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航空活塞发动机进排气堵塞的常规与燃烧视角
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摘　 要:针对进排气的不同堵塞程度会导致航空活塞发动机的性能退化问题,设计了基于常规进排气与缸内燃烧数据的双通道

深度视角特征融合诊断模型。 为增强对燃烧特征的提取能力,在构建的双通道深度卷积神经网络( DCNN)诊断架构的燃烧视

角通道中引入自注意力机制(SA)。 通过设定的 5 类不同程度进排气堵塞健康等级,获得海拔 1
 

920
 

m 的地面台架试验和发动

机 AMESim+Simulink 联合仿真的性能退化数据集,且包含起飞与巡航两种典型工况。 以螺旋桨转速 2
 

300
 

r / min 的起飞工况为

案例,进行不同进排气堵塞程度的缸压变化趋势分析、各网络层的 t-SNE 深度特征分布及分类诊断分析,并借助模型组件消融

实验进一步验证该诊断架构的合理性。 结果表明,针对航空活塞发动机进排气堵塞案例的双通道自注意力深度卷积神经网络

(SA-DCNN)诊断模型,其 5 类健康等级诊断的平均准确率分别达到 98. 95%和 98. 62%,表明该诊断模型具有较高的准确性。
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Abstract:
 

To
 

address
 

the
 

performance
 

degradation
 

problem
 

of
 

aero
 

piston
 

engine
 

caused
 

by
 

different
 

blockage
 

degrees
 

of
 

intake
 

and
 

exhaust,
 

a
 

two-channel
 

deep
 

perspective
 

feature
 

fusion
 

diagnostic
 

model
 

based
 

on
 

conventional
 

intake
 

or
 

exhaust
 

and
 

cylinder
 

combustion
 

data
 

was
 

designed.
 

So
 

the
 

self-attention
 

(SA)
 

mechanism
 

was
 

introduced
 

into
 

the
 

combustion
 

perspective
 

channel
 

of
 

the
 

constructed
 

two-
channel

 

deep
 

convolutional
 

neural
 

network
 

(DCNN)
 

diagnostic
 

architecture,
 

which
 

enhanced
 

the
 

ability
 

to
 

extract
 

combustion
 

features.
 

By
 

setting
 

five
 

health
 

levels
 

of
 

different
 

degrees
 

for
 

intake
 

or
 

exhaust
 

blockage,
 

a
 

performance
 

degradation
 

dataset
 

was
 

obtained
 

for
 

the
 

ground
 

bench
 

tests
 

at
 

the
 

altitude
 

of
 

1
 

920
 

m
 

and
 

engine
 

AMESim+Simulink
 

joint
 

simulations,
 

including
 

two
 

typical
 

operating
 

conditions:
 

takeoff
 

and
 

cruise.
 

Using
 

the
 

takeoff
 

condition
 

at
 

a
 

propeller
 

speed
 

of
 

2
 

300
 

r / min
 

as
 

a
 

study
 

case,
 

the
 

trend
 

analysis
 

of
 

cylinder
 

pressure
 

changed
 

with
 

different
 

blockage
 

degrees
 

of
 

intake
 

or
 

exhaust,
 

the
 

t-SNE
 

depth
 

feature
 

distribution
 

and
 

classification
 

diagnosis
 

analysis
 

of
 

each
 

network
 

layer
 

were
 

carried
 

out.
 

And
 

the
 

rationality
 

of
 

the
 

diagnostic
 

architecture
 

was
 

further
 

verified
 

by
 

the
 

model
 

component
 

ablation
 

experiment.
 

The
 

results
 

showed
 

that
 

the
 

two-channel
 

diagnostic
 

model
 

of
 

self-attention
 

and
 

deep
 

convolutional
 

neural
 

network
 

( SA-DCNN)
 

