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摘　 要:在半导体制造中,晶圆图缺陷检测至关重要,能够对缺陷进行快速定位,实现对缺陷的识别,对于提升晶圆产品质量和

生产效率具有意义。 然而,现有方法存在局限性,如模型过于庞大,网络模型深度过深,难以充分利用多层次特征进行精确分

类。 为了解决这些问题,结合了 Stem-Dense 特征提取模块和多尺度注意力特征融合结构,提出了一种新型网络结构———MSD-
DFE。 MSD-DFE 通过 Stem-Dense 的密集连接结构和多尺度注意力特征融合技术,有效提取丰富的浅层特征信息,同时显著降

低模型的参数量和计算复杂度。 多尺度特征提取模块融合了不同尺度下的晶圆图信息,增强了模型对不同层次缺陷特征的提

取能力。 此外,引入的注意力机制使得模型能够更关注晶圆图存在缺陷区域,从而提升分类精度。 实验结果表明,在减少参数

量和计算量的前提下,MSD-DFE 在 WM-811K 数据集上达到了 97. 4%的平均准确率,优于现有主流方法,表明其在实际生产环

境中具有较高的应用潜力。
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Abstract:
 

In
 

semiconductor
 

manufacturing,
 

wafer
 

map
 

defect
 

detection
 

is
 

crucial
 

for
 

the
 

rapid
 

localization
 

and
 

identification
 

of
 

defects,
 

which
 

is
 

significant
 

for
 

enhancing
 

wafer
 

product
 

quality
 

and
 

production
 

efficiency.
 

However,
 

existing
 

methods
 

have
 

limitations,
 

such
 

as
 

overly
 

complex
 

models
 

and
 

excessively
 

deep
 

network
 

structures
 

that
 

struggle
 

to
 

leverage
 

multi-level
 

features
 

for
 

accurate
 

classification.
 

To
 

address
 

these
 

issues,
 

this
 

paper
 

combines
 

a
 

Stem-Dense
 

feature
 

extraction
 

module
 

with
 

a
 

multi-scale
 

attention
 

feature
 

fusion
 

module
 

to
 

propose
 

a
 

novel
 

network
 

architecture—multi-scale
 

defect
 

detection
 

network
 

with
 

enhanced
 

feature
 

extraction
 

( MSD-DFE).
 

MSD-DFE
 

effectively
 

captures
 

rich
 

shallow
 

feature
 

information
 

through
 

the
 

dense
 

connection
 

structure
 

of
 

Stem-Dense
 

and
 

multi-scale
 

attention-based
 

feature
 

fusion
 

technology,
 

while
 

significantly
 

reducing
 

the
 

number
 

of
 

parameters
 

and
 

computational
 

complexity
 

of
 

the
 

model.
 

The
 

multi-
scale

 

feature
 

extraction
 

module
 

integrates
 

wafer
 

map
 

information
 

from
 

various
 

scales,
 

enhancing
 

the
 

model’ s
 

ability
 

to
 

extract
 

defect
 

features.
 

Additionally,
 

the
 

introduced
 

attention
 

mechanism
 

allows
 

the
 

model
 

to
 

focus
 

more
 

on
 

defect
 

areas,
 

thereby
 

improving
 

classification
 

accuracy.
 

