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Abstract: In recent years, transformer-based methods have achieved remarkable progress in the field of 3D human pose estimation.
However, current approaches are still confronted with two major challenges. First, the computational inefficiency arises from the
quadratic complexity of global self-attention when processing large-scale joint affinity matrices in dynamic video sequences. This issue
significantly hampers the real-time performance of the models. Second, the suboptimal spatiotemporal feature fusion restricts the model’
s ability to capture fine-grained motion patterns and structural dependencies between joints, leading to less accurate pose estimation
results. To tackle these limitations, this paper proposes a novel architecture named the dual-stage spatio-temporal convolutional
transformer ( DSTCFormer). The key innovation of DSTCFormer lies in its decoupling of spatiotemporal feature learning into parallel
spatial and temporal pathways. Specifically, the convolutional multi-scale attention ( CMSA) module is introduced to hierarchically
aggregate local and global correlations through convolution-enhanced multi-head attention. In the spatial pathway, convolutional position
embeddings are utilized to encode skeletal topology, enabling the model to focus on intra-frame joint relationships. Meanwhile, the
temporal pathway captures inter-frame motion coherence via axial-specific self-attention. Moreover, a cross-stage fusion mechanism is
designed to integrate multi-scale spatiotemporal features through depthwise separable convolutions and feature transformation layers,

which ensures efficient computation and robust feature representation. Extensive experiments conducted on the Human3. 6M and MPI-
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INF-3DHP datasets demonstrate the superiority of DSTCFormer. Under Protocol 1 (P1), DSTCFormer achieves a state-of-the-art Mean
Per Joint Position Error (MPJPE) of 40. Imm on Human3. 6M with 243 input frames, outperforming PoseFormer (44.3 mm) , MixSTE
(40.9 mm), and STCFormer (40.5 mm). On the MPI-INF-3DHP dataset, it attains a percentage of correct keypoints at 150 mm
(PCK@ 150 mm) of 99. 1% and an area under curve (AUC) of 85.2%, surpassing existing methods by 0. 4% and 1. 3%, respectively.

In summary, the proposed method not only advances the theoretical frameworks for spatiotemporal modeling but also offers practical

implications for real-time applications, paving the way for more efficient and accurate 3D human pose estimation in various scenarios.
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I MSA g RESERE AT HE OG5 1] 52 LA FH A0 Iy 25 1
RROE . ANIR) A0 T 5 Sk 2000 3R 46 T i A 91 B 45 51X
Sl A7 RGN T B HRAS 1 A 0 o ) AR

LA TERE T Sk nm i AR SO A T — A A T A I
AR DGR 3G, & 4 & 17 2l A3 5N A I a) AH G
RRARIR AEAL BRI ] )7 37 23 BT 10 4% AT 55 e 3] SC S A
o A ASSCRRR Y A 3 AL P BE B 48 7
R IR T 5G9 TB) A AR LG ARl LA 1 8 ) T fi
B, ACH BY TR SR e S2 5, o o —
HAE SR AU PERE RO E 1 AEA

B 25 A 5K % ( spatio-temporal , S-T) #5 B Bt Py 5675
R ) ELIBAE  F 75 1 T A B 5 R AR T T PN
P NTEIEFR o FEMCFERN b, f S A e v 2 LT, A8 3¢
BB PEHLER T —Fh T B 25 4 22 3k 25 R) - ) B TR )
R (multi-head spatio-temporal attention, MSAg, ), /N
LTI S YE R Al ) R E MSA A0

Hg = MSAG(Qsr K, Vir) (8)

I MSA g, RESE ARSI 5G] (92 ) AH O
PE R T IS D OCHR 2 | A R Lt [l 5 O
TR R SRR, O = 4R AL A TR A T T
A FRAESEAE

CMST P o filt & i ] 5 2 18] 7 2 3 HL] A 2L
PR T SCITTEmD Y 523 4R B A AR OC R . 1
BT LA AT AR SRR B 4 1 Hh PR A 2l A8 3 s b i A ki
B AR FRT TR AR T HFE T SRS
b 15 B AR
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A R R SR F 1 0 0 WL, 647 B Ak 3 -
FSCHHE BRI 1 E RSO 85 T HHE
A SR | LA S BUAR RN FE . A% SO 2B 0 79
ANPERE IR I 20T 378 4 T R 2

