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Real-time spectrum analysis method based on Zoom-FFT algorithm

Li Hao Wang Huanghui Cao Jiawei Wei Yangbin Li Xuyang

(School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

Abstract: With the increasing demand for real-time processing and high resolution in modern communication and signal processing
systems, the inherent trade-off between frequency resolution and bandwidth in traditional FFT-based spectral analysis has become
increasingly evident, making it challenging to simultaneously achieve rapid processing and high-precision analysis. To address this issue,
this paper proposes a real-time spectral analysis method based on the Zoom-FFT algorithm. The proposed approach leverages a localized
spectral refinement technique to perform high-resolution spectral analysis while reducing computational complexity and satisfying real-time
requirements. In this method, the target frequency band is first down-converted to baseband using digital down-conversion. Multistage
decimation filtering, incorporating both low-pass filtering and down-sampling, compresses the data while preserving essential spectral
features. Subsequently, a localized high-resolution FFT is applied to the decimated signal, which enhances the detection capability for
weak signals. An overlapping frame technique is also introduced to mitigate spectral leakage and improve the spectrum update rate. The
method is ultimately implemented and validated on FPGA hardware. Experimental results indicate that, at a sampling rate of 250 MHz,
the proposed method achieves a frequency resolution of 1 kHz for a signal with a 50 kHz bandwidth, while the FPGA’ s parallel
architecture further improves data processing efficiency. This integrated approach of innovative signal processing and hardware
acceleration provides an effective solution for high-real-time and high-precision spectral analysis in applications such as communication
signal monitoring and radar pulse analysis.
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Fig.3 Real-time spectrum analysis architecture

2.1 HFETETIMEIT

TEASCBE S i 3 DDS Compiler P #7742 5
FE S R B B AR 5, P o T i 7 S BRI 4 1
DDS =2 A S04 A7t 1F 5% 05 A 25 3R 2 4 0, A
A S e i B A4 4 R XA AT B0, K A B
(B F AR 348 B 4 ) 2 DR, oS K BRN AR 1 B o 4 SR
ShARAE B b ik, 2 A 4R 3R P 5RO A 0 BB
DDS TP &% A% 507 9 5 DDS 15 & (1 s 253 F A 5,
FHEFIR R .

OutputWidth = SFDR/6 (3)

et A3 AT A [ S R T g AR T R AR X AR AT
MFEATR G AR i AR R OR

f£.A0

- 2Bﬂ<n>
. £, 4 DDS B AR B 3 ; A0 b AH 137 38 o s 7]
T3 By, N A WY EARAT R EL, i ] A0 SR AR
DDS i AT

A DDS i A2 5% 9 16 bit, %X E DDS 1
AU 96 dB, H1 T F G0 i o 1 PR K
HROAB R A [ AR I 2 R 70 MHz, Fe 4
VOB T A8 45 FPGA SCEL 44 an & 4 Frw, Hop

(4)

out



57 3

BET Zoom-FFT SE05 Y SR EE 0 M7 7 % =35 -

slice FHTKE DDS % A 0 % BOH8 42 3 AR A7 40 % QL1
%, 16 PiVER Q BEAIRIE 5 MK 16 FifEN 1 BEAIRTS
T SR T.Q MBS BT 1E 2215 SR A AT LA 85000 i 4515
S , A1 R T o B S AN S BEARSr, AT LA R
PREAE AL BRI RE | $2 050 R G4 U

ADC_data

nes COS_Multiplier
1k
DDS ¢
A[15:0] L
clk aclk data[31:0] f— | Bpso) P[31:0]—»
@— aresetn valid CE
SIN_Multiplier
COS slice N
Cl
din[31:0] dout[15:0] ) %
: [ A[15:0] PB10] Q
SIN slice J: B[15:0]
din[31:0]  dout[15:0] CE

K4 K7 F A A
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