for
 

cases
 

of
 

intake
 

or
 

exhaust
 

blockage
 

on
 

aero
 

piston
 

engine
 

achieved
 

an
 

average
 

accuracy
 

of
 

98. 95%
 

and
 

98. 62%
 

on
 

five
 

levels
 

of
 

health
 

diagnosis,
 

respectively
 

indicating
 

that
 

the
 

diagnostic
 

model
 

had
 

high
 

accuracy.
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0　 引　 言

　 　 由于航空活塞发动机在中小型无人机和轻型通用航

空的动力系统中占据主导地位[1] ,其长期处于高温、高振

动、变工况等恶劣环境下运行,关键部件易产生各种性能

退化或损坏[2] ;而作为活塞发动机五大核心系统之一的

进排气系统堵塞或泄漏会引发燃烧异常,导致发动机的

性能恶化[3] ,极端情况下可能引发空中停车等重大安全

事故。 因此,开展针对航空活塞发动机进排气堵塞深度

特征的有效诊断方法研究,对提升发动机运行安全性和

维护决策效率具有重要意义。
现有发动机故障诊断技术主要分为 3 类:基于物理

建模方法、基于知识经验方法和基于数据驱动方法。 在

物理模型方法中,Kim 等[4] 建立基于物理的航空燃气涡

轮模型进行故障诊断,但依赖精确的数学模型难以适应

复杂工况。 此外,基于知识经验方法依靠大量的专家知

识经验,存在诸多局限性。 基于数据驱动方法能定期处

理、分析来自系统指定的检测数据,聂浩淼等[5] 采用支持

向量机进行柴油机气阀故障诊断分类,王冠等[6] 通过模

糊聚类处理火箭发动机的标签缺失数据;这些早期方法

在一定程度上对诊断效率有所提高,但在特征工程阶段

缺乏对深层数据特征的数据挖掘问题。
随着人工智能的快速发展,深度学习技术凭借其出

色的特征提取优势,逐渐成为基于数据驱动方法的智能

诊断研究热点。 栾孝驰等[7] 通过自适应反卷积算法检测

涡扇轴承故障,辛佳雯等[8] 基于级联卷积网络实现航空

发动机螺栓缺陷检测,文冠华[9] 构建 CNN 模型评估柴油

机空气系统状态,唐智等[10] 提出了基于自适应重构相空

间-支持高阶张量机的健康评估模型,张俊红等[11] 设计

改进
 

CNN
 

缓解数据过拟合,Jin 等[12] 将 CNN 应用于压气

机旋转失速预警系统。 有些研究方法是值得借鉴的,但
与本研究仍有一些不同之处:1)研究对象多集中于燃气

涡轮机、柴油机等类型,针对航空活塞发动机的研究很

少,如康玉祥等[13] 的 Transformer 框架轴承检测、张世杰

等[14] 的时空图卷积气路诊断;2) 多采用单一数据模态,
未充分融合多源异构监测信息的不足,如蔡舒妤等[15] 的

YOLO 损伤检测仅处理图像数据;3) 缺乏对特征学习过

程的可视化验证,如:伍济钢等[16] 的注意力机制模型、
Chu 等[17] 的全缸诊断系统。

通过借鉴上述研究成果与不足,本研究提出一种基

于常规与燃烧视角双通道深度学习架构的航空活塞发动

机进排气堵塞深度特征诊断方法。 该模型包括两条特征

提取通道:1) 面向进排气常规视角的深度卷积神经网

络(deep
 

convolutional
 

neural
 

network,DCNN) 通道,提取

进排气监测数据的深度特征;2)面向燃烧视角的自注意

力深度卷积神经网络(self-attention
 

and
 

deep
 

convolutional
 

neural
 

network,SA-DCNN)通道,挖掘燃烧数据中的深度

特征。 实现多源数据的协同建模与深层特征融合,采用

动态融合因子 α 实现两通道特征的自适应加权整合。 依

托发动机台架试验和 AMESim
 

+
 

Simulink 联合仿真构建

的数据集对模型进行训练与验证, 并通过 t-SNE ( t-
distributed

 

stochastic
 

neighbor
 

embedding)对各网络层提取

的深度特征进行可视化,揭示从健康状态到不同堵塞状

态的深度特征分布规律。 该研究成果将来可为无人机或

轻型通航飞机提供高效、可靠的发动机健康状态识别方

法,并为发动机智能维护技术的发展提供理论依据与工

程参考。

1　 双通道深度特征诊断模型

　 　 双通道深度特征诊断具备特征观测较全面、准确率

高的特点。 针对航空活塞发动机进排气堵塞状况,本研

究提出双通道深度特征诊断的整体架构如图 1 所示,其
两个并行通道的深度卷积网络分别提取进排气常规视角

数据(1-channel) 和燃烧视角数据( 2-channel) 的深度特

征。 首先, 每个通道分别借助一维深度卷积神经网

络(one-dimensional
 

deep
 

convolutional
 

neural
 

network,1D-
DCNN)提取对应特征,而燃烧视角通道增加了自注意力

机制;其次,对两个通道的深度特征进行动态网络加权与

融合,可获得深度特征的整合优化效果,从而提升特征表

达能力和诊断精度;最后,通过全连接层整合融合后的特

征,并使用 Softmax 分类器进行最终的分类和诊断。 该双

通道深度特征诊断方法的设计能够捕捉不同类型的特征

信息,增强模型的数据处理能力,提高对复杂数据的诊断

准确性。
1. 1　 双通道视角数据的选取及预处理

　 　 发动机工作过程的空气流动特性与燃烧响应是发动

机性能表现的两个核心方面,通过设计进排气常规视角

与燃烧视角的双通道输入结构,能有效识别发动机进排

气堵塞条件下的不同健康状态。 所选参数都能紧密关联

堵塞导致的性能变化,具有明确的物理响应特征与诊断

价值。
1)进排气常规视角通道的输入数据选取。 该通道聚

焦于空气系统中最能直接反映堵塞时的关键运行参数,
它涵盖了进气侧、排气侧以及动力输出层面,有助于构建

对进排气堵塞的全局性诊断能力。 具体选取为进气压力

(受到进气堵塞与排气反压的共同影响)、排气压力(直
接表征排气通道是否畅通)、过量空气系数(反映实际进

气量与喷油所需理论空气量的关系) 、转速和功率(表

征发动机的当前运行工况和输出功率性能) 作为输入

特征。
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2)燃烧视角通道的输入数据选取。 缸内燃烧压力是