H = cat(Hy , Hy,) (9)

TEMAT OB IR | 25 A g — A ELA I 2 5 b
BB BT 1748 T38 XU 25 9| 3 1 R [ CMST
HHe T M B £0 VP S 52 IO 25 VE R

3 RIg

AR ICAHIAE Human3. 6M™ Fil MPI-INF-3DHP" ' P
SO 72 NS O 17 SO e v o S iR L[ =W A R R o
DSTCFormer 7EAN R SIVEAHE 3 5 T B W FHACR , ik 1
HAEREM P B
3.1 BIREMIEMGIEER

Human3. 6M %4l 2 H i fe ) 2 A0 i 28 ) =48 A
LSRR, 15 T 11 A ZXFERITHY 15
T Zh AR | A BT 360 T3 MTHA A SCAR 4 s i
PV, SR AT S1.S5.56 .57 I S8 FAE AT, fii i S9 I
SUL FAEVEATPPAE IR, )RS, 3 9 fr 3302 )
T K7 B IR 22 (mean per joint position error,
MPJPE) : MM 1(P1) Sl 5 1 %0 55 IR T £ S S
FLYHZ A MPJPE (mm) 5 BRI 2 (P2) W38 2o [P A4
okt B A THES Z ] i P-MPJPE,,

MPI-INF-3DHP £t e #f Hh i # &S , 60
fhgknr ARGE R AN 3 RO E Y 5, X B 14
RGBT 8 447 D1 13 ShAUUE 18, DI ZREe £ 75 8
PG sh MRS S 40 7RG, R Senn i s
B F B IPA HE AR 45 MPIPE 150 mm AR ) OG5 0E
1% ( percentage of correct keypoints, PCK) LA M HH£E T i
T (area under the curve, AUC)

3.2 KIAT

AR SCAERE B RTX 4090Ti GPU W IR 45 #% -, SR H
G1:1) Gk 4 F 5 W 4% (cascaded pyramid network,
CPN) TR ZRBE A TN A5 B (Y — 44875 52) ELAL 4 %%
A ( Ground-truth (4% ) , 5 #1YI| 2k o B2 R F B¢ /)N batch
size A 128  FLHhAT 20 N UNZR SR, M4 S H0m ks
it Adam HEAL AR SEI, 27 ) FBGE N 0.001, FERIRIH
FER B L B8 Bt A8 E C A9 4E R DL K Sk
B H BRI A R SR
3.3 Human3. 6M ##E&E LR ERES

A SCHE Human3. 6M 465 b 5 2 R 7 i 347
THEREXT HE, 26 1 MAELL CPN Al 4 B A 0E N

ALFEPL 5 P2 RSUT AR [RIRAEWTEL T %5 07 415 22 1 g
Tetn, 2 WAERMAESE g RZSEMAMSKIT,
DSTCFormer 5 B T AAR Y (1) 4 BE XS L, 12 8L 56 i
BT RR AL A AN T T T A R M S S I . 4k
A ) =S e RE LIRS0 P R SR LA
BRI IR, ARES Febn ol R R, LR IX 43,

WEEFE 1 F 2 AT LL & B, DSTCFormer 7E W6 Flii A 15
ENBEOR TSR ERE, R T e B S A
R

M1 AT LIFE W, 3T CPN Al i) 4 5 A
T, DSTCFormer 7£ P1 Ppil T S8 T °F ¥ MPJPE H
40. 1 mm M TF B2 500 5 5 (U PoseFormer , HAF- 147157
FH 44,3 mm) AR GE . R R M B A3y
B A7 A B SR s B8 B T 43 M R B 25 A5 B AT RR AR 5
H, 7R AR HY P2 PR IT, DSTCFormer [] A M 75
31.6 mm HY P-MPJPE,ﬁEa‘: PoseFormer Y 34.5 mm, i
— %, 5 R FH R BEIT 25 38 SO WS 1% 751 (4 STCFormer
H1 MixSTE) %} ., DSTCFormer 7€ P1 Bp R 43 53k 8 T
40.1 mm, ¥} ¢ STCFormer [ 40.5 mm Fl MixSTE A9
40.9 mm, I IS A VERE 76 P2 BT, H 31,6 mm
[FIEEDLTF STCFormer A% 31. 8 mm A1 MixSTE A9 32. 6 mm,
AR FEBHRIE ] T AR A 1 XU B 25 58 AL AE
PE RS EE Ry [l B SR 0z kB 1, AN S Bt 4L
UL

