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摘　 要:建筑起重机械是现代工程的核心装备,其高空作业的高风险性易引发重大事故及经济损失,严重威胁安全。 为了提升

缺陷识别的效率和精度,降低操作人员登高巡查的风险,提出了一种基于无人机图像的表面缺陷智能检测方法 FRE。 建筑起重

机械表面缺陷种类多样、尺度微小且背景复杂,传统 YOLOv8 网络因多尺度特征融合能力不足及环境适应性局限,难以实现高

精度缺陷检测。 利用无人机巡检施工设备,建立了钢丝绳缺陷、金属结构锈蚀两个典型的起重机械缺陷图像数据集。 将

YOLOv8 骨干网络中的 C2F 模块替换为 RepViT
 

Block 模块,提升模型在图像理解和处理中的性能和效率,显著降低了计算复杂

度和延迟,训练速度分别提高了 46. 4%、2. 6%;将 FasterNet
 

Block 模块替换颈部网络的 C2F 模块,提高对缺陷的定位性能,提高

了检测小目标的能力;将高效多尺度注意力(EMA)模块嵌入到骨干网络中,抑制背景信息的干扰,使模型更加关注缺陷特征。
与现有的缺陷检测相比,该模型的检测精度分别达到了 88. 0%、94. 1%。 同时,模型参数量相较于 YOLOv8 模型下降了

23. 26%。 结果表明,该方法可以快速、准确的检测出建筑起重机械表面缺陷,具有一定的社会应用价值。
关键词:

 

表面缺陷检测;无人机图像;改进 YOLOv8;建筑起重机械;EMA 模块

中图分类号:
 

TH218;TN98　 　 　 文献标识码:
 

A　 　 国家标准学科分类代码:
 

460. 50

Visual
 

intelligent
 

diagnosis
 

method
 

for
 

surface
 

defects
 

of
 

construction
hoisting

 

machinery
 

based
 

on
 

UAV
 

images

Chang
  

Xiaodan1 　
 

Feng
  

Hao1 　
 

Yin
  

Chenbo2 　
 

Chen
  

Mingjun2 　
 

Wang
  

Jun3

(1. School
 

of
 

Artificial
 

Intelligence,
 

Nanjing
 

University
 

of
 

Information
 

Science
 

&
 

Technology,
 

Nanjing
 

210044,
 

China;
2. School

 

of
 

Mechanical
 

and
 

Power
 

Engineering,
 

Nanjing
 

Tech
 

University,
 

Nanjing
 

211816,
 

China;
3. Jiangsu

 

Tianzhou
 

Testing
 

Co.,
 

Ltd.,
 

Nanjing
 

210035,
 

China)

Abstract:
 

Construction
 

cranes
 

are
 

the
 

core
 

equipment
 

of
 

modern
 

engineering,
 

and
 

their
 

high-risk
 

operation
 

at
 

height
 

is
 

prone
 

to
 

cause
 

major
 

accidents
 

and
 

economic
 

losses,
 

seriously
 

threatening
 

safety.
 

In
 

order
 

to
 

improve
 

the
 

efficiency
 

and
 

accuracy
 

of
 

defect
 

recognition
 

and
 

reduce
 

the
 

risk
 

of
 

operators
 

climbing
 

up
 

to
 

inspect,
 

a
 

surface
 

defect
 

intelligent
 

detection
 

method
 

FRE
 

based
 

on
 

UAV
 

images
 

is
 

proposed.
 

The
 

surface
 

defects
 

of
 

construction
 

cranes
 

are
 

diverse,
 

tiny
 

in
 

scale
 

and
 

complex
 

in
 

background,
 

and
 

the
 

traditional
 

YOLOv8
 

network
 

is
 

difficult
 

to
 

realize
 

high-precision
 

defect
 

detection
 

due
 

to
 

the
 

lack
 

of
 

multi-scale
 

feature
 

fusion
 

capability
 

and
 

the
 

limitation
 

of
 

environmental
 

adaptability.
 

Utilizing
 

the
 

UAV
 

inspection
 

construction
 

equipment,
 

two
 

typical
 

lifting
 

machine
 

defect
 

image
 

datasets
 

of
 

wire
 

rope
 

defects
 

and
 

metal
 

structure
 

corrosion
 

are
 

established.
 

The
 

C2F
 

module
 

in
 

the
 

YOLOv8
 

backbone
 

network
 

is
 

replaced
 

with
 

the
 

RepViT
 

Block
 

module
 

to
 

improve
 

the
 

performance
 

and
 

efficiency
 

of
 

the
 

model
 

in
 

image
 

understanding
 

and
 

processing,
 

which
 

significantly
 

reduces
 

the
 

computational
 

complexity
 

and
 

latency,
 

and
 

the
 

training
 

speed
 

is
 

increased
 

by
 

46. 4%
 

and
 

2. 6%,
 

respectively;
 

the
 

C2F
 

module
 

in
 

the
 

neck
 

network
 

is
 

replaced
 

by
 

the
 

FasterNet
 

Block
 

module,
 

which
 

improves
 

the
 

performance
 

of
 

the
 

localization
 

of
 

defects
 

and
 

improves
 

the
 

ability
 

of
 

detecting
 

small
 

targets;
 

the
 

EMA
 

module
 

is
 

embedded
 

into
 

the
 

backbone
 

network
 

to
 

suppress
 

the
 

interference
 

of
 

background
 

information
 

and
 

make
 

the
 

model
 

more
 

focused
 

on
 

defect
 

features.
 