Experimental
 

results
 

show
 

that
 

MSD-DFE
 

achieves
 

an
 

average
 

accuracy
 

of
 

97. 4%
 

on
 

the
 

WM-811K
 

dataset,
 

outperforming
 

current
 

mainstream
 

methods,
 

indicating
 

its
 

high
 

potential
 

for
 

practical
 

application
 

in
 

industrial
 

settings.
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0　 引　 言

　 　 半导体制造是现代电子工业中的核心环节,而晶圆

缺陷检测是确保芯片质量和生产效率的关键任务[1-3] 。
随着半导体技术的快速发展,晶圆缺陷检测面临着越来

越复杂的挑战,尤其是缺陷类型的多样性和图像数据量

的迅速增加[4] 。 传统的缺陷检测方法多依赖人工检查或

基于简单图像处理技术,如阈值分割和边缘检测,这些方

法不仅效率低下,而且难以应对形态复杂、分布不均的缺

陷[5-6] 。 因此,开发高效、精确的自动化检测方法成为当

前的研究热点[7-8] 。
近年来,学术界和工业界提出了多种自动化、智能化

的方法,主要分为无监督学习和有监督学习两大类[9] 。
在无监 督 学 习 方 面, Jin 等[10] 采 用 了 密 度 聚 类 算

法(density-based
 

spatial
 

clustering
 

of
 

applications
 

with
 

noise,DBSCAN),通过分析数据的密度对缺陷进行聚类。
这种方法能够有效地处理随机分布的缺陷,但由于缺乏

对特征深层语义信息的充分挖掘,DBSCAN 在面对复杂

缺陷模式时,其分类精度较低。 Kim 等[11] 提出了一种基

于连通路径的过滤算法, 结合无限混合模型 ( infinite
 

mixture
 

model)进行混合缺陷的聚类。 尽管该方法在处

理复杂缺陷时有所提升,但其较强的先验知识依赖性使

得在缺乏明显特征或特征分布高度重叠的情况下,性能

往往 不 理 想。 此 外, 其 他 方 法 如 自 适 应 共 振 理

论(adaptive
 

resonance
 

theory,
 

ART) [12] 、 K 均值聚类算

法(K-means
 

clustering
 

algorithm ) [13] 以 及 自 组 织 映

射(self-organizing
 

map,
 

SOM) [14] 等,也在动态聚类领域

进行了探索,但这些方法普遍依赖于样本特征的相似性,
难以有效捕捉特征间的深层次关联。 在处理复杂、多变

的缺陷模式时,这些方法存在显著的局限性,无法充分应

对缺陷检测任务中的多样性和复杂性。
相较于无监督学习,有监督学习方法通常在分类精

度 上 更 为 出 色。 深 度 学 习 尤 其 是 卷 积 神 经 网

络(convolutional
 

neural
 

network,
 

CNN)已被广泛应用于图

像分类任务中,并在晶圆缺陷检测中取得了显著成果。
CNN 通过自动学习图像中的特征,能够有效提高检测精

度。 近些年,许多学者提出了基于 CNN 的缺陷检测模

型。 Nakazawa 等[15] 提出的 5 层卷积神经网络能够识别

22 种晶圆图缺陷模式;Tsai 等[16] 开发了一种轻量级缺陷

识别卷积网络,实现了在部分缺陷模型下的识别;Kang
等[17] 提出了结合手工与卷积特征识别的多类型缺陷的

特征融合模型;Manivannan[18] 提出了基于轻量级 ResNet-
10 的双头 CNN 的晶圆缺陷检测模型。 然而,上述提到的

模型虽然使用了 CNN 对于晶圆图缺陷检测识别的优秀

特征提取能力,但是存在着无法兼具提高检测精度和解

决模型过于庞大、计算复杂度高和参数量巨大的问题。
对此,Chen 等[19] 提出了使用堆叠网络层数的深度卷积神

经网络(deep
 

convolutional
 

neural
 

network,DCNN)识别晶

圆图缺陷检测模型,使用 19 层端到端的网络解决精度过

低的问题,但是在一些缺陷的监测还是准确率偏低。 付

强等[20] 则是针对模型计算复杂度和参数量,提出了一种

基于可分离和注意力机制的晶圆缺陷检测方法( wafer
 

defect
 

detection-separable
 

convolution
 

and
 

attention, WDD-
SCA),此方法使用深度可分离卷积降低模型的参数量,
提高模型的推理速度,但是由于其模型主体还是建立在

传统的 CNN 模型上,模型的精度还是有待提升。
随着晶圆检测场景对实时性、泛化能力和检测精度

的要求不断提升,研究者们开始尝试在轻量化设计与多

尺度特征融合方向进行改进。 轻量化模型的研究如

MobileNet[21] 、PeleeNet[22] 等,通常通过深度可分离卷积

等技术来降低模型参数和计算量,具备嵌入式设备的实

际部署潜力。 然而,在应用中,这些模型在特征提取和细

节捕捉方面的能力仍不够完善。 为解决上述问题,在提

高模型精度的同时尽可能的降低模型的计算复杂度与参

数量, 本 文 提 出 了 一 种 基 于 多 尺 度 特 征 提 取 和

SE(squeeze-and-excitation) 注意力机制[23] 的轻量化网络

模型———MSD-DFE ( multi-scale
 

defect
 

detection
 

network
 

with
 

enhanced
 

feature
 

extraction)。 该模型通过引入 Stem-
Dense 特征提取模块和多尺度融合结构,有效提升了对

晶圆缺陷的检测精度,同时保持较低的参数量和计算量。
本文提出的网络结合了多尺度特征提取模块和 SE 注意

力机制,有效提升了晶圆缺陷的检测精度,同时在减少参

数量和计算复杂度方面表现出色,适用于资源受限的应

用场景。 提出了一种网络宽度扩展策略,有效提升了

CNN 的分类性能,同时减轻了过拟合风险,并加快了训

练速度,为提高晶圆缺陷检测的效率和准确性提供了新

途径。

1　 轻量化多尺度网络模型设计

1. 1　 整体网络架构设计

　 　 从以往研究中得知,增加 CNN 网络的深度可以提升

其特征学习能力。 然而,网络深度的增加同时带来学习

速度减慢、过拟合风险提升及特征提取能力受限等问题。
因此,单纯依靠增加网络深度并非提升性能的最佳方法。
本文从提升网络宽度的设计入手,提出了一种多尺度特

征提取与融合结构。 通过扩大网络的宽度,提高了网络

的分类性能,降低了网络深化带来的过拟合风险,提高了

网络训练速度。 图 1 为本文提出的轻量化多尺度网络模

型结构。 该结构通过 3 种不同大小的卷积核提取晶圆图

的多尺度特征,提高了晶圆缺陷检测中不同尺度特征的
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利用率,从而提升了模型的准确性和效率。 利用 3 个不