当前工况下油气混合物燃烧状况的直接表征。 进排气堵

塞会改变气缸换气过程,引发进气不足、残余气滞留,导
致燃烧相位延迟、缸压下降等现象。 通过选取缸内燃烧

压力的原始波形数据作为第 2 通道输入,从燃烧过程的

微观层面反映堵塞导致发动机内部恶化的响应特征,及
对核心退化趋势的识别能力强化。

3)数据预处理方法。 由于不同特征原始数据之间存

在尺度差异,它会影响模型的收敛速度和稳定性。 采用

Max-Min
 

归一化方法,把特征收敛在同一尺度范围内,可
以减少尺度差异影响,提高模型的训练效果。 Max-Min

 

的归一化公式为:

x′ = x - Min(x)
Max(x) - Min(x)

(1)

式中: x 为原始数据中的某个特征值; x′为归一化后的数

据值。
1. 2　 1D-DCNN 通道

　 　 首先利用输入数据上的一维卷积核进行滑动,将窗

口中的每个元素与其对应的权重相乘,然后将这些结果

相加,提取局部特征。
输入数据 x、卷积核 k 和输出特征 y 的计算公式为:

y( t) = ∑ p-1

i = 0
x( t + i)·k( i) (2)

式中:输入数据 x( t) 和输出特征 y( t) 表示在时间步长 t

上的对应值,卷积核 k( i) 的第 i 个权重,卷积核的大小决

定了卷积核中权重的数量。
激活函数 ReLU 使得神经网络可以学习和表示复杂

的非线性关系,其公式为:
ReLU(x) = max(0,x) (3)
在进排气常规视角通道中,由于经过处理后的输入

原始数据序列较短,1-channel
 

的 1D-DCNN 选取 2 个卷积

层(卷积核大小为 2)和 2 个池化层,进行较细粒度的特

征提取;而燃烧通道的原始数据为发动机每个工作循环

的气缸缸内燃烧压力,其 2-channel
 

的 1D-DCNN 选取 5
层卷积(卷积核大小为 3)和 4 个池化层,能较好地捕捉

缸压数据中的复杂动态特征。
因此,采用双通道并行深度特征提取,能优化提取与

分析不同的深度特征,并在燃烧特征通道的深度卷积层

之后,还增加了自注意力(SA)机制层。
1. 3　 燃烧通道的 SA 机制层

　 　 由于燃烧特征包含发动机整个工作循环的复杂信

息,SA 机制能够专注捕捉数据或特征内部的依赖关系和

全局模式,它与卷积层的结合(图 1)能更好地捕捉每个

工作循环中的燃烧过程,并在燃烧的局部和全局特征之

间取得平衡。 通过自注意力机制再次聚焦燃烧通道的重

要深度特征和缸压变化趋势,实现对深度特征的优化提

取和全面、准确的诊断分析。

图 1　 航空活塞发动机进排气堵塞的深度特征诊断架构

Fig. 1　 Depth
 

features
 

diagnosis
 

architecture
 

of
 

intake
 

or
 

exhaust
 

blockage
 

conditions
 

on
 

aero
 

piston
 

engine

　 　 如图 2 所示,自注意力层通过筛选重要信息,过滤不

重要信息,建立全局的依赖关系,扩大感受野。 其利用查

询(Query)、键(Key)和值( Value) 3 个矩阵的线性变换,

缩放点积注意力( scaled
 

dot-product
 

attention)机制等,来
计算得到每个元素对其他元素的注意力权重,进而加权

求和,得到每个元素的最终表示。
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图 2　 自注意力模块

Fig. 2　 Self-attention
 

module

1)计算查询、键和值

给定一个输入序列 X 的表示为矩阵 X∈Rn×d,其中 n
是序列的长度,d 是特征维度。 自注意力机制需要计算

查询、键和值矩阵。 这些矩阵通常是对输入矩阵 X 进行

线性变换:
Q = XWQ (4)
K = XWK (5)
V = XWV (6)
其中, WQ,WK 和 WV 是权重矩阵,分别对应 Query、

Key 和 Value 的线性变换。
2)计算注意力权重

注意力权重用于确定每个位置对其他位置的关注程

度,主要对 Query 和 Key 的点积进行缩放计算,并结合
 

Softmax
 

函数:

Attention(Q,K,V) = Softmax(QK
T

dk

)V (7)

其中, QKT 为 Query 矩阵和 Key 矩阵的点积,计算每

一对 Query 和 Key 之间的相关性, dk 是对“点积”的结

果进行缩放,其中, dk 是 Key 的维度,对缩放后的点积进

行 Softmax 操作,以得到每个位置的注意力权重, V 是

Value 矩阵,对注意力权重进行加权。 此处的 Softmax 函

数是计算位置之间的相关性概率分布,输入为注意力分

数,输出为注意力权重。
3)计算最终输出

自注意力机制的最终输出是加权后的 Value 矩阵

V ,其中根据注意力权重进行每个位置的加权求和:
Output = Attention(Q,K,V) (8)
自注意力层通过计算输入序列中每个位置对其他位

置的影响,生成加权的值矩阵。 这种结构加强了模型关

注序列中的重要部分,并有效捕捉长距离的依赖关系,从
而提高了诊断模型的表示能力与性能。

1. 4　 双通道深度特征的线性插值动态融合

　 　 为了提升双通道特征融合的灵活性与模型诊断的自

适应能力,本研究在模型结构中引入可训练的动态融合

权重因子 α,并提出基于线性插值的特征融合策略。 通

过双通道深度特征提取,分别获得来自进排气常规视角

与燃烧视角的特征向量 F1 和 F2,以权重 α 进行融合层线

性加权,融合表达为:
F = α·F1 + (1 - α)·F2 (9)
其中,权重 α 初始值为

 