Compared
 

with
 

the
 

existing
 

defect
 

detection,
 

the
 

detection
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accuracy
 

of
 

the
 

model
 

reaches
 

88. 0%
 

and
 

94. 1%,
 

respectively.
 

Meanwhile,
 

the
 

number
 

of
 

model
 

parameters
 

decreased
 

by
 

23. 26%
 

compared
 

with
 

the
 

YOLOv8
 

model.
 

The
 

results
 

show
 

that
 

the
 

method
 

can
 

quickly
 

and
 

accurately
 

detect
 

the
 

surface
 

defects
 

of
 

construction
 

cranes,
 

which
 

has
 

certain
 

social
 

application
 

value.
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0　 引　 言

　 　 建筑起重机械是现代建筑施工的重要设备,涵盖了塔

式起重机、施工升降机、吊篮、桥式起重机、移动式起重机等

设备,具有专业技术含量高、危险性较大等特点[1] 。 由于过

去重建轻养,随着时间的推移,建筑机械也面临着各种损伤

和老化问题,很多建筑起重机械已进入病害高发期,常见锈

蚀、开裂等缺陷[2] 。 若建筑起重机械“带病上岗”,极易出现

倒塌、断臂等情形,甚至出现群死群伤的情况。
但是,人工巡检受限于建筑机械的高度和外形,容易

遗漏死角和盲点,且高空作业安全风险高、工作效率低,
传统的检测方法难以全面、准确地评估设备的状态。 现

有的一些视觉手段也只是“人工巡检为主,视频监测为

辅” [3-4] 。 因此,亟需一种安全、智能、易操作的方式实现

建筑机械缺陷的全面安全检测,克服人工巡检“费、慢、
难、险”的弊端。

近年来,深度学习凭借自动化特征提取和高精度模

式识别在缺陷检测领域发挥了重要作用。 针对风力涡轮

机、输电线路、钢材表面等工业场景的检测需求,国内外

学者基于 YOLO 系列框架提出了一系列改进模型。 张银

胜等[5] 提出了一种改进 YOLOv5s 的风力涡轮机表面缺

陷检测模型以解决传统方式检测风力涡轮机表面缺陷时

出现的精度不足、泛化性较差问题;Liu 等[6] 提出了一种

基于深度学习目标检测网络的高压输电线路关键目标和

缺陷的检测方法;Tie 等[7] 提出了一种基于 YOLOv8n 目

标检测框架的轻型钢表面缺陷测试模型 LSKAYOLOv8;
赵佰亭等[8] 设计的 ECC-YOLO 模型在钢表面缺陷检测

中综合性能突出。 然而深度学习模型在边缘设备部署时

计算开销过大,难以完全满足实际工业场景的实时性与

低成本需求。
与此同时,在复杂缺陷的三维识别与动态场景检测

中,计算机视觉与摄影测量技术的结合成为重要突破口。
Lobanov 等[9] 利用无人机高分辨率影像与摄影测量技术

构建塔体三维模型,实现碎片穿透、裂缝等缺陷的立体化

定位;刘金海等[10] 采用主动小样本学习策略,减少管道

焊缝缺陷检测的数据依赖;李可等[11] 提出改进辅助分类

生成对抗网络,增强了钢表面缺陷检测效果;马燕婷

等[12] 提出了一种基于 YOLOv5 网络改进的算法模型 MT-
YOLOv5,更好地均衡了检测速度与检测精度;Yuan 等[13]