同尺寸卷积(3×3、5×5 和 7×7)的 Conv1-SE 层进行特征

并行提取,卷积次数分别设置为 3 次、2 次和 1 次,不仅扩

展了网络宽度,还有效降低了因网络加深导致的过拟合

风险。 通过多尺度卷积核设计,特征提取模块可获取不

同感受野的特征信息,有助于捕捉多样化的缺陷特征,并
增强模型对复杂缺陷模式的适应性。 最终,3 个不同尺

寸卷积核的输出与 Stem-Dense 模块经过上采样调整特征

图大小后的结果进行残差密集连接与融合,再经卷积、
Spatial-DropOut 进行 DropOut、全连接及 SoftMax 层完成

晶圆缺陷的分类。 这种结合了残差连接的多尺度特征提

取设计确保了信息传递与特征重用的最大化。 此外,为
了解决晶圆缺陷检测中的类别不平衡问题,本文采用

Focal
 

Loss 作为损失函数[24] ,旨在提高模型对稀有缺陷

类别的检测精度。 相较于传统的交叉熵损失,Focal
 

Loss
能够动态调整样本权重,通过重点关注难以分类的样本,
显著缓解数据不平衡对模型性能的负面影响。 通过这些

改进,MSD-DFE 在复杂缺陷的检测任务中表现出色,有
效提升了分类精度和模型鲁棒性。

图 1　 MSD-DFE 结构示意图

Fig. 1　 Diagram
 

of
 

the
 

MSD-DFE
 

architecture

1. 2　 Stem-Dense 特征提取模块

　 　 Stem-Dense 特征提取模块来自于一种轻量级卷积神

经网络———PeleeNet,借鉴了 DenseNet[25] 的设计思路,并
在结构上进一步优化,以提升计算效率并实现模型的压

缩。 PeleeNet 在显著减少参数量和计算量的同时,依然

保持了出色的分类精度和性能。 Stem-Dense 特征提取模

块结构如图 2 所示,Stem-Dense 模块在初步特征提取中,
显著减少了参数量和计算复杂度,从而实现模型的轻量

化设计。
Stem 模块作为初始卷积层,将输入图像转换为特征

表示。 不同于传统卷积网络,Stem 模块采用高效的双路

径密集结构,结合不同步长和卷积核尺寸的并行特征提

取,以及最大池化操作,从而保留输入图像中的关键信

图 2　 Stem-Dense 特征提取模块示意图

Fig. 2　 Diagram
 

of
 

the
 

Stem-Dense
 

feature
 

extraction
 

module

息。 双路径密集连接结构使得多尺度特征图在融合后被

有效整合,不仅显著降低了模块参数量,还能够高效提取

多个尺度的浅层特征。 此设计在确保计算效率的同时,
有效捕捉了多尺度特征信息,为后续卷积层提供了丰富

的上下文特征,从而显著提升分类性能。 Stem 模块的结

构如图 3(a)所示。
Dense 模块借鉴 DenseNet 的核心思想,通过密集连

接实现信息传递与特征重用的最大化。 图 3( b)所示为

Dense 模块的结构。 每一层的输入不仅来自直接前一层

的输出,还包括所有先前层的输出。 这样的密集连接使

得每一层都能直接访问最初的输入和所有中间层的特征

图,从而确保前层提取的特征能被后续层充分利用。 此

外,由于每层都与之前的所有层直接相连,Dense 模块在

训练过程中还具有显著的正则化效果,有效减少了过拟

合现象,从而提升了模型的泛化性能。 通过这种特征重

用和梯度流动设计,能够在保持较少参数量的情况下实

现较高的模型性能,特别适用于计算效率与高精度需求

并存的应用场景。

图 3　 Stem-Dense 模块结构

Fig. 3　 Structure
 

