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Abstract: Construction cranes are the core equipment of modern engineering, and their high-risk operation at height is prone to cause
major accidents and economic losses, seriously threatening safety. In order to improve the efficiency and accuracy of defect recognition
and reduce the risk of operators climbing up to inspect, a surface defect intelligent detection method FRE based on UAV images is
proposed. The surface defects of construction cranes are diverse, tiny in scale and complex in background, and the traditional YOLOv8
network is difficult to realize high-precision defect detection due to the lack of multi-scale feature fusion capability and the limitation of
environmental adaptability. Utilizing the UAV inspection construction equipment, two typical lifting machine defect image datasets of
wire rope defects and metal structure corrosion are established. The C2F module in the YOLOv8 backbone network is replaced with the
RepViT Block module to improve the performance and efficiency of the model in image understanding and processing, which significantly
reduces the computational complexity and latency, and the training speed is increased by 46.4% and 2. 6%, respectively; the C2F
module in the neck network is replaced by the FasterNet Block module, which improves the performance of the localization of defects and
improves the ability of detecting small targets; the EMA module is embedded into the backbone network to suppress the interference of

background information and make the model more focused on defect features. Compared with the existing defect detection, the detection
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accuracy of the model reaches 88.0% and 94. 1%, respectively. Meanwhile, the number of model parameters decreased by 23.26%

compared with the YOLOv8 model. The results show that the method can quickly and accurately detect the surface defects of construction

cranes, which has certain social application value.

Keywords : surface defect detection; drone images; improved YOLOv8; construction crane machinery; EMA module
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Table 1 Performance comparison of defect detection methods

i8] IR K 5 mAP@O0. 5/ % i 4/ fps Params/ ( x10°)

YOLOv8n MS COCO 78.5 120 3.2
YOLOv5n MS COCO 72.3 145 1.9
YOLOv7-tiny MS COCO 75.6 110 6.0
YOLOv9 MS COCO 82.1 80 8.7
YOLOv10n MS COCO 79.8 115 3.5
YOLOvll1s MS COCO 80.2 100 4.8
Mask R-CNN VOC2007 80.5 15 44.3
Faster R-CNN VOC2007 77.2 20 38.6
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model on the wire rope defect dataset
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Table 3 Results of different models on the wire rope defect dataset

T mAP@0. 5/% mAP@0.5:0.95/%  Precision/% Recall/% Params/(x10°) 1% #/GFLOPs Speed-GPU/ms
YOLOv8n 84.3 46.8 79.0 90.0 3.01 8.1 2.8
YOLOv8n_RVB 84.8 44.9 81.1 91.0 2.28 6.3 1.5
YOLOv8n_Faster 85.3 45.9 75.7 92.0 2.30 6.3 1.4
YOLOv8n_Faster_RVB 86.2 46.7 78.1 91.0 2.29 6.3 Lo
FRE 88.0 49.0 81.9 94.0 2.31 6.4 1.4
F4 MRERLB AP HER R T — LW E % T A PR RE, 5 Faster R-
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Fig. 10 Comparison of detection results of wire

rope dataset under different algorithms
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Table 5 Comparison of performance of different lightweight networks

T mAP@0.5/% mAP@0.5:0.95/% Precision/% Recall/% Params/(x10°) 1% /GFLOPs Speed-GPU/ms
Faster R-CNN 71.2 34.2 76.5 83.2 28.28 — —
YOLOv5s 82.4 41.1 88.3 87.0 9.11 23.8 2.9
YOLOv7-tiny-SiLU 81.0 40.5 80.2 92.0 6.20 13.8 2.8
YOLOv8n 84.3 46.8 79.0 90.0 3.01 8.1 2.8

FRE 88.0 49.0 81.9 94.0 2.31 6.4 1.4
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Table 6 Results of different models on the metal structure corrosion dataset
T mAP@0. 5/% mAP@0.5:0.95/%  Precision/% Recall/% Params/(x10°) 1% #/GFLOPs Speed-GPU/ms
YOLOv8n 86.2 71.3 92.3 85.0 3.01 8.1 3.9
YOLOv8n_RVB 88.0 75.6 87.0 88.0 2.28 6.3 3.8
YOLOv8n_Faster 87.0 73.0 88.0 88.0 2.30 6.3 3.6
YOLOv8n_Faster_RVB 90. 6 79.3 57.7 88.0 2.29 6.3 3.3
FRE 94. 1 85.1 70. 0 94.0 2.30 6.4 3.6
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Fig. 11

model on the metal structure rust dataset
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Fig. 12 Comparison of detection results of the
model on the metal structure rust dataset
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Table 7 Comparison of performance of different lightweight networks

A mAP@0.5/%  mAP@0.5:0.95/% Precision/% Recall/%  Params/(x10°) 34 H/GFLOPs  Speed-GPU/ms
Faster R-CNN 85.3 56. 6 82.2 92.0 28.28 — —
YOLOvSs 86. 1 70.7 85.0 86.0 9.11 23.8 3.6
YOLOV7-tiny-SiLU 84.8 68. 4 79.6 93.0 6.20 13.8 3.8
YOLOv8n 86.2 71.3 88.3 92.0 3.01 8.1 3.9
FRE 94.1 85.1 70.0 94.0 2.30 6.4 3.6
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Fig. 13 Comparison of detection results of metal structure

rust dataset under different algorithms
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