0. 5,表示初始阶段默认两个

通道具有相同的重要性。 α 被作为网络中的一个可学习

参数,随着模型训练过程一同优化,即在前向传播过程

中,α 参与上述融合表达的计算,所生成的融合特征 F 将

作为输入传递至后续分类层。 分类层输出结果后,与真

实标签共同构建交叉熵损失函数 α,并在反向传播阶段

通过链式法则计算损失关于 α 的梯度∂L / ∂α。
此梯度信息将与深度网络的其他参数一同输入

Adam 优化器,结合设定的学习率,执行梯度更新规则,完
成参数调整。 为了保证权重 α 的取值具有物理合理性,
训练过程中对其取值施加约束,确保其始终位于[0,1]
区间之内。 因此,权重 α 能够根据训练过程中两通道特

征对分类精度的相对贡献自动调整其值,从而实现特征

融合策略的动态最优配置。 整个过程在 TensorFlow 平台

上实施,以便精细化地权衡与整合两个视角的特征信息。
1. 5　 融合后的深度特征分类预测诊断

　 　 深度特征的诊断分类和预测结果是由网络诊断架

构(图 1)中的全连接层和 Softmax 分类层来完成的,即全

连接层把融合后的深度特征映射到进排气堵塞状况对应

的分类空间,再经过 Softmax 分类层计算全连接分类子空

间对应健康等级的概率分布,概率最大的对应健康等级

标签就是最终的诊断预测结果,从而实现对发动机进排

气的健康状态判别。
设全连接层的输出为 z = [ z1,z2,…,zK] ,其中 K 是

类别的总数, ezi 是对每个输出值的指数函数, 分母

∑ K

j = 1
ez j 是所有指数值的和,确保所有 Softmax( zi ) 的和

为 1,从而构成一个有效的概率分布,其计算公式如下:

Softmax( zi) = ezi

∑ K

j = 1
ez j

(10)

1. 6　 健康等级的划分

　 　 通常,将发动机的健康状况划分为 5 个等级是最科

学的。 本研究针对航空活塞发动机的不同进排气堵塞状

况,把发动机性能从健康状态逐步劣化到故障的过程定

义为 5 类健康等级状况如表 1 所示。
如图 3 所示,根据上述健康等级的定义,设置了不同

健康等级的阈值(threshold)。 由于不同进排气堵塞程度
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　 　 　 表 1　 各健康等级对应的发动机状况描述

Table
 

1　 Description
 

of
 

engine
 

condition
corresponding

 

to
 

each
 

health
 

grade
等级 状况描述

健康 发动机运行正常

亚健康 有轻微的性能问题,但尚未明显影响正常运行

中度劣化 发动机的性能明显受限,需要进行维护

重度劣化 发动机运行效率低下,可能会有明显的故障症状

故障 发动机基本无法运转工作,需要立即修复或更换

会使得发动机的输出功率、过量空气系数、气缸的缸压峰

值等核心数据下降,这些核心数据经过深度学习之后被

转换为对应的深度特征数据。 选取相关特征数据下降的

百分比作为相应的设定阈值,可实现发动机健康状况的

梯度指标描述。

图 3　 发动机进排气道堵塞的健康等级

Fig. 3　 Health
 

grades
 

of
 

intake
 

or
 

exhaust
blockage

 

on
 

aero
 

piston
 

engine

设发动机某特征数据的下降百分比阈值( Threshold)
公式为:

Threshold =
Ph - Pact

Ph

× 100% (11)

式中: Ph 是进排气无堵塞下选取的某健康等级特征均

值; Pact 是发生不同堵塞度时对应的实际特征劣化值。

2　 深度特征的诊断数据与分析

2. 1　 搭建发动机台架试验和联合仿真过程

　 　 发动机地面台架试验是以进口的某型四缸四冲程压

燃式高压共轨航空活塞发动机为测试对象。 该发动机配

备齿轮减速器(减速比为 1. 69)和全权限数字发动机控

制(FADEC)系统,采用废气涡轮增压器与中冷器组成的

进气增压中冷系统,发动机的主要性能参数如表 2 所示。
试验地点位于昆明(海拔 1

 

920
 

m,大气压力 80. 2
 

kPa,环
境温度 13. 4

 