为了实现输电线路典型缺陷的自动识别,提出了一种基

于 YOLOv5 算法的典型输电线路缺陷识别方法;范先友

等[14] 提出了一种基于改进 YOLOv7 的液晶面板电极缺

陷视觉检测方法;Duan 等[15] 提出了一种基于无人机航

空摄影场景的目标检测模型 M-YOLOv8s;He 等[16] 提出

了一种自适应多尺度检测方法,实现了风机叶片表面缺

陷的准确分类和定位;Feng 等[17] 提出基于无人机遥感图

像的路面损伤混合模型,通过图像拼接与深度学习完成

大范围损伤检测。 此类技术突破了传统二维检测的局限

性,为缺陷的空间分析与动态监测提供了新思路。 然而

三维建模与图像拼接的计算复杂度高,实时性较差,且对

复杂背景的鲁棒性仍需提升,难以满足高速工业检测需

求。 面对无人机巡检、生产线高速检测等动态场景,实时

性与轻量化成为关键研究方向。 杨宇龙等[18] 设计风力

发电机表面缺陷检测模型,优化推理流程以满足实时性

要求;Yang 等[19] 改进的 YOLOv6s-GRE 均通过模型压缩

与加速技术降低计算负载。 这些研究显著提升了模型在

边缘设备上的部署能力,但如何在轻量化过程中避免精

度损失仍是难点。
针对上述挑战,本文提出了一种基于改进 YOLOv8n

的表面缺陷视觉检测算法。 根据实际工业场景搭建无人

机图像采集装置,创建了钢丝绳缺陷、金属结构锈蚀数据

集。 首先,改进骨干网络(backbone),将 RepViT
 

Block 模

块引入 Backbone 以轻量化模型,提高训练速度;其次,基
于 FasterNet

 

Block 模块重新设计颈部网络( neck)的 C2F
模块,提高对缺陷的定位性能,提高了检测小目标的能

力;最后,将高效多尺度注意力模块( efficient
 

multi-scale
 

attention,EMA) 嵌入到 Backbone 中,抑制背景信息的干

扰,使模型更加关注缺陷特征。

1　 建筑起重机械表面缺陷视觉诊断方法

1. 1　 YOLOv8 网络模型

　 　 YOLOv8n 是 YOLOv8 的轻量级变体,专为资源受限

的嵌入式设备设计。 在整体设计上,YOLOv8n 模型包括

输入端、Backbone、Neck 和头部(head)4 部分。 对于输入

端,会通过数据预处理和增强的操作被转换为模型可以

处理的格式。 Backbone 部分是 YOLOv8 的主干网络,主
要负责提取图像的特征。 Neck 是连接 Backbone 和 Head
的部分,主要作用是特征融合和处理,以提高检测的准确

性和效率。 Head 部分是模型最后一层,其结构会根据不

同的任务而有所不同。
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表 1 为各检测模型在典型工业缺陷检测数据集上的

对比结果,由表 1 可见,YOLOv8 在缺陷检测中展现出显

著优势,其通过优化的网络架构与动态标签分配策略,在

保持轻量化设计的同时,实现了更高的检测精度与实时

性,相较于 YOLOv5、Faster
 

R-CNN 等模型,更适用于复杂

工业场景下的实时检测需求。

表 1　 缺陷检测方法性能对比

Table
 

1　 Performance
 

comparison
 

of
 

defect
 

detection
 

methods
模型 测试数据集 mAP@ 0. 5 / % 检测速度 / fps Params / ( ×106 )

YOLOv8n MS
 

COCO 78. 5 120 3. 2
YOLOv5n MS

 

COCO 72. 3 145 1. 9
YOLOv7-tiny MS

 

COCO 75. 6 110 6. 0
YOLOv9 MS

 

COCO 82. 1 80 8. 7
YOLOv10n MS

 

COCO 79. 8 115 3. 5
YOLOv11s MS

 

COCO 80. 2 100 4. 8
Mask

 

R-CNN VOC2007 80. 5 15 44. 3
Faster

 

