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Abstract; To address the challenges of detecting multi-scale and deformed road defects in complex road scenarios, an improved
YOLOv8n model for road defect detection, named DMS-YOLO), is proposed. First, an adaptive context-aware feature pyramid network is
designed to achieve global fusion and dynamic weighting of multi-scale features, significantly enhancing the model’ s ability to perceive
and express complex defects. Compared to existing mainstream feature pyramid networks, this approach demonstrates clear advantages in
both accuracy and computational efficiency. Second, an adaptive multi-scale dynamic detection head is introduced, leveraging
deformable convolution (DCNv3) to improve the model’ s capability in capturing complex shape features, and a Collaborative Attention
Mechanism is designed to integrate scale and task attention, enhancing the model’ s understanding of multi-scale information. Finally,
the CloU loss function is improved using the Focaler-IoU idea to enhance the detection of small targets. Experimental results show that,
with reduced computational cost, the DMS-YOLO model achieves a mAP@ 0. 5 of 87. 9% on the RDD2022 dataset, a 3% improvement
over the baseline model. The model has 3. 67 10° parameters, 8 GFLOPs of computational cost, and a model size of only 7.3 MB,
demonstrating its lightweight nature and ease of deployment. Additionally, on the SVRDD dataset, DMS-YOLO improves on all
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performance metrics, further validating the model’ s generalization and robustness. Compared to other mainstream models and state-of-

the-art detection algorithms, DMS-YOLO shows superior overall performance, demonstrating its practical application value in road defect

detection.

Keywords : road defect detection; YOLOv8n; characteristic pyramid network ; deformable convolution; loss function
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mAP@0.5 FTFT 0.4%H0. 7% ,{H Precison ¥ H I F

K, 43 5k 82.6% 1 80.9% . L Z F, ACA-FPN 7£
mAP@ 0. 5 fl Precision [ ¥JHUG T B E T+, mAP@O. 5
BT = 86.3%, HE T YOLOv8n 2T T 1.4%, [F] i}
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BERMAEF R DCNV3

2 3 Al %0, 5] A AMS-Dyhead B | #6512 508
S T R AR, LA T R B R ORGSR IR AR T, S
YOLOv8n #H o, AMS-Dyhead 7 mAP @ 0.5 [ 4% T
1. 6% , Precision #2155 T 2.9%, 55t Dyhead X HL T,
AMS-Dyhead 7 Z 808 T IR &4l I, Precision ¥+ T
5% ,mAP@0. 5 $#2 T+ T 0.3% , B3k 7 % it 09 AL 308
FEAE AU A/ PR RHE B 9 B LU DCNY3 B 5
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% 3 AMS-Dyhead #EHRBEFME LI
Table 3 AMS-Dyhead module effectiveness experiment

R mAP@0.5/% Precision/% Param/(10°) 1153 4%/GFLOPs

YOLOv8n 84.9 83.0 3.01 8.1
Dyhead 86.2 80.9 2.88 8.1
all 84.7 83.3 2.78 8.5
high 86.3 85.9 2.84 8.4
mid 85.0 81.6 2.84 8.4
high&mid 84.6 84.2 2.81 8.5
high&low 85.9 84.0 2.81 8.4
mid&low 85.5 81.6 2.81 8.5
low 86.5 85.9 2.84 8.4
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T B UE DMS-YOLO H 45 3 i 3 55 7 8 B i B3 6
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Table 4 Comparison of results of ablation experiments

¥ ACA-FPN AMS-Dyhead Focaler-loU mAP@0.5/% mAP@0.5:0.95/% Precision/% Recal/’%  Param/( x 106) 15818/ GFLOPs
1 84.9 58.6 83.2 80. 6 3.01 8.1
2 Vv 86.3 59.2 85.7 76.7 3.83 7.7
3 Vv 86.5 59.9 84.8 79.2 2.84 8.4
4 Vv 85.6 58.6 85.1 79.5 3.01 8. 1
5 vV vV 87.4 58.9 85.3 81.8 3.67 8.0
6 vV vV vV 87.9 59. 8 85.5 82.7 3. 66 8.0

2 4 1T, 558559 YOLOv8n #H 1L, ffi ] ACA-
FPN M 4%, JRUE S5 i A 8, {5 mAP@ 0.5 $2F+ T
1. 4% , [R5 08 /0 5% ; B0 AR Sk AMS-Dyhead
AEfl KR4 S LA R RS B mAP@ 0.5 #2815 T 1. 6%,
HBEERW T 6% KI5 YOLOVS 4% H 131 FLAE [7] 1
R PR TN Focaler-ToU , fEAR ISR A S50 it
BEARE R, mAP@ 0.5 $£ 71 0. 7% ; fil & ACA-FPN
J¢ AMS-Dyhead PR, mAP@ 0. 5 #2F+ T 2. 5%,
SRS A P2 T B, IRl BF 5] A ACA-FPN AMS-Dyhead

Fl Focaler-loU 3 Frltik 5w , #4: DMS-YOLO B %45
RIS YA Bk 5 87. 9% , R4 T 3% 11 [R5
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Fig.7 Comparison of curve variation
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Table 5 Experimental results of RDD2022 dataset in mainstream models