℃ ),为了模拟不同进排气堵塞状态,在进、
排气管路上分别安装可调节不同开度的节流阀作为气道

堵塞。
表 2　 航空活塞发动机的主要参数

Table
 

2　 Main
 

parameters
 

of
 

aero
 

piston
 

engine
参数 数值

缸径 / mm 83
活塞行程 / mm 92

排量 / L 1. 991
压缩比 18

最大连续功率 / kW 99
最大扭矩 / (N·m) 473

发动机最大转速 / ( r / min) 3
 

887
齿轮减速器的减速比 1. 69

螺旋桨最大转速 / ( r / min) 2
 

300

　 　 如图 4 所示,试验测试系统由功率测控、气体流动监

测、燃烧过程采集与排放检测 4 个子系统构成。 通过江

苏联测科技的电涡流测功机测得发动机的动力输出;燃
烧过程采用瑞士 Kistler 的 6056 型预热塞式缸压传感器

配合 Kibox 燃烧分析仪记录缸内压力曲线;进气流量由

上海同圆的质量流量计采集,油耗通过瞬态油耗仪获取,
排气排放则使用 AVL 尾气分析仪进行监测。 进气压力

传感器安装在中冷器后,排气背压传感器安装在涡轮后,
具备高频响应和较强抗干扰能力,可实现对发动机运行

全过程的精细化采样。

图 4　 航空活塞发动机台架布置

Fig. 4　 Test
 

bench
 

layout
 

of
 

aero
 

piston
 

engine
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　 　 仿真过程是借助已自行搭建好的压燃式航空活塞发

动机 AMESim 仿真模型和 Simulink 控制模型进行联合仿

真[18] ,主要是通过 AMESim 仿真系统软件建立发动机的

系统模型,模拟发动机燃烧室内的热力过程、进排气气体

交换过程, 以及相关辅助功能 ( 如润滑和供油) 等;
Simulink 控制模型则用于实现与台架试验一致的大气边

界条件设定(海拔 1
 

920
 

m 所对应的气压与环境温度),
并控制发动机的仿真运行参数,包括转速、喷油脉宽等,
具备实时反馈与闭环控制能力,确保仿真过程紧贴真实

工况。
为模拟不同堵塞程度下的故障状态,仿真中的进排

气节流阀与试验中的节流阀安装位置相互对应,该节流

阀元件也能设定不同开度,即:从轻度至严重堵塞的多等

级堵塞变化,以控制进排气流量、压力等关键物理量,能
再现故障注入机制。 该方式实现了对进排气堵塞工况的

连续可控建模,并与台架试验保持一致性,为模型训练与

特征提取提供了稳定、丰富的数据来源。
最后,进行相关台架试验数据与仿真数据的对比,当

两者之间的误差低于 5%时,则能保障仿真模拟的可靠

性[19] ,使得仿真数据为进排气堵塞状况的深度学习诊断

网络提供了大量的数据集。
2. 2　 进排气堵塞的诊断数据集构成

　 　 多维度的实时数据采集,涵盖了进气压力、排气压

力、缸内压力、进气流量和功率输出等多类型物理量,能
够全面反映进排气堵塞对发动机性能劣化的影响。 由进

排气堵塞数据集的 3 个主要工况(一个模拟地面滑行起

飞工况的螺旋桨转速 2
 

300
 

r / min、两个模拟固定海拔巡

航工况的螺旋桨转速 2
 

010 和 1
 

750
 

r / min)构成深度特

征诊断方法的训练和测试,即由不同进排气堵塞状况的

地面台架试验和联合仿真数据构成诊断数据集;且每个

工况对应 5 个健康等级下的数据各有 10 个子集,则共有

50 个子数据集,然后对取得的每组数据进行切片,并以

发动机一个工作循环(720
 

℃ A)的采样点数为样本切片

长度。 因此,每个工况记录了 200 个样本切片,共有 30
 

000 个样本构成本次发动机进排气堵塞状况的深度学习

数据集,其中训练集与测试集的比为 8 ∶ 2,而数据划分

是从整个样本中随机抽取构成。
2. 3　 进气堵塞状况下的诊断数据分析

　 　 1)进气堵塞的发动机燃烧性能下降分析

不同的进气堵塞状况,必然导致发动机的健康劣化

程度不同,这种劣化过程的主因是发动机的燃烧性能下

降。 由于发动机的输出动力来自气缸内的燃烧过程,而
进气量不足导致输出功率下降[20] 。 这种由进气堵塞引

起的燃烧恶化现象,会使得发动机工作不稳定,严重影响

飞行器在飞行过程中的舒适性和安全性。

缸内燃烧压力是衡量发动机工作状况的关键参数。
在海拔 1

 

920
 

m、螺旋桨转速 2
 

300
 

r / min 的条件下,绘制

了不同进气堵塞状况(进气堵塞从无堵塞到故障的劣化

过程)下 5 个健康等级对应的缸内燃烧压力曲线(图 5)。

图 5　 进气堵塞时的缸压变化

Fig. 5　 Changes
 

of
 

cylinder
 

pressure
 

during
 

intake
 

blockage

表 3 是不同进气堵塞状态下最大燃烧缸压与进气采

样气压数据,以及对应健康等级之间各自的压差百分比。

表 3　 2
 

300
 

r / min 时不同进气堵塞状况的

最大缸压与进气压力

Table
 

3　 Maximum
 

cylinder
 

pressure
 

and
 

intake
 

pressure
data

 