MUAESL ) "B SAE AR (R 2) A S R
BEFRUE) P1PRSCR 22 3 Jr B A b (R B W) M BE 1Y
AR A I T N = U R O S 3 | A 0 L L
DSTCFormer #iAIf#%) P1 BpF-#4 MPJPE 47 21. 0 mm, 4
T STCFormer % 21. 3 mm Fl1 MixSTE % 21. 5 mm,ﬁ:}‘j';;'lj
A3 T 0.3 F10.5 mm AIPERESR T, BIRGER  E—D5
UET DSTCFormer £/ R4 A Tt T &AM R 21
JFR B R BAR 1) 4B 228 AT A SOy R A L R
AT = 4R IS A HERT

AR, B LAY CMST RS AE 3 A~ [ 28 it 1) 1 ¢
HER, scuGeb R FE PLEMYAY 15 AR A
DSTCFormer 7E 11 ™25 v A 1 fe ki 22, 7 HiAth 4
AR R IRAR IR 2%, (B2 5 PoseFormer, MixSTE
STCFormer 2535 4SRRI LY | S iR 2243 580 4.1..0. 8
0.4 mm; 76 SitD 3 25 50 P 4 I, B4R 1 fE &tk T
MixSTE , {HAH X} F STCFormer /54 0.3 mm B, 7E
P2 T, DSTCFormer 76 15 MMBRAZE S A 12 251
FIEAE 2 AR, BT STCFormer, -3 12 2248
AT 0.2 mm, UL FEIE TR UERH T DSTCFormer 7£ B
23 B SRR G T A R R DA R A A
s T ANz fhae

TCERIEFAEME R B CPN i A I8 R 7E AR A
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B TN A ST, DSTCFormer 147 J/& ¥ H %o 1 20
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UE T AR SCHE B 28 R AR Al 5 R0 2 ) 28 LRl & L
il LA B N AR5 48 3K 3 F) 437 5 e 1 AR PR AT 8
3.4 MPI-INF-3DHP ##5& L ryHEEE D

R T I =GRS AN TR B ROR A SO APEAG
TR AL 5 TS 5 MPL-INF-3DHP $0d5 4 | ik
REME#, SEnimrgs " s — 2, A SCR A ] A4
WPRIE, FEAH B0 e SR A . ST Y
FI K BRI, A G E T 9 .27 81 81 Wit NE A, £ 3

4 DSTCFormer 5 At A5 7Y (1 5% 22 PR b A, 5T
Human3. 6 M AJPAL 7 AR RL, 76 P1ERSCT , Y%k 7=
81 H}, DSTCFormer Y PCK {H ik %] 99. 1%, AUC {H N
85.2% ,P1 %%} 22.3 mm, 5 STCFormer FH LG, 735l 4
THT70.4% 1. 3% ML T 0. 8 mm, I 2 1 ek ik
F5 5 H1, DSTCFormer J& BL T W 5% f9 32 1k € J1, 7
Human3. 6 M 4 4E I A4 P1 B, AHAL T MixSTE , H
PERERIEEET: T 32. 6 mm, i 5 E B T A SCAR Y 7 4b B
82 B I A R

%1 ET Human3.6M HIEEMNREF X CPN Z4HEFHA P15 P2 il liEE 33 tL
Table 1 Evaluation of different methods of CPN 2D pose input P1 & P2 protocols based on Human3. 6M dataset