R-CNN VOC2007 77. 2 20 38. 6

　 　 虽然原始 YOLOv8n 模型在性能方面具有较高的准

确性和速度,但也存在一些缺点。 首先,YOLOv8 的参数

量相较于其前身 YOLOv4 有所增加,这可能会导致更大

的存储空间需求和计算负担。 其次,YOLOv8n 在处理工

业缺陷检测等需要高精度和复杂场景的任务时,可能会

受到其轻量化设计和资源限制的影响,导致一定的检测

精度和处理能力上的限制。 因此,选择 YOLOv8n 作为基

准模型,并进行了改进。
1. 2　 FRE(FasterNet-RepViT-EMA)网络模型

　 　 提出了一种基于 YOLOv8n 的轻量级建筑起重机械

表面缺陷检测模型 FRE。 其核心改进包括 Backbone 的

RepViT
 

Block 模块替换、Neck 的 FasterNet
 

Block 模块替

换,以及 EMA 多尺度注意力机制的嵌入。 图 1 所示为

FRE 模型结构示意图。 由图 1 可见,RepViT
 

Block 模块

替换骨干网络的 C2F 模块,融合 Transformer 的全局感

知与卷积神经网络( convolutional
 

neural
 

networks,CNN)
的局部特征提取能力,结合重参数化技术提升训练效

率; FasterNet
 

Block 模块嵌入颈部网络, 利用部分卷

积( PConv)降低计算冗余,显著增强小目标定位精度;
EMA 通过跨空间特征聚合抑制复杂背景干扰。 三者

协同作用在轻量化基础上实现高精度,同时保持实时

性,有效解决了建筑起重机械缺陷检测中多尺度特征

融合不足、动态背景噪声敏感及边缘设备资源受限的

难题。

图 1　 FRE 模型架构

Fig. 1　 FRE
 

model
 

architecture
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　 　 1)RepViT
 

Block 模块

RepViT
 

Block 模块[20] 被用来替换主干中的 C2F 模

块以增强模型特征提取能力。 RepViT
 

Block 是 RepViT
模型中的创新模块,而 RepViT 模块是受 Transformer 的启

发的视觉处理模型, 主要包括模块 ( stem )、 下采样

层(downsampling)、全局平均池化层 ( pooling)、全连接

层(fully
 

connected,FC)以及多个阶段的 RepViT
 

Block 组

成,旨在提升模型在图像理解和处理中的性能和效率。
RepViT 结构如图 2 所示。

图 2　 RepViT 结构

Fig. 2　 RepViT
 

structure
 

diagram

　 　 首先,RepViT 模型在初期引入两个步长等于 2 的 3×
3 卷积层,用于对输入图像进行处理。 这种设计简化了

初始的计算负担,同时提升了模型的优化稳定性和表现

力。 其次,RepViT 在每个阶段后的下采样层中加入了深

度卷积和点卷积相结合的方式,这不仅实现了空间分辨

率的降低,还进一步加强了通道维度的信息表达能力。
此外,RepViT 还在这些下采样层中增加了 RepViT

 

Block,
使网络在保持高效下采样的同时拥有更好的特征提取能

力。 其 中, RepViT 有 4 个 阶 段, 每 个 阶 段 由 多 个

RepViTBlock 组成,以及一个可选择的 RepViTSEBlock,包
含深度可分离卷积( 3 × 3DW),1 × 1 卷积,压缩激励模

块(squeeze-and-excitation,SE) 和前馈网络 ( feed-forward
 

network,FFN)。 最后通过全局平均池化层和全连接层,
用于最终的类别预测。

RepViT 模 块 中 的 核 心 单 元 是 RepViTBlock,
RepViTBlock 结构如图 3 所示。 RepViT

 

Block 模块使用

3×3 深度卷积进行空间信息融合,然后使用 1×1 卷积进

行通道间交互,并结合可选择的 SE 层进一步优化。 进一

步采用了一种广泛应用于 DW 层的结构再参数化技术,

以增强训练过程中的模型学习。

图 3　 RepViT
 

Block 结构

Fig. 3　 RepViT
 

Block
 

structure
 

diagram

受 Transformer 启发, RepViT 作为一种新的轻量级

CNN 架构,在保持移动设备友好性的同时提高了性能和

效率。 RepViT
 

Block 模块的引入显著提高了模型在移动

设备上的推理速度和性能表现,使得 FRE 能够在保持较
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高精度的同时,显著降低计算复杂度和延迟,从而适合资

源受限的边缘设备部署。
2)FasterNet

 

Block 模块

为进一步减少模型的参数量和计算量,将颈部中的

C2F 模 块 替 换 为 FasterNet
 

Block 模 块[21] 。 FasterNet
 

Block 是 FasterNet 网络的基本构建单元,负责处理特征

的提取和转换。 FasterNet
 

Block 集成了 PConv 和点线卷

积(PWConv),以减少冗余计算。 PConv 的浮点操作运

算(FLOPs)记为:
h × w × k2 × C2

p (1)
式中:h 是输出特征映射的高度;w 是输出特征映射的宽

度;k 是卷积核的大小;Cp 是每个卷积核属于输出的信道

数。 由于部分卷积模式的部分比 r 为:

r =
Cp

c
= 1

4
(2)

所以 PConv 的浮点操作运算只有标准卷积的 1 / 16,
构建了更强大和高效的空间特征提取的轻量级网络。

每个 FasterNet
 

Block 都有一个 PConv 层和两个

PWConv(或 Conv
 

1×1)层。 它们共同构成反向残差块,
中间层有一个扩展的通道数量,并放置一个快捷连接以

重用输入特性。 PConv 的机理如图 4 所示。

图 4　 FasterNet
 

Block 网络结构

Fig. 4　 FasterNet
 

Block
 

network
 

structure

　 　 PConv 采用标准卷积法对部分输入信道进行空间特

征提取,同时保持剩余信道不变。 通过将第一个或最后

一个连续的 CP 通道作为整个特征图的表示,保证了其通

用性,同时保持了输入和输出特征图通道数量的一致性。
FasterNet

 

Block 通过使用一种新颖的部分卷积,减少

了冗余计算和内存访问。
3)EMA 机制

在复杂场景下,由于不同尺度的缺陷特征难以完全

捕捉,受到注意力机制的启发,引入了 EMA[22] 方法,通过

采用跨尺度的特征建模以及精确空间信息融合,能够有

效解决复杂场景下的微小缺陷的检测问题。 EMA 方法

的流程如图 5 所示。
　 　 高效多尺度注意力机制 EMA 通过将输入特征 X 按

照跨信道维度方向划分为子特征 X′,以学习不同的语义

特征表达。 其中,X 和 X′分别为:
X ∈ RC×H×W (3)
X′ = [X0,X1,…,XG-1] ∈ RC / / G×H×W (4)
令 G≪C 并且假设利用学习到的注意权重描述符来