on
 

different
 

intake
 

blockage
 

of
 

2
 

300
 

r / min

等级
最大缸压 /

MPa
缸压降比 /

%
进气压力 /

kPa
进气压降比 / %

健康 13. 89 0 227. 14 0
亚健康 13. 83 0. 43 224. 09 1. 34

中度劣化 13. 72 1. 22 219. 82 3. 22
重度劣化 13. 52 2. 66 214. 37 5. 62

故障 13. 28 4. 39 208. 98 8. 00

　 　 从图 5 和表 3 可知,随着进气堵塞状况从健康不断

劣化到故障时,由于进气量的不足,导致缸内燃烧压力也

呈现出不同梯度的下降趋势,即:从健康等级到故障等

级,发动机的进气压力总共下降了约 19
 

kPa,最高缸内燃

烧压力总共下降了约 0. 6
 

MPa,进气压降比大约是燃烧

最大缸压降比的 1. 8 ~ 3 倍之间。 此外,燃烧压力的降低

也使得发动机每一个工作循环产生的输出动力有所

减少。
2)可视化深度特征诊断过程的数据分析

利用深度学习的多层神经网络感知不同数据集里的

梯度变化表征,并形成各层的对应深度特征。 经过前期

大量的网络训练,深度学习神经网络逐渐加强了对深度

特征的感受野,并提升了判断力的准确性,但深度学习的

这种特征感受野相当于一个“黑匣子”。
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t-SNE 是一种降维技术,可将高维特征投影到二维

空间中,提供了一种直观地拨开“黑匣子” 的可视化方

式,把不同层次的深度特征展示出来。 图 6 是进气堵塞

的各通道 t-SNE 特征图,且图 6( a)是 1 通道经过深度卷

积提取的进气堵塞常规视角深度特征图,图 6( b)是 2 通

道经过深度卷积和自注意力机制提取的进气堵塞状况的

燃烧视角深度特征图,图 6(c)是经过双通道动态融合后

的综合视角深度特征图;每一个点代表各自进气堵塞状

态的可视化健康度特征,且
 

t-SNE
 

的降维基本能保留各

特征点之间的相对距离。 通过计算当前等级类别所有点

坐标的平均值,得到每个健康等级在二维
 

t-SNE
 

空间中

的中心点坐标,并在图中用“ ×”标出。
在图 6(c)的进气堵塞状况双通道动态融合深度特

征图中,计算得到各不同等级中心点与健康中心点的欧

氏距离(表 4),不同进气堵塞状况下的各中心点(亚健

康、中度劣化、重度劣化和故障的中心点),距离健康中心

点越来越远,这与缸压峰值(图 5)的劣化规律一致;且其

中对健康(health)的特征点分布较为紧密,说明诊断网络

初期对动态融合后的 health 状态较为敏感,能很快辨识

该 health 特征,而对其它特征等级的辨识度尚可。

表 4　 不同健康等级的进气堵塞特征中心与健康中心的距离

Table
 

4　 Distance
 

between
 

blockage
 

feature
 

centers
 

of
different

 

health
 

levels
 

and
 

health
center

 

on
 

intake
 

blockage
等级 中心点坐标 与健康中心点距离

健康 -45. 3,-44. 1 0
亚健康 -37. 8,2. 0 46. 7

中度劣化 -10. 6,16. 6 69. 9
重度劣化 23. 2,1. 5 81. 4

故障 46. 4,21. 6 112. 8

　 　 经过随后的全连接层和 Softmax 分类层进一步得到

不同输入健康等级数据的可视化 t-SNE 特征图如图 7 所

示,其中的健康等级特征呈现出明显的分类聚合状态,说
明双通道深度特征诊断模型具有很强的深度特征提取能

力,可有效的地辨识和区分不同的进气堵塞状况,从而提

高诊断的准确率。
2. 4　 排气堵塞状况下的诊断数据分析

　 　 1)排气堵塞的发动机燃烧性能下降分析

活塞发动机的排气堵塞会直接引起气缸内的排气背

压增加,造成废气排出不畅,增加了气缸内的残留废气

量,使得新鲜空气的进入量减少,导致缸内气体的交换效

率降低,缸内最大燃烧压力明显下降,恶化了燃烧过程,
最终出现发动机的功率急剧下降、燃烧不完全和发动机

过热等问题[21] 。

图 6　 进气堵塞的各通道视角 t-SNE 特征

Fig. 6　 Various
 

channels
 

view
 

t-SNE
features

 

of
 

intake
 

blockage

　 　 图 8 是在海拔 1
 

920
 

m、螺旋桨转速 2
 

300
 

r / min、不
同排气堵塞状况下 5 个健康等级的缸内燃烧压力曲线。
这 5 条缸压曲线(排气堵塞度从无堵塞到故障的劣化过

程)所对应的排气背压(表 5)是逐渐上升的,即:随着排

气堵塞状况的不断劣化,排气背压不断上升,而最大缸压

峰值是不断下降。 它与进气堵塞状况(表 3)的最大缸压

峰值对比可知,相同健康等级下的排气堵塞缸压下降率

约为进气堵塞缸压下降率的 3 倍,排气堵塞对发动机气

缸内的燃烧恶化影响更大,它比进气堵塞对航空活塞发

动机性能劣化的危害更为严重。
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图 7　 进气堵塞的最终可视化深度特征诊断

