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摘　 要:针对复杂道路场景中多尺度和形变道路缺陷检测的难题,提出一种改进的 YOLOv8n 道路缺陷检测模型 DMS-YOLO
(dynamic

 

multi-scale
 

YOLO)。 首先,设计自适应上下文感知特征金字塔网络,实现多尺度特征的全局融合与动态加权,显著提

升了模型对复杂缺陷的感知与表达能力,与现有主流特征金字塔网络相比,在精度和计算效率上表现出一定优势。 其次,提出

自适应多尺度动态检测头,采用可变形卷积(DCNv3)提升模型对复杂形状特征的捕捉能力,并设计协同注意力机制融合尺度和

任务注意力,增强模型对多尺度信息的理解。 最后,利用 Focaler-IoU 思想改进 CIoU 损失函数,提高对小目标的检测能力。 实验

结果表明,在减少计算量的基础上,DMS-YOLO 模型在 RDD2022 数据集上 mAP@ 0. 5 达到了 87. 9%,较原来的基准模型提高了

3%,同时参数量为 3. 67×106 ,计算量为 8
 

GFLOPs,模型体积仅有 7. 3
 

MB,具备轻量化特性和易部署性。 同时,在 SVRDD 数据

集上,DMS-YOLO 在各项性能指标上均有提升,进一步验证了所提模型具有较好的泛化性和鲁棒性。 与其他主流模型和最新检

测算法相比,DMS-YOLO 的综合指标均表现优异,对道路缺陷检测具有实际应用意义。
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Abstract:
 

To
 

address
 

the
 

challenges
 

of
 

detecting
 

multi-scale
 

and
 

deformed
 

road
 

defects
 

in
 

complex
 

road
 

scenarios,
 

an
 

improved
 

YOLOv8n
 

model
 

for
 

road
 

defect
 

detection,
 

named
 

DMS-YOLO,
 

is
 

proposed.
 

First,
 

an
 

adaptive
 

context-aware
 

feature
 

pyramid
 

network
 

is
 

designed
 

to
 

achieve
 

global
 

fusion
 

and
 

dynamic
 

weighting
 

of
 

multi-scale
 

features,
 

significantly
 

enhancing
 

the
 

model’ s
 

ability
 

to
 

perceive
 

and
 

express
 

complex
 

defects.
 

Compared
 

to
 

existing
 

mainstream
 

feature
 

pyramid
 

networks,
 

this
 

approach
 

demonstrates
 

clear
 

advantages
 

in
 

both
 

accuracy
 

and
 

computational
 

efficiency.
 

Second,
 

an
 

adaptive
 

multi-scale
 

dynamic
 

detection
 

head
 

is
 

introduced,
 

leveraging
 

deformable
 

convolution
 

(DCNv3)
 

to
 

improve
 

the
 

model’s
 

capability
 

in
 

capturing
 

complex
 

shape
 

features,
 

and
 

a
 

Collaborative
 

Attention
 

Mechanism
 

is
 

designed
 

to
 

integrate
 

scale
 

and
 

task
 

attention,
 

enhancing
 

the
 

model’ s
 

understanding
 

of
 

multi-scale
 

information.
 

Finally,
 

the
 

CIoU
 

loss
 

function
 

is
 

improved
 

using
 

the
 

Focaler-IoU
 

idea
 

to
 

enhance
 

the
 

detection
 

of
 

small
 

targets.
 

Experimental
 

results
 

show
 

that,
 

with
 

reduced
 

computational
 

cost,
 

the
 

DMS-YOLO
 

model
 

achieves
 

a
 

mAP@ 0. 5
 

of
 

87. 9%
 

on
 

the
 

RDD2022
 

dataset,
 

a
 

3%
 

improvement
 

over
 

the
 

baseline
 

model.
 

The
 

model
 

has
 

3. 67× 106
 

parameters,
 

8
 

GFLOPs
 

of
 

computational
 

cost,
 

and
 

a
 

model
 

size
 

of
 

only
 

7. 3
 

MB,
 

demonstrating
 

its
 

lightweight
 

nature
 

and
 

ease
 

of
 

deployment.
 

Additionally,
 

on
 

the
 

SVRDD
 

dataset,
 

DMS-YOLO
 

improves
 

on
 

all
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performance
 

metrics,
 

further
 

validating
 

the
 

model’ s
 

generalization
 

and
 

robustness.
 