P1 Dir. Dis. Eat. Gre. Phone Photo Pose Purch. Sit. SitD. Smoke Wait WalkD. Walk WalkT. Avg
Hk[43] (T=243) 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.2
PnseFormermﬂ( T=81) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 455 43.3 46.1 31.8  32.2 44.2
CrossFurmer[zx]( T=81) 40.7 44.1 40.8 41.5 45.8 52.8 41.2 40.8 55.3 61.9 44.9 41.8 44.6 29.2 31.1 43.8
MHFormer ' (T=351) 39.2  43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 42.9
P-STMO ! (T=243) 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8
MixSTED“]( T=81) 39.8 43.0 38.6 40.1 43.4 50.6 40.6 41.4 52.2 56.7 43.8 40.8 43.9 29.4 30.3 42.3
MixSTE[®)(7=243)  37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
STCFomer>! (T=81) 40.6 43.0 38.3 40.2 43.5 52.6 40.3 40.1 51.8 57.7 42.8 39.8 42.3 28.0 29.5 42.0
STCFormer 3 (7=243) 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 384 40.2 262 27.7 40.5
DSTCFomer( T=27) 42.1 43.8 41.6 42.0 45.1 53.2 41.1 41.6 52.9 59.4 43.9 40.9 44.3 29.9 30.8 43.5
DSTCFomer( T=81) 41.7 42.3 38.3 40.4 43.5 50.6 40.7 39.2 52.1 56.8 42.9 39.5 41.9 28.2 29.3 41.8
DSTCFomer( 7=243) 38.1 40.4 36.5 37.5 42.1 50.4 38.4 38.0 51.4 55.7 41.1 38.3 40.0 26.7 27.1 40.1
P2 Dir. Dis. Eat. Gre. Phone Photo Pose Purch. Sit. SitD. Smoke Wait WalkD. Walk WalkT. Avg
SCHk[43] (T=243) 32.5 36.2 33.2 35,3 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 34.8 24.2 258 34.9
PuseFormerLsz( T=81) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 348 242 258 36.1
Crosanrmerm]( T=81) 31.4 34.6 32.6 33.7 34.3 39.7 31.6 31.0 44.3 49.3 359 31.3 34.4 23.4 255 34.2
MHFormer! ! (T=351) 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 343 23.9 251 34.4
P-STMO!2¢ (T=243) 31.3  35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 239 34.4
MixSTEDO]( T=81) 32.0 34.2 31.7 33.7 34.4 39.2 32.0 31.8 42.9 46.9 355 32.0 34.4 236 252 34.0
MixSTE ) (7=243) 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 229 32.6
STCFnrmerDl]( r=81) 30.4 33.8 31.1 31.7 33.5 39.5 30.8 30.0 41.8 458 34.3 30.1 32.8 21.9 23.4 32.7
STCFormer *(T=243) 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 42.2 450 33.3 29.4 31.5 20.9 22.3 31.8
DSTCFomer( T=27) 31.1  34.2 32.9 32.8 34.2 39.8 31.4 31.0 42.3 46.6 351 30.7 33.5 229 240 33.5
DSTCFomer( T=81) 30.0  33.3 31.1 30.8 32.9 38.0 30.4 29.6 41.8 44.4 33.9 29.9 44.4 32.1 22.7 33.7
DSTCFomer( T=243) 29.0 33.0 30.5 30.1 32.3 37.7 29.5 28.5 41.6 45.2 33.1 29.1 31.3 20.9 22.1 316
%2 ET Human3d. 6M BIEEHARE T EZEL _HESHAN P1LAITEMHBITEL
Table 2 Evaluation of different methods of real 2D pose input P1 protocols based on Human3. 6M dataset
P1 Dir. Dis. Eat. Gre. Phone Photo Pose Purch. Sit. SitD. Smoke Wait WalkD. Walk WalkT. Avg
SCHK[37] (T=243) 34.5 37.1 33.6 34.2 32.9 37.1 39.6 358 40.7 41.4 33.0 33.8 33.0 266 269 34.7
PoseFormerDs](T:SI) 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3
SCHK[43] (T=243) 29.5 30.8 28.8 29.1 30.7 35.2 31.7 27.8 34.5 36.0 30.3 29.4 28.9 24.1 24.7 30.1
MHFormer-2! (T=351) 27.7 32,1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5
P-STMO'2¢ (T=243) 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0  21.0 29.3
StridedForn]eru”( T=243) 27.1 29.4 26.5 27.1 28.6 33.0 30.7 26.8 38.2 34.7 29.1 29.8 26.8 19.1 19.8 28.4
CrnSSFnrmermm( T=81) 26.0 30.0 26.8 26.2 28.0 31.0 30.4 29.6 35.4 37.1 28.4 27.3 26.7 20.5 19.9 28.2
MixSTEDOJ( T=81) 25.6 27.8 24.5 25.7 24.9 29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9
MixSTE ) (7=243) 21.6 22.0 20.4 21.0 20.8 24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.5
STCFormer®(T=81)  25.9 25.9 22.7 24.0 24.6 27.5 27.6 23.1 30.1 31.5 25.1 24.7 23.8 18.4 19.6 25.0
STCFormer *(T=243)  20.8 21.8 20.0 20.6 23.4 25.0 23.6 19.3 27.8 26.1 21.6 20.6 19.5 14.3 151 21.3
DSTCFormer ( T=81) 25.5 25.4 22.4 24,1 24.2 27.3 27.0 23.3 30.0 31.4 24.3 24.2 237 18.5 19.3 24.7
DSTCFormer ( T=243) 20.5 21.4 20.1 20.3 23.3 25.1 23.1 19.4 27.2 25.4 21.4 20.2 19.1 14.2 14.9 21.0
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Table 3 Performance comparison of different methods
based on MPI-INF-3DHP dataset