增强每个子特征中感兴趣区域的特征表示。 为了收集多

尺度的空间信息,EMA 利用 3 条平行路径来提取分组特

征图的注意权重描述。 其中两条平行路由是 1×1 分支,
第 3 条路由是 3×3 分支。 更具体的来说,在 1×1 分支中,

有两个 1D 全局平均池化操作分别沿两个空间方向对通

道进行编码,在 3×3 分支中只有一个 3×3 卷积核堆叠,
以捕获多尺度特征表示。

接着,两个由 1×1 分支编码的特征按照图像高度 H
的方向进行拼接,使它共享相同的 1×1 卷积,而不在 1×1
分支中降维。 将 1×1 卷积的输出分解为两个向量后,采
用两个非线性 Sigmoid 函数拟合线性卷积上的二维二项

分布。 为了在 1×1 分支中实现两条平行路由之间不同的

跨通道交互特征,通过一个简单的乘法来聚合每一组内

的两个通道级注意映射。 另一方面,3×3 分支通过 3×3
卷积捕获局部跨通道交互,以扩大特征空间。 这样,EMA
不仅对信道间信息进行编码,以调整不同信道的重要性,
而且还将精确的空间结构信息保存到信道中。

为了在不同空间维度方向上聚合跨空间信息,以实

现更丰富的特征聚合,引入了两个张量,其中一个是 1×1
分支的输出,另一个是 3×3 分支的输出。 然后,利用二维

全局平均池化对 1×1 分支输出中的全局空间信息进行编

码,在通道特征的联合激活机制之前,将最小分支的输出

直接转换为相应的维度形状(R1×C / / G ×RC / / G×HW)。 2D 全局

池化操作可以表示为:

zc =
1

HW∑ H

j ∑
W

i
xc( i,j) (5)
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图 5　 EMA 原理图

Fig. 5　 EMA
 

schematic

为了提高计算效率,2D 全局平均池化使用二维高斯

映射的自然非线性函数 Softmax 来拟合其上的线性变化。
上述并行操作处理的输出通过点乘得到了第 1 个空间注

意力图,描述了收集的不同尺度的空间信息。 与此同时,
利用 2D 全局平均池化编码的 3×3 分支的全局空间特征

与维度变换一致的 1×1 分支特征进行联合激活以获得第

2 个保留整个精确的空间位置信息的空间注意力图。 最

后,将每一组内的输出特征图计算为所生成的两个空间

注意权重值的聚合并经过 Sigmoid 函数计算。 它捕获像

素级的成对关系,并突出显示所有像素的全局上下文。
综上所述,EMA 采用跨空间信息聚合方法,对远程依

赖关系进行建模,并将精确的位置信息嵌入之中。 融合了

不同上下文信息,使得改进后的模型能够获得更高级别的

像素级关注,以提升复杂场景下微小缺陷的检测能力。

2　 无人巡检系统

2. 1　 无人巡检系统

　 　 基于 AI 的建筑起重机械无人巡检系统主要由行业

级多旋翼无人机、图像自动采集模块、缺陷智能识别模

块、可视化安全智能评估模块等关键部分组成。 采用无

人机搭载专用高清相机对建筑机械进行全覆盖高清图像

采集,利用 FRE 智能算法自动完成对建筑起重机械结构

表面锈蚀及钢丝绳锈蚀、断丝、松散等缺陷进行智能识

别、定性判断。
2. 2　 缺陷数据集

　 　 建筑起重机械的缺陷图像通过大疆 Mavic
 

3E 无人

机获得,无人机采集塔式起重机表面缺陷图像的场景如

图 6 所示。

图 6　 无人机正在巡检塔式起重机

Fig. 6　 Drones
 

inspecting
 

tower
 

cranes

塔式起重机的常见故障缺陷中,金属结构的锈蚀和

钢丝绳缺陷是两类关键问题,因此将其作为重点研究对

象。 金属结构的锈蚀甚至开裂直接影响整体稳定性,极
易引发倒塌,重要性居于首位;钢丝绳缺陷(如断丝、锈
蚀、变形)则涉及承载安全,可能导致重物坠落,紧随其

后。 两者均为塔式起重机安全运行的关键检测重点。 建

筑起重机械损坏的类型和数量如表 2 所示。 为了保证图

像数据集的多样性,采集了多种类型的缺陷图像。 所采

集的图像的示例如图 7 所示。

表 2　 塔式起重机典型缺陷数据集的参数

Table
 

2　 Parameters
 

of
 

typical
 

defect
dataset

  

for
 

tower
 

cranes
类型 数量 / 张 大小 迭代次数

钢丝绳缺陷 1
 

463 640×640×3 200
金属结构锈蚀 806 1

 