Compared
 

to
 

other
 

mainstream
 

models
 

and
 

state-of-
the-art

 

detection
 

algorithms,
 

DMS-YOLO
 

shows
 

superior
 

overall
 

performance,
 

demonstrating
 

its
 

practical
 

application
 

value
 

in
 

road
 

defect
 

detection.
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0　 引　 言

　 　 随着城市化进程的加速和交通网络的不断拓展,我
国道路总长已达到 535×104

 

km[1] 。 然而,随着交通量的

不断增加以及自然环境因素的侵蚀,道路损坏问题日益

凸显,这些道路缺陷不仅增加了车辆的运行成本,还可能

引发交通事故,对人们的生命财产安全构成威胁[2] 。 同

时,长期存在的道路缺陷还可能对社会经济发展造成深

远的负面影响。 因此,及时准确地检测出道路缺陷,对于

保障道路安全和提升城市运行效率具有重要意义[3] 。
早期道路缺陷检测主要依赖人工检查,配合测量尺、

照相机等简单工具记录裂缝、坑洞等缺陷。 这种方法存

在效率低、主观性强且覆盖范围有限等问题,难以满足现

代道路网络大规模和高精度的监测需求[4] 。
随着图像处理技术的发展,自动化检测技术开始被

应用于道路缺陷检测。 郭全民等[5] 提出基于张正友标定

法、阈值分割法和投影法相结合的混凝土路面裂缝检测

技术。 Nnolim 等[6] 提出一种基于偏微分方程的自适应

预处理算法,通过图像增强和梯度匹配实现自动检测裂

缝。 马文涛等[7] 采用 Zhang-Suen 算法结合形态学运算

改进裂缝骨架提取,解决光照不均和噪点等问题,提高了

裂缝检测的准确性。 然而,这些传统图像处理方法对光

照、噪声等环境变化较为敏感,在处理复杂路面纹理图像

时鲁棒性较差。 此外,这些方法依赖人工设定的规则和

参数,难以有效适应复杂的缺陷形态和背景条件[8] 。
近年来,随着深度学习的发展,其强大的特征学习能

力可以自动从图像中提取判别特征,为道路缺陷的自动

检测提供了一种新方法。 晏班夫等[9] 提出了一种结合

Faster
 

R-CNN 和形态学的道路缺陷检测方法,利用 Faster
 

R-CNN 进行自动特征学习和目标区域建议,并通过形态

学操作细化裂缝的形态特征。 廖延娜等[10] 提出了一种

基于热力图的 YOLOv4 桥梁裂缝检测算法,通过改进检

测头和引入 Dice 系数损失,有效解决了检测框重叠问

题,提升了检测精度和速度。 He 等[11] 在 YOLOX-S 的基

础上,设计了主辅双路模块( main
 

and
 

auxiliary
 

dual
 

path
 

module,
 

MADPM)以增强裂缝特征提取,提出了非均匀

融合 结 构 ( uneven
 

fusion
 

structure
 

with
 

transpose
 

and
 

inception
 

convolutions,
 

TI-UFS)以优化特征融合,并引入

EIOU 损失函数加速网络训练。 陈建瑜等[12] 提出了一种

基于
 

YOLOv5
 

的路面缺陷快速检测模型,通过优化锚框

参数和引入卷积块注意力模块( CBAM) 机制,提高了检

测精度和速度。 于天河等[13] 提出了一种基于 SW-Net 的
道路裂缝分割算法,通过结合跳跃级往返多尺度融合模

块和注意力门机制,可以有效提取各种复杂裂缝的特征。
Pei 等[14] 提出了 DSC-C2f 特征提取模块,以适应裂缝的

细长连续形态,并在网络各阶段之间集成了一个考虑通

道关系和长距离位置依赖性的坐标注意模块,有效促进

了深层和浅层语义信息的融合,从而提升了检测精度。
尽管有许多道路缺陷检测模型被提出,但是目前道

路缺陷检测仍存在一些难题,如道路缺陷形状和大小差

异较大,模型难以准确提取病害特征[15] ;模型在处理不

同尺度的特征时,难以同时保留全局信息和细节特征,导
致对复杂背景下的目标检测能力有限,容易出现误检、漏
检的情况[16] ;模型无法兼顾低计算量和高准确性之间的

平衡,难以在实际应用中实现高效的部署[17] 。 因此,本
文在 YOLOv8 的基础上,提出了一种改进 YOLOv8 的轻

量级道路缺陷检测模型,命名为 DMS-YOLO ( dynamic
 

multi-scale
 

YOLO),模型代码公开在 https: / / github. com /
woshiLiyr / DMS-YOLO。

1)重构颈部网络,本文设计金字塔上下文提取模

块(pyramid
 

context
 

extraction,PCE)整合不同层级的特征

信息,提升模型对全局信息的感知能力,同时强调关键特

征。 此外, 设计层级加权融合增强模块 ( hierarchical
 

weighted
 

fusion
 

enhancement
 

module,HWFEM),动态调整

特征图的强度,进一步增强模型在复杂背景下多尺度特

征的表示能力。
2)设计自适应多尺度动态检测头( adaptive

 

