 0. 127 13. 54

　 　 对在卷积层部署 Multiplier
 

IP 核的卷积神经网络识

别率进行测试。 经过测试得到原卷积神经网络各数字的

识别率,并计算出平均识别率为 90. 2%,如表 5 所示。

表 5　 原卷积神经网络测试数据

Table
 

5　 Original
 

convolutional
 

neural
 

network
 

test
 

data

数字
测试

次数

识别成功

次数

识别

成功率 / %
平均成功

识别率 / %
0 50 48 96
1 50 49 98
2 50 48 96
3 50 35 70
4 50 47 94
5 50 46 92
6 50 45 90
7 50 40 80
8 50 48 96
9 50 45 90

90. 2

　 　 对部署了本文提出的 Proposed16×16_3 的卷积神经

网络进行测试。 测得部署后卷积神经网络各数字的识别

率并计算出平均识别率为 86. 8%,仅下降 3. 4%,如表 6
所示。

表 6　 部署后的卷积神经网络测试数据

Table
 

6　 Deployed
 

convolutional
 

neural
 

network
 

test
 

data

数字
测试

次数

识别成功

次数

识别

成功率 / %
平均成功

识别率 / %
0 50 45 90
1 50 47 94
2 50 47 94
3 50 33 66
4 50 46 92
5 50 43 86
6 50 45 90
7 50 39 78
8 50 45 90
9 50 44 88

86. 8

　 　 由以上实验证明,本文提出的 Proposed16 × 16_3 在

精度损失较小的情况下,带来的资源节省量明显。
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4　 结　 论

　 　 本文针对 FPGA 加速卷积神经网络时资源消耗量

大、加速不彻底的核心问题,结合压缩递归调用、优化关

键路径、子积重组计算、有符号数判断模块等技术方法,
提出了 5 款适用于不同场景、各有优势的基于 LUT 的近

似乘法器。 这些乘法器可以较好的满足 FPGA 加速卷积

神经网络的需求并在精度与资源开销达成最优平衡的条

件下最高可节省 60% 的面积、 约 60. 76% 的功耗、 约

25. 4%的 CPD。 本研究不仅对硬件加速领域具有一定的

参考价值,还为近似计算领域做出了一定的贡献。 未来

的工作将进一步拓展近似乘法器的适用性,在能耗与精

度的动态平衡方面进行更为深入的研究。
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