280×1
 

280×3 300
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图 7　 多种类型的缺陷数据集

Fig. 7　 Various
 

types
 

of
 

defect
 

datasets

3　 实验与结果分析

3. 1　 实验环境

　 　 该模型的训练过程在 Windows
 

10 操作系统和

PyTorch
 

2. 1 框架下运行。 软件环境配置为 CUDA
 

11. 1
和 Python

 

3. 8。 采用双显卡进行模型训练,其型号均为

NVIDIA
 

GeForce
 

RTX
 

3090
 

24
 

G。 在模型训练中采用随

机梯度下降算法对网络模型的权重进行更新和优化。 具

体参数设置如下:批量大小( Batch
 

Size)为 16,初始学习

率(Initial
 

Learning
 

Rate) 为 0. 01,动量参数( Momentum)
为 0. 937,权重衰减因子(Weight_decay)为 0. 000

 

5。
3. 2　 评价指标

　 　 为了验证所提出的 FRE 模型的性能,使用平均精度

均值 ( mAP )、 精度 ( precision )、 召回率 ( recall )、 参数

量(parameters)、浮点计算量以及平均模型检测处理时间

Speed-GPU 作为测量指标。 Precision 计算为正确预测的

阳性样本数与预测为阳性样本的样本数的比例,定义

如下:

Precision = TP
TP + FP

(6)

Recall 计算为所有被预测的正确目标的比例,定义

如下:

Recall = TP
TP + FN

(7)

式中:TP 表示正确分类的正例子的数量;FP 表示错误分

类的负例子的数量;FN 表示错误分类的正例子的数量;
TN 表示正确分类为负例子的负例子的数量。

平均精度(AP)计算公式如下:

AP = ∫1

0
P(R)dR (8)

mAP 计算公式如下:

mAP =
∑ N

i = 1
AP i

N
(9)

mAP@ 0. 5 为 IoU 设置为 0. 5 时所有类别的 mAP。
mAP@ 0. 5 ∶ 0. 95 为不同 IoU 阈值下的 mAP,其中 IoU 的

变化范围为 0. 5 ~ 0. 95,步长为 0. 05。
3. 3　 典型缺陷的实验分析

　 　 1)钢丝绳缺陷

通过消融实验验证网络结构变化引起的性能变化。
开展 了 YOLOv8n、 YOLOv8n _ RVB、 YOLOv8n _ Faster、
YOLOv8n_Faster_RVB 和 FRE 共 5 个实验。 图 8 所示为

不同模型在数据集上的精度曲线,结果如表 3 所示。

图 8　 模型在钢丝绳缺陷数据集上的实验结果对比

Fig. 8　 Comparison
 

of
 

experimental
 

results
 

of
 

the
model

 

on
 

the
 

wire
 

rope
 

defect
 

dataset

用 RepViT
 

Block 模块替换 YOLOv8n 骨干网络中的

C2F 后, 改进后的模型的平均检测处理时间减少了

46. 43%,与 YOLOv8n 相比,计算量和模型参数数量分别

减少了 22. 22%和 24. 25%,同时模型精度提升了 0. 5%。
用 FasterNet

 

Block 模块替换 YOLOv8n 颈部网络中的

C2F 后,改进后的模型的平均检测处理时间同样减少显

著,减少了 50%,且模型参数数量减少了 23. 59%,同时模

型精 度 提 升 了 1. 0%。 将 YOLOv8n 中 所 有 C2F 用

RepViT
 

Block 模块与 FasterNet
 

Block 模块分别替换后,模
型精度提升了 1. 9%,平均检测处理时间降低了 64. 29%,
参数 量 减 少 了 23. 92%。 此 外, EMA 模 块 添 加 在

YOLOv8n 骨干网络后,计算量减少了 20. 99%,平均模型

检测处理时间减少了 50%,同时模型精度提高了 3. 7%。
表 4 为该方法与基准模型在钢丝绳缺陷数据集测试

集上的单类比较结果。 在 Break 和 Loose 类别中,该方法

的单类 AP 值均高于基准模型。 综上所述,改进的 FRE
模型具有更好的识别效果。
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表 3　 不同模型在钢丝绳缺陷数据集上的结果

Table
 

3　 Results
 

of
 

different
 

models
 

on
 

the
 

wire
 

rope
 

defect
 

dataset
模型 mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Precision / % Recall / % Params / ( ×106 ) 计算量 / GFLOPs Speed-GPU / ms

YOLOv8n 84. 3 46. 8 79. 0 90. 0 3. 01 8. 1 2. 8
YOLOv8n_RVB 84. 8 44. 9 81. 1 91. 0 2. 28 6. 3 1. 5
YOLOv8n_Faster 85. 3 45. 9 75. 7 92. 0 2. 30 6. 3 1. 4