multi-
scale

 

dynamic
 

head,AMS-Dyhead),通过引入可变形卷积

增强模型对复杂形状和不规则边界的捕捉能力,并设计

协同注意力机制结合尺度注意力与任务注意力,提高模

型对目标形状和姿态变化的适应性。
3)应用 Focaler-IoU 思想改进 CIoU 损失函数,改善

类别不平衡问题,提高模型对小目标的检测能力,进而提

升整体检测性能。

1　 YOLOv8 算法

　 　 YOLOv8 被广泛应用于目标检测、物体跟踪等应用

领域,主要由主干网络(backbone)、颈部网络( neck)以及

预测头(head) 3 个部分构成。 YOLOv8 网络框架如图 1
所示。
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图 1　 YOLOv8 网络框架

Fig. 1　 YOLOv8
 

network
 

structure

YOLOv8 的主干网络基于 CSPDarknet53 的思想,通
过多层卷积提取多尺度特征图。 颈部网络部分采用了路

径聚合网络( path
 

aggregation
 

network,PAN) 结构[18] ,这
是一个双向特征融合网络,包含自上而下和自下而上的

路径。 自上而下路径负责传递高层语义信息,自下而上

路径负责传递低层细节信息,这种结合可以使模型能够

更好地融合低层次的细节信息与高层次的语义信息。 检

测头部分采用的是解耦合头结构,将分类分支和边界框

回归分支分离开来。 分类任务使用二分类交叉熵损

失(BCE
 

Loss),而边界框回归任务采用分布式聚焦损

失(DFL
 

Loss)和完全交并比损失( CIoU
 

Loss),这样的解

耦设计可以更好地处理分类和定位任务。 此外,YOLOv8
采用的是无锚点结构( anchor-free)。 相比于传统的锚点

机制,无锚结构减少了超参数调整的需求,简化了模型

设计。
YOLOv8 凭借其高效的特征提取能力和较轻的计算

负担,在多个任务中取得了显著效果。 然而,在处理小目

标或多尺度目标的复杂道路缺陷检测任务中,仍存在不

足。 为此,提出 DMS-YOLO 模型,以提升道路缺陷检测

的性能。

2　 本文方法
 

　 　 针对 YOLOv8 模型,本文提出了一系列改进策略以

提高模型在道路缺陷检测中的性能。 具体来说,针对原

始模型在多尺度特征融合和目标形变适应方面的不足,
设计了自适应上下文感知特征金字塔网络 ( adaptive

 

context-aware
 

feature
 

pyramid
 

network, ACA-FPN), ACA-
FPN 通过改进传统的特征融合方法,实现了多尺度特征

的全局化整合,并动态调整特征权重,以更精准地捕捉复

杂场景中的关键特征。 其次,设计了 AMS-Dyhead,AMS-

Dyhead 在检测头中引入可变形卷积 DCNv3( deformable
 

convolution
 

V3),并设计协同注意力机制融合尺度与任务

注意力,以提升模型对目标形状变化的适应能力。 此外,
为了改善现有回归损失函数对中等难度样本的处理效

果,将 CIoU 替换为 Focaler-IoU 损失函数,从而进一步增

强了模型对小目标和复杂场景的检测性能。
2. 1　 ACA-FPN 网络

　 　 在 YOLOv8 特征融合模块中,使用的是传统的 PAN
结构进行多尺度特征融合。 虽然该结构通过构建双路径

金字塔有效实现了不同尺度特征的交互,但在处理道路

缺陷检测任务时仍存在以下 3 个主要问题:1)该结构通

过逐层上采样将相邻层级的特征图进行融合,然而在这

一过程中,简单的插值操作会带来信息稀释,导致模型无

法充分利用不同分辨率特征图中的所有信息[19] 。 2)道
路缺陷检测任务中的目标物体通常具有较大的尺度,逐
步上采样低分辨率特征图会削弱全局语义信息的表达,
从而对大尺度目标及复杂缺陷的精准识别带来一定限