diagram
 

of
 

the
 

Stem-Dense
 

module

此外,在 Stem-Dense 模块最后一层引入了 Transition
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层来控制网络的深度和宽度。 Transition 层通过降低特

征图的空间尺寸,在保留关键信息的同时有效地减少了

计算开销。 通过减少通道数量和特征图尺寸,Transition
层有效缓解了参数量和计算量的爆炸性增长,实现了性

能与效率之间的良好平衡。
1. 3　 Conv-SE 模块

　 　 在 Stem-Dense 初步特征提取后,本文采用了一种结

合 SE 注意力机制的卷积模块———Conv-SE 模块,以实现

深层特征图的高效信息提取。 SE 注意力机制在特征提

取中通过动态赋予不同通道权重,使模型聚焦于重要特

征通道,从而提升学习效率和泛化能力。 值得一提的是,
该机制在显著提升模型性能的同时,计算量几乎未增加。

图 4 所示为 Conv-SE 模块的结构,其中图 4 ( a) 为

Conv1-SE,图 4(b)为 Conv2-SE,W 表示卷积核大小,f 表
示卷积核个数,Stride 表示步长。 Conv1-SE 和 Conv2-SE
模块的工作原理如下:首先,输入特征图经过特定大小卷

积核的卷积、激活、正则化并在空间维度上通过最大池

化,调整输出的通道数;其次,这些描述经由 SE 注意力层

处理,生成通道权重,这些权重被作用于原始特征图的各

通道,对关键特征进行加权强化,同时抑制无关信息。

图 4　 Conv1-SE 和 Conv2-SE 结构示意图

Fig. 4　 Diagram
 

of
 

the
 

Conv1-SE
 

and
 

Conv2-SE
 

structures

图 5 所示为 SE 注意力机制的结构,其中 Scale 操作

表示逐通道相乘。 该机制通过自适应调整通道权重,增

强了卷积神经网络对有用特征的表达能力,同时有效抑

制无关或噪声特征。 SE 注意力机制操作如下:首先,对
输入特征图在空间维度上进行全局平均池化,将每通道

的全局信息压缩为单个数值,生成通道级描述;随后,这
些描述经由两个全连接层的 Excitation 处理,生成通道权

重;最后,权重作用于原特征图的各通道,对关键特征进

行加权强化,抑制无关信息。 这一设计显著提升了模型

对重要特征的关注,增强了特征表达能力。

图 5　 SE 注意力机制结构示意图

Fig. 5　 Diagram
 

of
 

the
 

SE
 

attention
 

mechanism
 

structure

2　 WM-811K 数据集介绍及数据预处理

2. 1　 WM-811K 数据集

　 　 WM-811K 数据集[26] 是当前全球规模最大且公开可

访问的真实半导体制造环境的晶圆图像数据集,包含

811
 

457 张晶圆图像,这些数据来自 46
 

293 个批次的采

集,每个批次通常包含约 25 张晶圆图像。 理论上,数据

集应包括 1
 

157
 

325 张图像,但由于传感器故障或其他未

知原因,部分批次图像缺失,最终形成了当前的规模。
WM-811K 数据集不仅提供了丰富的晶圆图像数据和缺

陷类别信息,还附带了批次名称、晶圆尺寸、训练标签和

测试标签等附加信息,为研究者提供了全面的数据支持。
数据集中的晶圆图像尺寸多达 632 种, 从 ( 6 × 21 )
到(300×202)不等,体现了极大的多样性。 这种特性使