YOLOv8n_Faster_RVB 86. 2 46. 7 78. 1 91. 0 2. 29 6. 3 1. 0
FRE 88. 0 49. 0 81. 9 94. 0 2. 31 6. 4 1. 4

表 4　 测试集单类型 AP 结果

Table
 

4　 AP
 

results
 

of
 

a
 

single
 

type
 

on
 

the
 

test
 

set(%)
类别 YOLOv8n FRE

断丝(break) 73. 8 76. 9
锈蚀(rust) 96. 9 93. 9
松散(loose) 82. 3 93. 3

　 　 图 9 为所提出的方法与 YOLOv8n 在不同场景中的

比较。 图 9 ( a1 ) ~ ( c1 ) 为 YOLOv8n 的 检 测 结 果,
图 9(a2) ~ (c2)为本文方法的检测结果。

对于密集分布的模糊目标缺陷,由图 9 ( a) 可见,
FRE 可以准确检测密集分布的模糊缺陷,而 YOLOv8n 没

有完全检测出所有明显的断丝缺陷。 在图 9( b)中,当同

时出现两种缺陷时,该方法准确地识别到了两种缺陷,而
YOLOv8n 只识别到了锈蚀缺陷。 在图 9(c)中,该方法相

较于 YOLOv8n 识别到了更多严重遮挡的松动缺陷。 结

果表明,该方法优于 YOLOv8n。

图 9　 模型在钢丝绳缺陷数据集上的检测结果对比

Fig. 9　 Comparison
 

of
 

detection
 

results
 

of
 

the
 

model
on

 

the
 

wire
 

rope
 

defect
 

dataset

　 　 为了进一步验证该方法的性能,将其与 Faster
 

R-
CNN、YOLOv5s、YOLOv7-tiny-SiLU 等流行检测网络进行

了比较,并保持参数设置一致,结果如图 10 和表 5 所示。
图 10 为缺陷数据集在不同算法下的检测结果比较。

图 10　 钢丝绳数据集在不同算法下的检测结果比较

Fig. 10　 Comparison
 

of
 

detection
 

results
 

of
 

wire
rope

 

dataset
 

under
 

different
 

algorithms

从表 5 可 以 看 出, 与 Faster
 

R-CNN、 YOLOv5s、
YOLOv7-tiny-SiLU 相比,该方法在保证运行速度的前提

下,大大降低了计算量和参数数量,该方法的精度分别提

高了 10. 8%、5. 6%和 7. 0%。 尤其是与 YOLOv5s 比较,
计算量降低了 73. 11%,参数量降低了 74. 64%。 结果表

明,该方法比其他主流轻量级网络具有优势。
2)金属结构锈蚀

在标准节缺陷数据集上的实验结果如图 11 和表 6
所示。 从 表 6 可 以 看 出, 用 RepViTBlock 模 块 替 换

YOLOv8n 骨干网络中的 C2F 后,计算量和模型参数量的

变化趋势与钢丝绳缺陷数据集变化一致,同时模型精度

提升了 2. 0%,平均检测处理时间小幅减少了 2. 6%。

表 5　 不同轻量级网络性能的比较
Table

 

5　 Comparison
 

of
 

performance
 

of
 

different
 

lightweight
 

networks
模型 mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Precision / % Recall / % Params / ( ×106 ) 计算量 / GFLOPs Speed-GPU / ms

Faster
 

R-CNN 77. 2 34. 2 76. 5 83. 2 28. 28 — —
YOLOv5s 82. 4 41. 1 88. 3 87. 0 9. 11 23. 8 2. 9

YOLOv7-tiny-SiLU 81. 0 40. 5 80. 2 92. 0 6. 20 13. 8 2. 8
YOLOv8n 84. 3 46. 8 79. 0 90. 0 3. 01 8. 1 2. 8

FRE 88. 0 49. 0 81. 9 94. 0 2. 31 6. 4 1. 4
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表 6　 不同模型在金属结构锈蚀数据集上的结果

Table
 

6　 Results
 

of
 

different
 

models
 

on
 

the
 

metal
 

structure
 

corrosion
 

dataset
模型 mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Precision / % Recall / % Params / ( ×106 ) 计算量 / GFLOPs Speed-GPU / ms

YOLOv8n 86. 2 71. 3 92. 3 85. 0 3. 01 8. 1 3. 9
YOLOv8n_RVB 88. 0 75. 6 87. 0 88. 0 2. 28 6. 3 3. 8
YOLOv8n_Faster 87. 0 73. 0 88. 0 88. 0 2. 30 6. 3 3. 6

YOLOv8n_Faster_RVB 90. 6 79. 3 57. 7 88. 0 2. 29 6. 3 3. 3
FRE 94. 1 85. 1 70. 0 94. 0 2. 30 6. 4 3. 6