Jrid Publication PCKT AUCT P1/mm |
UGCNM™ (T=96) ECCV’ 20 86.9  62.1 68.1
Anatomy3D'**/(T=81) TCSVT’21  87.8 53.8 79.1
PoseFormer! 2! (T=9) ICCV’ 21 88.6  56.4 77.1
k[ 45] (T=96) ACMMM’21  97.9  69.5 42.5
CrossFormer! 3 ( 7=9) arXiv’ 22 89.1 57.5 76.3
PATA!®)(T=243) TIP’ 22 90.3  57.8 69. 4
MHFormer' 2! (T=9) CVPR’22 93.8  63.3 58.0
MixSTEPY (7=27) CVPR’22 94.4  66.5 54.9
CHk[46] (T=81) arXiv’ 22 95.4  67.6 46.9
P-STMO' %! (T=381) ECCV’ 22 97.9  75.8 32.2
STCFormer!*' (T=9) CVPR’23 98.2  8l.5 28.2
STCFormer!®'(T=27)  CVPR’23 98.4  83.4 24.2
STCFormer'®'/(T=81)  CVPR’23 98.7  83.9 23.1

DSTCFormer (T=9) 98.4 82.1 27.5
DSTCFormer ( T=27) 98.5 84.3 23.4
DSTCFormer ( T=81) 99.1 85.2 22.3

3.5 iHELSCIG

N T IHEAFINTASCH B HY DSTCFormer A | AR SC AL
F Human3. 6M Bda 8 3647 T 8 ) SE R 5%, FE LIS
FEH AR SCLAFE T CPN Al 1A — 4 354 A A4 A
TR T — RN A5, D b AR e 5780 1 i 114 L
BT,

551 SRR E B AR ST DSTCFormer 16 A [A] i A
Wigk T 40 FRBL, K4 N7EPL S P2 TIFPMUTHY
TEANPEREXT Lb , 51 o B AR PR RE bR A IR, S & BI,
By AU T st B R R LTS, 5 E
WXt 7 B STCFormer AH %, DSTCFormer 7 27 .81 &
243 Wik ATBEE T, 5 B B s B MR, 0 IE T AR
TEE A B[R] K B A0 5 9] ) ) o P . RS AR T
BB ARG S B IE M IR A, (HAE PL B
BT, Bh 27,81 F1 243 ik i A B, PERE S0 42 7+ T
0.82.0.51 5 0.43 mm;[F3H 76 P2 WMT, % A Wi %L [
FEBEE Sl 27 (81 1 243 W), PRS- HG 3 1.29 .1.15 5
0. 8 mm, % DSTCFormer 7EAG 4 1 2 (03,