WM-811K 成为研究晶圆缺陷检测和分类的重要基准,为
不同尺寸的图像处理提供了广泛的应用场景。

该数据集存在明显的数据不平衡现象。 在 811
 

457
张图像中,仅有 172

 

950 张被标注了缺陷标签,而具有明

确缺陷图案的图像数量为 255
 

519 张。 数据集中包含的

缺陷标签共分为 9 种类别,各类别的样本数量分布如表 1
所示。 这种数据不平衡特性为模型的训练和评价提出了
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挑战,同时也为研究高效处理不平衡数据的算法提供了

宝贵的实践机会。
表 1　 WM-811K 数据集不同缺陷类别的数量分布

Table
 

1　 The
 

distribution
 

of
 

the
 

number
 

of
 

defect
categories

 

in
 

the
 

WM-811K
 

dataset
缺陷类别 数量

Center 4
 

294
Donut 555

Edge-Loc 5
 

189
Edge-Ring 9

 

680
Local 3

 

593
Random 866
Scratch 1

 

193
Near-full 149

None 147
 

431

2. 2　 数据集预处理

　 　 WM-811K 数据集的显著类别不平衡性对模型训练

提出了重大挑战, 尤其是缺陷样本数量远少于无缺

陷(none)类别。 这种不平衡性导致模型在训练过程中更

倾向于预测无缺陷类别,从而显著影响分类的准确性。
为解决这一问题,本文在数据预处理中引入了中值滤波

去噪和多种数据增强策略,以提升模型在少数类缺陷图

像上的识别能力。
WM811-K 中的不同晶圆缺陷如图 6 所示。 为了统

一数据集的输入格式,将 WM-811K 中尺寸不一的图像调

整为固定大小(224×224×3)。 原始晶圆图像为单通道形

式,其中每个像素的值表示 3 种状态:0 表示未知状态;1
表示正常状态;2 表示缺陷状态。 为适应模型需求,采用

独热编码将单通道图像扩展为三通道图像。 考虑到数据

中的随机噪声可能导致误检问题,对独热编码后的图像

应用中值滤波操作,以有效去除随机噪声并提高模型对

实际缺陷模式的关注。 中值滤波处理后的晶圆图像如图

7 所示。

图 6　 原始晶圆图

Fig. 6　 Original
 

wafer
 

map

此外,为了缓解类别样本不平衡问题,尤其是除无缺

图 7　 中值滤波后的晶圆图

Fig. 7　 Wafer
 

map
 

after
 

median
 

filtering

陷类别外,其余 8 类样本数量较少的情况,本文通过数据

增强技术扩充少数类别的样本量至每类 10
 

000 张。 数

据增强方法包括图像的垂直和水平翻转、平移、轻微旋

转、缩放以及裁剪等。 这些增强操作不仅扩大了样本规

模,还增加了样本的多样性,从而提升了模型的泛化

能力。

3　 实验与分析

3. 1　 实验环境与参数设置

　 　 本文实验使用了 TensorFlow 框架构建网络,实验环

境包括 Windows11 操作系统、Cuda11. 8、Python3. 9 以及

TensorFlow
 

2. 9. 1,硬件平台为 NVIDIA
 

RTX
 

4090
 

GPU。
实验所用的数据集包含 9 个类别,每类 10

 

000 张晶圆图

像,总计 90
 

000 张。 数据集按照 70 ∶ 15 ∶ 15 的比例划分

为训练集、验证集和测试集,确保实验结果具有可靠性和

普适性。 实验图像输入的大小为 224×224×3,学习率设

定为 1×10-3,批量大小为 100。 网络训练过程中进行了

40 个周期,优化器选择了 Adam 梯度优化器,以其良好的

收敛性能确保训练稳定性和效率。
损失函数采用 Focal

 

Loss,以有效应对类别不平衡问

题,其表达式如式(1)所示。
FL(p t) = - α t(1 - p t)

γ log(p t) (1)
式中:α 和 γ 调节因子;p t 是模型对类别的正确预测概

率。 参数 α t 用于平衡正负样本的权重,通常设置 α t 为

α t
 =

 

