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Research on depth feature diagnosis of convention and combustion perspectives
with intake or exhaust blockage for aero piston engine

Xu Jinsong Wang Bo Wei Baotao Sheng Run

(Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: To address the performance degradation problem of aero piston engine caused by different blockage degrees of intake and
exhaust, a two-channel deep perspective feature fusion diagnostic model based on conventional intake or exhaust and cylinder combustion
data was designed. So the self-attention ( SA) mechanism was introduced into the combustion perspective channel of the constructed two-
channel deep convolutional neural network (DCNN) diagnostic architecture, which enhanced the ability to extract combustion features.
By setting five health levels of different degrees for intake or exhaust blockage, a performance degradation dataset was obtained for the
ground bench tests at the altitude of 1 920 m and engine AMESim+Simulink joint simulations, including two typical operating conditions ;
takeoff and cruise. Using the takeoff condition at a propeller speed of 2 300 r/min as a study case, the trend analysis of cylinder pressure
changed with different blockage degrees of intake or exhaust, the t-SNE depth feature distribution and classification diagnosis analysis of
each network layer were carried out. And the rationality of the diagnostic architecture was further verified by the model component
ablation experiment. The results showed that the two-channel diagnostic model of self-attention and deep convolutional neural network
(SA-DCNN) for cases of intake or exhaust blockage on aero piston engine achieved an average accuracy of 98. 95% and 98. 62% on five
levels of health diagnosis, respectively indicating that the diagnostic model had high accuracy.
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Depth features diagnosis architecture of intake or exhaust blockage conditions on aero piston engine
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Table 7 Comparison of intake blockage diagnosis

between old and improved framework

HEZL MY SFERR/ % bRifEE
1-channel DCNN
IH % 98.03 0.016 4
i 2-channel DCNN
1-channel DCNN
Bigis 98.95 0.014 7
BOBJIE ) hamel  SADCNN
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Table 8 Comparison of exhaust blockage diagnosis

between old and improved framework

HEZL MEMes FIUERMZE/ %  brifE
1-channel DCNN
IHK % 97.79 0.019 1
s 2-channel DCNN
1-channel DCNN
Bigzis 98. 62 0.017 8
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Table 9 Ablation experiment of model component

LWL % R L S UER R/ %

Baseline 88.76
Single-Channel + Attention 90. 15

PG IE ° . .
Two-Channel+Fixed Weight 97.07
Two-Channel+Dynamic Weight 98. 95
Baseline 86.42
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HE U § N
Dual-Channel +Fixed Weight 96. 32
Dual-Channel+Dynamic Weight 98. 62
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