制。 3)在高层特征与低层特征的融合过程中,缺乏对特

定语义信息的重点关注,无法有效区分不同语义层次的

重要性,从而限制了模型的特征表达能力。
为了解决上述问题,提出了 ACA-FPN 网络,结构如

图 2 所示。 ACA-FPN 主要由两个部分组成,即 PCE 模块

和 HWFEM 模块。 首先,通过 PCE 模块整合多尺度特

征,提取全局上下文信息,并通过自适应加权不同通道的

特征,增强模型对关键特征的捕捉能力,同时利用自注意

力机制建立长程依赖,进一步提升对全局与局部信息的

捕捉能力。 其次,HWFEM 模块在融合各层特征时自适

应分配权重,实现层级加权融合,确保特征在融合过程中

能有效捕捉和突出重要的语义信息。 此外,模型还设计

了动态插值融合模块( dynamic
 

interpolation
 

fusion,DIF),
该模块通过对低分辨率特征图上采样后与高分辨率特征

图逐元素相加,进一步促进了多尺度特征间的信息交互。
1)PCE 模块

为了解决 PAN 在多尺度特征信息融合中的信息稀

释问题,并增强模型对全局和局部信息的表达能力,设计

了 PCE 模块。 与传统逐层融合不同,PCE 模块采用全局

化的多尺度融合策略,直接将来自不同尺度的特征图同

时输入,整体处理,以保留更多的上下文信息。 PCE 模块

由金字塔池化部分和注意力增强部分组成,金字塔池化

部分通过整合不同尺度的空间信息以捕捉全局语义,注
意力增强部分则通过通道加权和自注意力机制强化关键

信息的表达,如图 3 所示。
在金字塔池化部分,首先对来自主干网络的多尺度

特征图进行自适应池化操作,将它们缩小至统一分辨率。
接着,应用深度可分离卷积将空间卷积和通道卷积分开

处理,从而更有效的提取局部空间信息。 这种融合方式
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图 2　 ACA-FPN 结构

Fig. 2　 ACA-FPN
 

structure

图 3　 金字塔上下文提取模块结构

Fig. 3　 Pyramid
 

context
 

extraction
 

module
 

structure

一方面保持了不同尺度特征的全局信息,另一方面增强

了对局部细节的表达能力,提升模型对道路缺陷中小尺

度目标(如坑洞)的捕捉能力。
在注意力增强部分,模型结合通道注意力和自注意

力机制,以增强对局部和全局特征的捕捉。 在通道注意

力中,首先通过分组卷积在宽度和高度方向分别进行卷

积,逐步捕捉水平和垂直方向的上下文信息。 随后,通过

批量归一化和 ReLU 激活函数提升模型的非线性表达能

力,并通过 Sigmoid 激活函数生成权重图,将其与原特征

逐通道相乘,从而赋予不同通道不同的重要性,使模型能

够更加精准的捕捉到关键特征。
加权后的特征图进一步通过自注意力机制捕捉特征

图中长距离的依赖关系。 自注意力机制通过生成查询、
键和值特征映射,计算特征图各位置间的依赖关系,使模

型在处理大尺度目标时能够充分捕捉全局语义信息。 此

外,通过残差连接保持原始特征的完整性,确保融合后的

特征在捕捉长程上下文信息的同时不丢失细节,进一步

增强了模型对全局和细节信息的捕捉能力。
2)HWFEM 模块

在计算机视觉任务中,有效融合不同分辨率的特征

图对于提升模型性能至关重要。 然而,传统特征融合过

程中通常只是在相邻层之间进行逐层融合,信息传递往

往依赖于多次上采样和相邻层级的累积,这可能导致低

分辨率特征在逐层传递过程中信息丢失问题。 为了解决

这一问题,提出 HWFEM 模块。 该模块采用加权引导和

逐层叠加的策略,通过自适应加权和高效信息传递,增强

了低分辨率的全局语义信息在多尺度特征中的表达,确
保特征在融合过程中的完整性和区分度。

在 HWFEM 模块中,首先对来自低分辨率的特征生

成权重图,权重图经过 Sigmoid 激活自适应生成加权系

数,并通过上采样与对应的高分辨率特征逐元素相乘,实
现加权引导融合。 这可以动态调整不同通道的权重,使
模型聚焦于高分辨率特征图的关键区域,同时抑制冗余

信息的影响,加权引导融合部分如图 4 所示。

图 4　 加权引导融合部分

Fig. 4　 Weighted
 

guided
 

fusion
 

section
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此外,在每一级融合过程中通过 DIF 模块,低分辨率