Fig. 7　 Final
 

visual
 

depth
 

feature
 

diagnosis
 

of
 

intake
 

blockage

图 8　 排气堵塞时的缸压变化

Fig. 8　 Changes
 

of
 

cylinder
 

pressure
 

during
 

exhaust
 

blockage

表 5　 2
 

300
 

r / min 时不同排气堵塞状况的

最大缸压与排气背压

Table
 

5　 Maximum
 

cylinder
 

pressure
 

and
 

back-pressure
data

 

on
 

different
 

exhaust
 

blockage
 

at
 

2
 

300
 

r / min

等级
最大缸压 /

MPa
缸压降比 /

%
排气背压 /

kPa
背压增比 / %

健康 13. 89 0 105. 68 0
亚健康 13. 44 3. 24 115. 01 8. 83

中度劣化 13. 15 5. 33 119. 74 13. 31
重度劣化 12. 75 8. 21 121. 36 14. 84

故障 12. 19 12. 24 122. 37 15. 79

　 　 2)可视化深度特征诊断过程的数据分析

随着排气堵塞程度的增加,燃烧废气排出变得更加

困难,导致发动机气缸内的废气积累与新鲜空气的交换

不完全。 该排气堵塞状况使得排气特征分布如图 9 所

示,发生明显的变化,这与进气堵塞状况的深度特征图有

一定的相似性,但在
 

t-SNE
 

可视化降维空间中的特征中

心却呈现出了更大的偏移量如表 6 所示。
如图 9 所示,在用 t-SNE 提取排气堵塞的可视化深

度特征图中,图 9( a)是 1-channel 经过深度卷积提取的

排气堵塞常规视角深度特征图,图 9( b) 是 2-channel 经

过深度卷积和自注意力机制提取的排气堵塞状况的燃烧

视角深度特征图,图 9( c)是经过动态融合后,排气堵塞

双通道综合视角深度特征图;展示了排气堵塞状况下的

不同健康等级可视化深度特征数据点的分布情况。 从图

9 可知,随着排气堵塞状况的加重,各个劣化等级特征中

心点逐渐远离健康状态的中心点。

图 9　 排气堵塞的各通道视角 t-SNE 特征

Fig. 9　 Various
 

channels
 

view
 

t-SNE
features

 

of
 

exhaust
 

blockage

针对图 9(c)的排气堵塞动态融合深度特征图,进行

各等级中心点坐标与健康中心点的欧氏距离(表 6) 计

算,且与进气堵塞中心距离的表 4 对比可知,各排气堵塞

中心与健康中心点距离大约是各进气堵塞中心与健康中

心点距离的 1. 3 ~ 1. 8 倍,说明排气堵塞特征偏离健康中
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心点更远,其健康恶化程度更为严重。

表 6　 不同健康等级的排气堵塞特征中心与健康中心的距离

Table
 

6　 Distance
 

between
 

blockage
 

feature
 

centers
 

of
different

 

health
 

levels
 

and
 

health
center

 

on
 

exhaust
 

blockage
等级 中心点坐标 与健康中心点距离

健康 96. 4,-3. 2 0
亚健康 40. 2,-31 63

中度劣化 -6. 1,-20. 7 104
重度劣化 -42. 4,7. 3 139. 2

故障 -104. 1,31. 5 203. 6

　 　 图 10 是排气堵塞最终视角的 t-SNE 可视化深度特

征结果,属于最终输出分类层。 由图 10 可知,排气堵塞 5
种健康等级对应的深度数据特征已经被明显地进行聚类

提取,说明所提取的深度特征能有效地区分不同的健康

等级,进而提升了诊断辨识的准确度。

图 10　 排气堵塞最终视角的深度特征诊断

Fig. 10　 Final
 

visual
 

depth
 

feature
diagnosis

 

of
 

exhaust
 

blockage

2. 5　 进排气堵塞深度特征诊断方案的优化对比与模型

组件消融实验分析

两个以上的 CNN 属于 DCNN,双通道深度学习诊断

的旧框架都采用 DCNN 网络模型,通过局部感受野和固

定的卷积核进行特征提取,但卷积层对全局特征和长距

离依赖的捕捉能力有限;而自注意力机制引入了全局依

赖关系,减少了单一卷积操作所带来的局部特征误差,增
强了模型对复杂特征关系的捕捉能力。 因此, 在 2-
channel 中的 DCNN 之后引入 SA,从而构成优化后的新