α 或 1-α,以降低易分类样本对总损失的贡献;参数

γ 控制模型对难分类样本的关注程度,γ 值越大,模型越

倾向于聚焦于难分类样本。 本文实验中,γ 通常设为 2,
以实现较优的样本权重平衡和分类性能。
3. 2　 模型指标

　 　 在图像分类任务中,评价模型性能的常用指标包括

准确率 ( accuracy, Acc ), 精确率 ( precision, P ), 召回

率(recall, R ), F1 分 数 ( F1-Score ), 其 表 达 式 如

式(2) ~ (5)所示。
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Acc = TN + TP
FP + TN + TP + FN

(2)

P = TP
FP + TP

(3)

R = TP
TP + FN

(4)

F1 - Score = 2 × P × R
P + R

(5)

式中:TP(true
 

positive)表示预测为正样本且实际为正样

本的数量;FP(false
 

positive)为预测为正样本但实际为负

样本的数量;TN(true
 

negative)为预测为负样本且实际为

负样本的数量;FN( false
 

negative) 为预测为负样本但实

际为正样本的数量。 F1 分数是精确率与召回率的加权

平均,其值介于 0 和 1 之间,值越大表示模型在分类任务

中表现越好。 F1 分数尤其适合在数据类别不平衡的情

况下,综合衡量模型对正负样本的分类性能。
3. 3　 实验结果分析

　 　 将本文方法与支持向量机 ( SVM)、 人工神经网

络(ANN)、VGG16 等传统模型以及近年来的晶圆缺陷检

测算法进行了对比,结果如表 2 所示。 实验结果表明,本
文方法在参数量、精确率、召回率、准确率和 F1 分数等多

个指标上都展现了显著优势。
从表 2 可以看出,除 SVM 模型无法进行参数量化

外,本文所提出的方法在其他 5 个对比模型中,从参数

量、计算量和模型准确度等角度,本文方法具有更好的性

价比。 本文模型的参数量为 0. 646 × 106,远低于传统的

大型 神 经 网 络 模 型, 如 VGG16 ( 134. 297 × 106 ) 和

ANN(102. 762× 106 )。 即 使 与 一 些 轻 量 化 网 络, 如

MobileNetV2(3. 4 × 106 ) 和 WM-PeleeNet( 0. 169 × 106 ) 相

比,本文模型的参数量依然保持在极低水平,展示了较高

的参数效率,这使得该模型特别适合在资源受限的环境

中部署。 在计算量方面,尽管由于结构中采用了不同尺

寸的卷积核计算,导致本文模型的浮点计算量为 1. 634
 

GFLOPS,相较于一些轻量化网络模型(如 WM-PeleeNet
为 0. 316

 

GFLOPS 和 MobileNetV2 为 0. 313
 

GFLOPS),计
算量略大,但远低于 VGG16(18. 48

 

G) 等大型模型。 通

过这种设计,本文模型在保证高性能的同时,有效降低了

计算复杂度,实现了计算效率与准确率之间的良好平衡。
在分类精度方面,本文模型达到了 97. 4%的准确率,在所

有对 比 模 型 中 表 现 最 佳。 相 比 之 下, VGG16 和

MobileNetV2 的准确率分别为 92. 8%和 95. 8%,而 WDD-
SCA 和 WM-PeleeNet 的准确率分别为 96. 5%和 93. 6%。
这些结果表明,本文模型不仅在减少参数量和计算量方

面表现出色,还在精度上超越了现有的轻量化模型。 本

文提出的模型在性能和计算效率之间达到了良好的平

衡,说明其在实际应用中巨大的潜力和优势。

表 2　 各个模型参数量及准确率比较

Table
 

2　 Comparison
 

of
 

the
 

number
 

of
 

parameters
and

 

accuracy
 

for
 

each
 

model
模型 总参数量 / 106 总计算量 / GFLOPs 准确率 / %
SVM - - 70. 4
ANN 102. 762 - 88. 7

VGG16 134. 297 18. 48 92. 8
MobileNetV2 3. 400 0. 313 95. 8
WDD-SCA 75. 068 0. 640 96. 5

WM-PeleeNet 0. 169 0. 316 93. 6
PeleeNet 23. 090 0. 768 93. 7
本文 0. 646 1. 634 97. 4