LAY Precision/% Recall/% mAP@0.5/% mAP@0.5:0.95/% Param/(x10°) 1% 4##/CGFLOPs Fl-score/%  FERIK/N/MB
Faster R-CNN  52.0 79.8 71.5 43.3 41.45 94. 4 63 108.0
SSD 75.4 51.2 70.9 39. 1 26.77 60.7 61 33.7
YOLOvSn 82.9 78.5 83.1 55.7 2.51 7.2 80 5.1
YOLOv8n 83.0 80. 6 84.9 58.6 3.01 8.1 81 6.0
YOLOv8s 84.6 81.6 85.7 60.2 11.1 28.7 83 21.5
RT-detr 85.5 79.2 84.0 57.2 29.3 105.2 82 56. 4
YOLOVOt 83.4 76.5 84.6 55.6 2.62 10.7 79 17. 1
YOLOv10n 85.2 75.2 84.3 56.5 2.71 8.4 80 5.5
YOLOvl1n 85.4 77.3 84.4 58.3 2.90 7.6 81 5.8
YOLOvI2n 83.5 78.9 85.2 57.1 2.56 6.3 81 5.3
DMS-YOLO 85.5 82.7 87.9 59. 8 3. 66 8.0 84 7.3




.38 . S [ I I Ve 3

539 %

i 5 Al %01, DMS-YOLO /U 7E RDD2022 ¥4 |-
PRV I 4 B O T G At S 9 RS B L DMS-YOLO [
mAP@ 0.5 Fll mAP @ 0.5:0.95 4 53k %] T 87.9% Fil
59. 8% % YOLOv8n 43 il #2551 3% Fl 1. 2% , 7645 B I
HE #E F, DMS-YOLO [f] £ %% 81 i (i, Precision ik |
85. 5% ,Recall ik %] 82. 7% , #H# T FE MEARE A 42 7 W 5
A, 5 ST R AS YOLOvI2n A H , /45 DMS-YOLO
FER LR AR LA A R AFERE 2R | A % mAP@
0.5 F1 mAP@O0. 5.0. 95 S48 br ¥R B B B AL, 55
FHRE T 2% .3.8% .2. 7% Fl 2. 6%, 14, DMS-YOLO
Y F1-score N 84% , %W H 76K BE AL [\ R 2 ] L AS T
TUF A, BRI BRSSP o TR R BE Y R
DMS-YOLO M Z4m fiit A s R WG 3, L DMS-
YOLO W& 8 A 3. 66x10°, 1575 T YOLOv8n 1 3. 01x
10° , {A AT K /MK 7.3 MB, 5 YOLOv8n F2ZE A K,
% F Faster-RCNN . SSD  RT-detr 52 YOLOv8s 2545 #1
HtR R SHCR RN R RIS AT
BRCRATE B, I, DMS-YOLO #5175 18 % ik [
RN 55 AR 1 L AASE R ELAT B o A ARG B AR e
P, R BHENS B SR A 2 ) SE L T R4 A, 5

A BRI S BRIV AN EL
3.6 RIS

T DU AL MCHE JE B DMS-YOLO #5578 75 15 #%
SRS RS R A R RLSR, , A SCHE RDD2022 £k di 4 bk
TZNE Il ik, s 8 frax, MR 8 mr
PIREEE], YOLOV8n HE A7 A6 R4S AL TC A HE (1 (] A5, 48]
i F 8 (b1) A7 ARSI e, 7E 18] 8 (b3 ) Hx [
—HFRAER T 24 BARAE, B 8 (b4 ) Ho UK B 2 28 1 2%
R A 244 et e AR T DLTE BHR R 2 T S
IR ARAFE A B R 4 SR Ak, DMS-YOLO J )y i st
TRAERY E I PSRRI A R SR T AREAE £ ORI Al
Ghed) e TR TR 2R AR AL B RE T, BEAR TR
K R FNIRAT R

SRIM, R4E DMS-YOLO AL B A AR Ty UG T
— B B W BN LA SR G Pk
BT BEAS A 5 550 A X 187 BRL 0 AR A4 b Ak 15 35 i 1
BE, WA 8(c2) T, T 24 1% ] 7 A LA il 42 4% 7
S UGS (AP 8 (c4) Hhy ST RLEE BT bR 10 4R A Tl %
P P& 1R by A P A

(a) Ground trouth R4 A ¥4k

(a) Ground trouth label visualization

(bl) (b2)

el
{

(b) YOLOvVSn#& I 45 5
(b) YOLOV8n detection results

(c) DMS-YOLOK I 45 5
(c) DMS-YOLO detection results

K8 KRR L

Fig. 8 Comparison chart of detection effect
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Table 6 Improve the experimental results of the
model on the SVRDD dataset

18k5R YOLOv8n DMS-YOLO
mAP@0.5/% 59.6 61.3
mAP@ 0. 5:0.95/% 35.1 35.9
Recall 54.0 56.7
F1-score 60.0 61.0
Param/( x10°) 3.01 3.67
&/ GFLOPs 8. 1 8.0
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