N T E— R A AL DSTCFormer B X6 455 50 14 fig
BITTRR, A SCBETT T 48 2 AT Al sE i, S H AR A
CPN i 1+ 1 4 S35 | 1 g A7 90K B o 27 i, 7
Human3. 6M #9545 T #EAT 5000, a0 5 Fros, e fEdEbE
s AR

#&4 ET Human3.6M HIEEHN P1 5 P2 il T
N [B) SR A T 85 B T X B
Table 4 Evaluation comparison of different frames in P1
& P2 protocols based on Human3. 6M dataset

Fk T/Frames Parameters/ ( X 10° ) M/FLOPs P1 P2

STCFormer®" 27 4.75 2173 44.4 34.8
DSTCformer 27 8. 046 2322  43.5 33.5
STCFormer®) 81 4.75 6520 42.3 33.3
DSTCformer 81 8. 046 11 300 41.8 32.2
STCFormer ") 243 4.75 19561  40.5 31.8
DSTCformer 243 8. 046 35710  40.07 31.0

*& 5 ET Human3. 6 FIRENEDRERME R
Table 5 Module ablation results based

on the Human3. 6 dataset

Frames  Conv S-T T-S P1 P2
STCFormer!?'! 27 44. 4 34.8
DCFormer 27 vV 44.3  34.2
DSCFormer 27 vV Vv 441  34.1
DTCFormer 27 2 vV 44.4 343
DSTCFormer 27 2 2 43.5  33.5

ARICHEHHET CMSA HEL/EH, DCFormer 14
RUR BRI [SOR TR 1 CMSA Bide, H TR
JEUf Transformer WP AIARMEZ Sk B ER 1B, SEER 25
HATLIE H, 5 STCFormer A1 HE, {2R F CMSA B 5 |
PEREFEAR P1 A P2 430042 1 0. 07 F1 0. 55 mm, KM
ASCEET Y CMSA A i H b R] 9 22 ROEE R ik il 45 P
il , REAE A AP A OC T Z A 52 % 56 2, ATy
KM REAPET

LR, 43 BIVEAL T OB B 2 A B vp 43 i) % 4% D
HFE] B A2 B9 BTk . DSCFormer 12 AR 22V A1 & 25 [a] B 42
P XL B s 23 i | L& 1 T e 28 AV 4 L JEA T RRAE 32
BUMAEH., SCEE5 SR BoR , FE5I A S-T B 428 XU Bt i
ZREIHUE , PL AT P2 435 52 1 0.22 F10. 71 mm,
SEYGEE LI | 38 Ak U Bt 1 25 K 7E 4 B 4 B L R A7 o
TRIZ U R AR 2% 2 BB % A R0 Hb 32 T B R 1 1 R
DTCFormer A5 75 DU A3 A543 15 i 8] A2 1) RS Bt i 25
e, oA T [ 48 B2 1 e iz sh ol S05
SEREH] R T-S FAERAR DY BEIE 25 i 4 PL Y
PEREAR R E , P2 A1 — 2GR TF T 0.51 mm, LiRZ5R
UEBH , FER ) 2 B b A7 R B P A, %o T 4 FHASE TR0 A
X 55 i B A TINDRG E (P2 PIbisL) 7 i AT B A A

B, ARG T[] A A AR S-T B AR R T-S B A28 3L
Ky B Aot 2 A R A R0 SR . 244 () e 4 B 19 A O RD A S AR
iF, AR RE A [] S) A 5 i) 0TS 18] 9 2 5 47 o 4 1
PIRFIE2E ) TR B, SEEE5 R o, P1 A P2 (P RE S
BIEAE) T 0. 82 A1 1.29 mm B W E IR, DL 45 SRE M
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Fig.3  Visualization results of the Human3. 6M dataset
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Fig. 4 Qualitative visualization comparison between
DSTCFormer and the PoseFormer, STCFormer
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