方案框架(图 1)。
如图 11 所示,对注意力权重热力图进行可视化分

析,横坐标为曲轴转角(℃ A),纵坐标为样本编号,颜色

表示注意力权重。 这两类任务中的注意力均集中在
-20℃ A ~ 40℃ A 区间,该区段是对应缸内燃烧的核心阶

段,说明模型能够在核心阶段对故障密切相关的特征进

行有效关注,从而提升诊断性能。

图 11　 注意力权重热力图

Fig. 11　 Attention
 

weight
 

heatmap

如表 7、8 所示,对旧方案( old
 

scheme) 和优化新方

案(improved
 

scheme)的测试集总体准确率对比可知,优
化后的新方案在进气堵塞和排气堵塞的平均诊断准确

率(average
 

accuracy) 分别为 98. 95%和 98. 62%,均略高

于旧方案;新方案的标准差(standard
 

deviation)分别下降

了 10. 3%和 6. 81%。 因此,新方案在 2-channel 的 DCNN
之后新增的 SA 使得整体准确率有所提升,提高了诊断系

统的可靠性。

表 7　 进气堵塞的新框架与旧框架的诊断结果对比

Table
 

7　 Comparison
 

of
 

intake
 

blockage
 

diagnosis
between

 

old
 

and
 

improved
 

framework
框架 神经网络 平均准确率 / % 标准差

旧方案
1-channel DCNN
2-channel DCNN

98. 03 0. 016
 

4

改进方案
1-channel DCNN
2-channel SA-DCNN

98. 95 0. 014
 

7

表 8　 排气堵塞的新框架与旧框架的诊断结果对比

Table
 

8　 Comparison
 

of
 

exhaust
 

blockage
 

diagnosis
between

 

old
 

and
 

improved
 

framework
框架 神经网络 平均准确率 / % 标准差

旧方案
1-channel DCNN
2-channel DCNN

97. 79 0. 019
 

1

改进方案
1-channel DCNN
2-channel SA-DCNN

98. 62 0. 017
 

8

　 　 本研究采用模型组件消融实验,以评估深度学习诊

断架构中各关键模块对整体性能的贡献度,即:通过逐步

添加或移除替换模型中的特定组件,观察系统性能的变

化,从而验证该组件的必要性或优化潜力。 该模型组件

消融实验的策略是首先以缸压数据为输入,然后采用模

块叠加的方式逐步构建模型结构,先从传统卷积神经网

络 Baseline 模 型 开 始 逐 渐 叠 加 模 块, 经 历 Single-
Channel

 

+
 

Attention 模型(在 Baseline 的基础上引入自注
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意力机制)、Two-Channel
 

+
 

Fixed
 

Weight 模型(采用进排

气数据与缸压数据的双通道输入,且融合权重 α 固定为

0. 5,初步考察双视角的融合效果)、Full
 

Model 模型(在

双通道结构基础上,引入自注意力机制与动态融合权重

α,实现特征贡献度的自适应调节)。 以上所有模型组件

都在相同的训练集与测试集上进行评估对比,且平均准

确率(accuracy)为核心性能指标。
表 9 为模型组件消融实验中各模型在起飞和巡航工

况下发动机进气堵塞与排气堵塞诊断任务中的表现。 结

果表明,模型的性能随着结构优化逐步提升,新增各模块

均对诊断性能发挥了关键的改进作用;相比 Baseline 模

型,新增注意力机制后的单通道结构在进气与排气堵塞

诊断中的平均准确率分别提升了约 1. 39%和 3. 36%,验
证了注意力机制在强化关键特征提取方面的有效性;随
着引入双通道结构之后,准确率大幅提升至 95%以上,说
明多视角信息融合显著增强了诊断能力;最终,融合全模

块的 Full
 

Model 模型在两类任务中均达到接近 99%的准

确率,充分证明动态融合策略能根据工况特征,自适应优

化特征权重分配,从而进一步提升模型诊断性能。

表 9　 模型组件消融实验

Table
 

9　 Ablation
 

experiment
 

of
 

model
 

component

诊断任务 模型组件 平均准确率 / %

进气堵塞

Baseline 88. 76
Single-Channel

 

+
 

Attention 90. 15
Two-Channel+Fixed

 

Weight 97. 07
Two-Channel+Dynamic

 

Weight 98. 95

排气堵塞

Baseline 86. 42
Single-Channel+Attention 89. 78

Dual-Channel+Fixed
 

Weight 96. 32
Dual-Channel+Dynamic

 

Weight 98. 62

　 　 综上所述,模型组件消融实验有效验证了双通道输

入、自注意力机制与动态权重因子 α 的协同作用,这一协

同机制已成为推动诊断性能显著提升的关键因素。

3　 结　 论

　 　 本研究围绕航空活塞发动机进排气堵塞智能诊断问

题,提出了一种融合常规进排气视角与燃烧缸压视角的

双通道自注意力深度卷积神经网络诊断架构。 该方法以

地面台架试验和 AMESim+Simulink 联合仿真的数据集为

基础,通过双通道结构实现多视角特征的融合提取,并引

入自注意力机制和动态融合权重 α,以增强对关键特征

的选择性关注,解决了复杂劣化状态下特征提取不充分

和融合策略单一等技术难点。 在海拔 1
 

920
 

m 起飞工况

下进行的进排气堵塞诊断实验中,所提方法在准确率方

面分别达到了 98. 95%和 98. 62%,并在特征分辨上表现

优异,且 t-SNE 可视化进一步验证了模型对深层判别信

息的提取能力。 通过模型组件消融实验,系统地验证了

双通道结构、自注意力机制与动态融合策略在性能提升

中的关键作用。
未来将进一步拓展研究该诊断模型的更多工况适应

性和在线实时诊断能力,探索通过迁移学习技术把该双

通道深度学习诊断方法能够迁移至不同的发动机机型,
完成对其它机型的进排气堵塞诊断,提高通用化智能诊

断的效率。
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