图 11　 模型在金属结构锈蚀数据集上的实验结果对比

Fig. 11　 Comparison
 

of
 

experimental
 

results
 

of
 

the
model

 

on
 

the
 

metal
 

structure
 

rust
 

dataset

　 　 用 FasterNetBlock 模块替换 YOLOv8n 颈部网络中的

C2F 后,模型精度提升了 0. 9%,平均检测处理时间减少

了 8. 3%。 将 YOLOv8n 中所有 C2F 用 RepViTBlock 模块

与 FasterNetBlock 模块分别替换后, 模型精度相比于

RepViTBlock 和 FasterNetBlock 分 别 提 升 了 3. 0% 和

4. 1%,平均检测处理时间分别降低了 15. 15%和 9. 09%。
此外,加入 EMA 模块后,与 YOLOv8n 相比,模型精

度提高了 9. 2%,平均检测处理时间减少了 8. 3%。
因此,验证了该方法的通用性,通过重新训练该模型

的结构,该模型可以适应不同的数据集或场景。
图 12 所示为该方法与 YOLOv8n 在标准节缺陷数据

　 　 　

集上的比较。 图 12( a1) ~ ( c1) 是 YOLOv8n 的检测结

果,图 12(a2) ~ (c2)是 FRE 的检测结果。 对于密集分布

的模糊目标缺陷,由图 12(a)可见,FRE 可以分别检测出

密集分布的缺陷,而 YOLOv8n 则是识别为一个缺陷目

标。 在图 12(b)中,该方法相较于 YOLOv8n 识别到了更

多的锈蚀缺陷。 在图 12( c)中,当出现与目标缺陷有部

分相同特征的目标时,该方法可以更加准确地区分目标

缺陷与相似目标。 结果表明,该方法优于 YOLOv8n。

图 12　 模型在金属结构锈蚀数据集上的检测结果对比

Fig. 12　 Comparison
 

of
 

detection
 

results
 

of
 

the
model

 

on
 

the
 

metal
 

structure
 

rust
 

dataset

为了验证该方法的优越性,同样与 Faster
 

R-CNN、
YOLOv5s、YOLOv7-tiny-SiLU 和 YOLOv8n 进行对比。 图

13 所示为锈蚀缺陷数据集在不同检测算法下的 mAP 曲

线对比。 比较结果如表 7 所示。 由表 7 可知,与其他检

测算法相比,该方法在保证运行速度的前提下,大大降低

了计算量和参数数量,该方法的精度分别提高了 10. 3%、
9. 3%、11. 0%和 9. 2%。 且相较于 YOLOv5s 与 YOLOv7-
tiny-SiLU,参数量分别减少了 74. 8%和 62. 9%。 因此,基
于该模型的总体检测性能指标,提出的算法在识别精度

和轻量级两方面都具有很大优势。

表 7　 不同轻量级网络性能的比较
Table

 

7　 Comparison
 

of
 

performance
 

of
 

different
 

lightweight
 

networks
模型 mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Precision / % Recall / % Params / ( ×106 ) 计算量 / GFLOPs Speed-GPU / ms

Faster
 

R-CNN 85. 3 56. 6 82. 2 92. 0 28. 28 — —
YOLOv5s 86. 1 70. 7 85. 0 86. 0 9. 11 23. 8 3. 6

YOLOv7-tiny-SiLU 84. 8 68. 4 79. 6 93. 0 6. 20 13. 8 3. 8
YOLOv8n 86. 2 71. 3 88. 3 92. 0 3. 01 8. 1 3. 9

FRE 94. 1 85. 1 70. 0 94. 0 2. 30 6. 4 3. 6
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图 13　 金属结构锈蚀数据集在不同算法下的检测结果比较

Fig. 13　 Comparison
 

of
 

detection
 

results
 

of
 

metal
 

structure
rust

 

dataset
 

under
 

different
 

algorithms

4　 结　 论

　 　 针对建筑起重机械领域巡检存在的问题,本文提出

了一种基于无人机图像的表面缺陷智能检测方法 FRE。
该方法以 YOLOv8 为基础模型, 在 Backbone 中引入

RepViT
 

Block 模块以轻量化模型,从而提高了模型的训

练速度;基于 FasterNet
 

Block 模块改进 Neck 部分,提高

对缺陷的定位性能,提高了检测小目标的能力;将 EMA
注意力模块引入 Backbone 中,增强多尺度特征融合能

力,抑制背景信息的干扰,使模型更加关注缺陷特征。 在

自定义的钢丝绳缺陷、金属结构锈蚀两个典型缺陷的起

重机械缺陷图像数据集上分别进行测试,实验结果表明,
与现有的目标检测方法相比,提出的算法模型在自制的

两种数据集上的平均精度分别达 88. 0%和 94. 1%,模型

大小为 2. 3×106,可以快速、准确的检测出建筑起重机械

表面缺陷,避免了传统检测方式下人员登高存在的安全

隐患问题。 在后期的工作中,将进一步优化模型结构,丰
富现有的缺陷数据集,引入更多的缺陷类型,验证该方法

的适用性和可靠性。
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