　 　 表 3 为这些模型在精确率、召回率、准确率和 F1 分

数等指标上的对比结果。 可以看出,本文提出的模型在

各项指标上均有显著提升,表现出更强的分类性能。
表 3　 不同模型的准确率、查准率、查全率、F1 分数对比

Table
 

3　 Comparison
 

of
 

accuracy,
 

precision,
recall,

 

and
 

F1-score
 

for
 

each
 

model (%)

模型
训练集

准确率

验证集

准确率

测试集

准确率
精确率 召回率 F1 分数

SVM 71. 5 70. 4 70. 4 72. 8 70. 4 67. 6
ANN 93. 9 88. 8 88. 7 88. 7 88. 7 88. 7

VGG16 99. 9 92. 8 92. 8 92. 7 92. 7 92. 6
MobileNetV2 99. 9 95. 8 95. 8 95. 8 95. 8 95. 8
WDD-SCA 99. 8 96. 5 96. 5 96. 4 96. 5 96. 5

WM-PeleeNet 99. 9 96. 3 96. 3 96. 2 96. 5 96. 3
本文 99. 9 97. 4 97. 4 97. 4 96. 9 97. 3

　 　 表 4 为不同模型在晶圆缺陷分类任务中的精度对

比。 图 8 所示为本文模型的混淆矩阵,其中横轴代表预

测标签,纵轴代表真实标签。 每一行表示某类真实标签

的晶圆图像在被正确预测的类别数量、错误预测的类别

数量,以及被错误预测为其他类别的数量。 从表 4 及图 8
可以看出,本文提出的 MSD-DFE 模型在 WM-811K 数据

集的 8 个缺陷类型及无缺陷类型(包括 Center、Donut、E-
L ( Edge-Loc)、 E-R ( Edge-Ring)、 Loc ( Local )、 Random、
Scratch、N-F ( Near-Full)、 None) 的分类准确率分别为

96. 2%、 95. 2%、 94. 8%、 100%、 94. 9%、 100%、 95. 8%、
100%、100%。 本文提出的模型尽管在 Center、Donut 和

Scratch 类别的准确率相较于其他模型略有不足,但在其

余缺陷类别及无缺陷类别的分类准确率上均优于其他方

法,且大部分类别的准确率均达到 95%以上。 本文提出

的 MSD-DFE 方法在整体性能上展现了最佳表现,证明其

在晶圆缺陷检测中的优越性。
3. 4　 模型的收敛性分析

　 　 模型的损失曲线以及在训练集和验证集上的准确率

变化曲线如图 9 和 10 所示。 从图 9 可以看出,模型的损

失值在训练初期迅速下降,并在第 30 个周期后趋于
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　 　 　 表 4　 不同模型在各个缺陷类别的正确率

Table
 

4　 Accuracy
 

of
 

different
 

models
 

for
 

each
 

defect
 

category (%)
模型 Center Donut E-L E-R Loc Random Scratch N-F None
SVM 92. 7 95. 2 54. 3 97. 1 11. 3 100 64. 7 73. 0 45. 1
ANN 93. 7 99. 9 77. 2 96. 7 66. 4 100 98. 6 86. 8 79. 2

VGG16 96. 0 99. 2 85. 6 97. 9 74. 9 100 95. 3 93. 7 92. 0
MobileNetV2 97. 9 100 90. 5 97. 0 89. 7 100 99. 2 94. 6 45. 1
WDD-SCA 97. 9 100 91. 5 96. 7 92. 6 100 99. 1 96. 7 94. 0

WM-PeleeNet 98. 2 90. 8 90. 1 97. 8 87. 2 89. 2 92. 3 87. 2 100
本文 96. 2 95. 2 94. 8 100 94. 9 100 95. 8 100 100

图 8　 模型的混淆矩阵

Fig. 8　 Confusion
 

matrix
 

of
 

the
 

proposed
 

model

图 9　 训练模型的损失曲线

Fig. 9　 Loss
 

curve
 

of
 

the
 

trained
 

model

平稳,表明模型在训练过程中快速收敛。 从图 10 可以看

出,模型在训练集和验证集上的准确率均呈现出先上升

后平稳的趋势。 在训练集上,模型的准确率在第 31 个周

期达到了最高值 99. 9%,并在随后的周期中保持稳定;在
验证集上,模型的准确率在第 31 个周期达到了最大值

97. 4%。 这些结果表明,模型具有较强的收敛性,能够在

图 10　 训练集和验证集上准确率变化曲线

Fig. 10　 The
 

accuracy
 

variation
 

curve
 

on
the

 

training
 

and
 

validation
 

sets

较少的训练周期内迅速达到高准确率,并在后续训练中

保持相对稳定的表现。 这表明模型在训练效率和稳定性

方面都表现良好。
3. 5　 消融实验

　 　 消融实验对比如表 5 所示,包含所有模块的情况下,
模型的总参数量为 0. 646×106,计算量为 1. 634

 

