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Abstract: Five approximate multiplier design methods are proposed to address the issues of incomplete models, high on-chip resource
consumption, and limited performance of Field Programmable Gate Array (FPGA) in accelerating convolutional neural networks, image
processing algorithms, and other approximate computing fields. Based on an 8-bitx8-bit unsigned carry chain approximation multiplier,
two LUT based 8-bitx8-bit unsigned approximation multipliers are proposed for different real-world scenarios with a lookup table (LUT)
to optimizing the critical path simplification structure by compressed recursive invocation methodology and sub-product recombination
computation strategy. This method can save up to 60% of area, about 60. 76% of power consumption, and about 25. 4% of critical path
delay (CPD) compared to similar multipliers within an acceptable range of accuracy. At the same time, in order to meet the needs of
more complex scenarios, two 16 bitx16 bit unsigned approximate multipliers with LUT are proposed by doubling the number of multiplies
digits. Compared with similar multipliers, the method can save up to about 41. 2% of the area, about 77% of the power consumption,
about 35.4% of the CPD, which can compensate for the loss caused by the decrease in accuracy. In addition, based on the signed
number calculation module, proposed a 16 bit X 16 bit signed approximate multiplier with LUT is proposed to replace Xilinx’ s ( now

ADM) Multiplier TP core, which is deployed in the convolutional neural network convolutional layer with handwritten number recognition
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function and tested using handwritten number images in the MNIST dataset. It saves about 32.48% of area, about 41.21% of power

consumption, and about 24.28% of CPD, at the cost of a 3. 4% decrease in accuracy. It is shown that these multipliers can effectively

meet the requirements of FPGA accelerated convolutional neural networks and achieve the optimal balance between accuracy and resource

overhead.
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multiplier of uncarried chain based on LUT

VRS HR/LUTs Zh#/W CPD/ns MRED  PDAP
kol 32 0.253 11.893 0.143  96.29
NCCA444 M) 44 0.574 11.897 0.108  302.75
MODA444 1] 45 0.696  14.588  0.065  456.90
ACCA444M) 45 0.809  14.591 0.059  531.19
Ax8_1M1% 80 0.581 15.162 0.079  704.73
Axg_2M1% 81 0.318 14.305 0.127  368.47
Ref[ "] 44 0.574 11.987 0.108  302.75
Proposed8x8_1 32 0.228 11.309 0.146  82.51
Proposed8x8_2 41 0.441 13.866 0.091 252.41
800
m Proposed 8x8_1
700 . 2 R pe2
M th
600 |- < ACCA444[11]
» MODA444[11]
< ® NCCA444[11]
B 5001 N * 3CHR[ 10]
o) L
g 400 .
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100 F Pareto Front %
n
0 1 1 1 1
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MRED
P 7 JEF LUT 19 8x8 bit TAFS I
e k4% Pareto Optimal &

Fig.7 LUT-based 8x8-bit unsigned approximate

multiplier Pareto Optimal diagram

3.4 ETF LUT B 16x16 bit IEU5R 5SS 544 i
% B8 58 J5 322 %3 Proposed16x16_1 , Proposed 16X 16_
2 Proposed16x16_3 LA K Hif A [m] 28 Y (1% 3fe vk v A 7 I i
k3 Fios,
*=3 ETF LUT WEBHAIHE 16x16 bit
R SR ERMAER
Table 3 Test results of 16x16-bit unsigned
approximate multiplier of uncarried chain based on LUT
M/
Ts
HSLP_1134_16!") 225 2.571
MODA_1334_16!3 217 3.35
ACCA_1111_1631 245 3.994
NCCA_1134_16!") 220  2.424
Ca_16x16"2! 245 3.574  10.312  0.112 9 029.49
Proposed16x16_1 144  0.919 13.160 0.213 1 742.33

Proposed16x16_2 197 2.061 0.101  0.091 7421.34
Proposed16x16_3 199 1.715 15.382 0.213 5255.71

i#/W CPD/ns MRED  PDAP

17.479 0.121 10 105.98
18.788 0.115 13 647.09
20.359 0.001 3 19 912.11
15.192  0.121 8 090. 56
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WIEE 3 PEIELH T Pareto Optimal &, Ink& 8 By
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7% 3 5K 8 "I %, Proposed16x16_2 AH%: T HAB [R5 A5
Pt HAEREINFE RO L UGS T AR, AL
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JETN B R . Hfm @il 198 2 41. 2% T AL 2y
T7% I IIFE (2 35. 4%y CPD,,
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Fig. 8 LUT-based 16X 16-bit approximate

multiplier Pareto Optimal diagram

3.5 EhEAEL
MR 5 B FPGA &4, EAZHL  HDMI & 7%
Bt B Bon R, WE 9 TR,

B9 A&
Fig.9 Real machine testing platform

FERR 3.1 1 A9 SEHL IR T vk o B e B B2
Proposed16x16_3 Multiplier IP A% 5 #EAT50PEME . 556
2 T Multiplier IP #% ( Speed Optimized ) F)&FUZ A H , T
U T 2 23.7% , SHFE T RE T 46. 88% , & HUZH CPD
T 29 9.3%, ACH#E T Multiplier IP #% ( Area
Optimized ) FEFUZ AL, AR T2 32, 48% , IIAE
KT 41.21% , BRUZH K CPD TR T4 24. 28% ik
4 IR,

x4 HEMRER
Table 4 Convolutional layer test results

ERZER BRZEME ERZ CPD

Multiplier IP

4013 0.239 12.383
('Speed Optimized )
Multiplier IP
4 538 0.216 17. 881
(Area Optimized )
Proposed16x16_3 3 064 0. 127 13.54

KHEBAZEB 2 Multiplier 1P A% (1 45 B 22 9 2841
FRFEATINA 200 A5 2 JF S TR 2 I 4% 45 B0 1Y
TR IR SEYUIR A 90. 2% , i3k 5 FiR

x5 RERWMEMZNXLBIE

Table 5 Original convolutional neural network test data

b avilledl] vl SR
A UCEL T/ % PRI/ %

0 50 48 96

1 50 49 98

2 50 48 96

3 50 35 70

4 50 47 94

5 50 46 92 %0-2

6 50 45 90

7 50 40 80

8 50 48 96

9 50 45 90

HERE T A SCHE Y Proposed16x16_3 [ 45 F i 25
PIZE EATIN I, DA 38 28 I 4 AR 22 0 24 2% 507 ) )
BRI T B %N 86. 8% , AL T [ 3.4% , W13k 6
F7R

F 6 MMEEMEBRMHBERENREHE

Table 6 Deployed convolutional neural network test data

s WX SR B T R)
- K WHC RIIE% WIR%
0 50 45 90
1 50 47 94
2 50 47 94
3 50 33 66
4 50 46 92
5 50 43 86 86.8
6 50 45 90
7 50 39 78
8 50 45 90
9 50 44 88

i DA ESEEG IR A AN SCHE Y Proposed16x16_3 1
FEEEBUR BN BL T A R BSR4 W
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