GFLOPs,
并达到了最高平均分类准确率 97. 4%。 这表明各个模块
的协同作用有效提升了模型的分类性能。 与不使用 SE
注意力机制的模型相比,采用 SE 注意力机制的模型在准

确率上有了显著提升,同时可以观察到,SE-Attention 几

乎不增加额外的参数量和计算量。

表 5　 MSD-DFE 消融实验对比

Table
 

5　 Ablation
 

study
 

comparison
 

of
 

MSD-DFE

SE Stem-Dense
Multi-scale

Fusion
 

Structure
总参数量 /

×106

计算量 /
GFLOPs

准确率 / %

- - - 1. 04 2. 344 89. 4
√ - - 1. 05 2. 355 91. 2
- √ - 0. 274 0. 594 92. 4
- - √ 0. 417 1. 166 92. 6
√ √ - 0. 276 0. 595 94. 3
√ - √ 0. 448 1. 166 94. 4
- √ √ 0. 635 1. 633 95. 8
√ √ √ 0. 646 1. 634 97. 4
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　 　 在不包含任何模块的情况下,模型的参数量和计算

量分别为 1. 04×106 和 2. 344
 

GFLOPs,且准确率最低,仅
为 89. 4%,而使用 Stem-Dense 模块进行特征提取后,模型

的参数量和计算量分别为 0. 274×106 和 0. 594
 

GFLOPs,
同时准确率也达到了 92. 4%,可以看出 Stem-Dense 模块

可以大幅降低模型的参数量和计算量。 而与仅使用

Stem-Dense 模块作为初步特征提取模块的模型相比,使
用多尺度融合结构后,虽然会使得在计算量和参数量上

有所增加,但多尺度融合结构的引入使得模型能够学习

到不同尺度的特征信息,特别是小卷积核有助于提取细

节信息,而大卷积核则擅长捕捉全局结构。 这种多尺度

特征融合结构显著提高了模型的鲁棒性和表现力。 消融

实验结果表明,去除该多尺度融合结构后,进行卷积特征

提取时,准确率平均下降了 2. 6%。 这表明,多尺度融合

结构对于捕获全面的特征信息以及提升分类性能至关重

要。 尽管该结构增加了模型的参数量和计算量,但其对

准确率的显著提升证明了其在提升模型性能中的关键

作用。

4　 结　 论

　 　 本文提出了一种基于多尺度特征提取与 SE 注意力

机制的轻量化晶圆缺陷检测网络———MSD-DFE。 通过设

计高效的 Stem-Dense 模块、多尺度特征融合结构和 SE
注意力机制,本文模型在保持较低参数量和计算量的同

时,实现了高精度的缺陷检测与分类。 实验结果表明,
MSD-DFE 模型在准确率、精确率、召回率和 F1 分数等指

标上,对比传统模型和现有的轻量化网络具有一定优势。
通过引入多尺度特征提取和融合,模型能够从不同尺度

的特征中捕捉到更多的缺陷信息,增强了对复杂缺陷模

式的适应性。 消融实验进一步验证了各模块的有效性,
表明多尺度融合结构在提升分类性能和鲁棒性方面发挥

了关键作用。 此外,SE 注意力机制几乎不增加额外的计

算负担,却显著提高了模型的性能。 尽管本文模型与最

轻量化的模型相比增加了参数量和计算量,但整体性能

的提升使得该模型在资源受限的环境中具有良好的应用

前景。 总体而言,本文方法通过精心设计和模块优化,实
现了计算效率与分类精度之间的平衡,为晶圆缺陷检测

领域提供了一种高效、精准的解决方案,具备较高的实际

应用价值。 但受限于 Conv1-SE 卷积核大小的不同,模型

在设计时并不能实现并行处理,这也导致了模型在降低

计算量和参数量方面仍有可优化的空间。
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