特征被上采样至目标分辨率,并直接与当前层级的高分

辨率特征逐元素相加。 这种逐层叠加融合确保了多尺度

信息的全局传递,相比传统的逐层传递方式,逐层叠加不

仅减少了信息稀释,还使得低分辨率的全局语义信息能

够直接作用于所有高分辨率特征图上,从而更好地整合

全局与局部信息。

2. 2　 AMS-Dyhead 模块

　 　 道路缺陷图像中,缺陷种类繁多、形状各异,且场景

复杂。 在 YOLOv8 检测头中,检测小物体或形状不规则

物体时,往往难以精准捕捉目标的形状和位置特征。 为

了提升模型在干扰背景下对不同形状、大小的道路缺陷

的检 测 能 力, 本 文 通 过 改 进 动 态 检 测 头 ( dynamic
 

head) [20] ,设计了 AMS-Dyhead,如图 5 所示。

图 5　 AMS-Dyhead 框架

Fig. 5　 AMS-Dyhead
 

structure

　 　 动态检测头通过结合尺度感知、空间感知和任务感

知 3 种注意力机制,提升了算法对多尺度和多任务特征

的表达能力。 AMS-Dyhead 首先对输入的高、中、低分辨

率的特征图进行初步提取,然后通过动态卷积进一步增

强特征的空间感知能力。 在这一过程中,AMS-Dyhead 引

入了 DCNv3[21] ,DCNv3
 

能够根据特征图的局部变化自适

应调整感受野,使卷积操作更适应复杂的空间结构和多

尺度变化,可以提升模型捕捉复杂形状和不规则边界特

征的能力,适用于检测形状不规则的道路缺陷。
其次,AMS-Dyhead 将原本独立使用的尺度注意力和

任务注意力进行了融合。 尺度注意力用于捕捉多尺度特

征图中的显著性信息,确保关注到不同尺度的关键区域;
任务注意力则用于调节特征对分类和定位等任务的响

应。 在
 

AMS-Dyhead
 

中,通过在空间与任务特征维度上

逐级融合,生成综合注意力图,使得模型在融合多尺度特

征的同时,能够动态适配任务需求,实现更细粒度和多层

次的特征表达。 这种协同注意力机制不仅增强了特征图

的表达能力,有效减弱了不同任务关注点的割裂现象,还
使模型可以更灵活地适应复杂视觉任务需求。
2. 3　 损失函数改进

　 　 在目标检测任务中,边界框回归函数通常用于优化

预测框与真实框之间的重叠度, 以提高定位精度。
YOLOv8 采用的是 CIoU 损失函数来优化边界框回归,其
损失函数的定义如下:

CIoU = IoU - ρ2(b,bgt)
c2

- αν (1)

α = ν
(1 - IoU) + ν

(2)

ν = 4
π2 (arctan wgt

hgt
- arctan w

h
) 2 (3)

式中: b、bgt 分别表示预测框和真实框的中心点坐标;
ρ2(b,bgt) 为预测框和真实框的欧氏距离; c2 为最小外接

矩形的对角线距离; wgt、hgt 分别为真实框的宽高; ν 用于

衡量长宽比的一致性; α 是一个正权衡参数。 通过

式(1) ~ (3)可知,CIoU 主要考虑中心点距离、宽高比以

及重叠面积来优化框回归,但未考虑到不同样本难易程

度对回归结果的影响。
为了解决这一问题,本文提出使用 Focaler-IoU 损失

函数[22] 来替换 CIoU 损失函数。 Focaler-IoU 损失函数定

义如式(4)、(5)所示。
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IoU focaler =

0, IoU ≤ d
IoU - d
u - d

, d < IoU < u

1, IoU ≥ u

ì

î

í

ï
ï

ï
ï

(4)

LFocaler -IoU = 1 - IoU focaler (5)
当 IoU 低于下限阈值 d 时,损失为 0;当 IoU 超过上

限阈值 u 时,损失为 1;而当 IoU 处于这两个阈值之间时,
损失会随着 IoU 值的增加而线性递增。 这种设计使损失

函数在特定区间对 IoU 值变化更为敏感,从而更加关注

那些边界框重叠度适中的样本,有助于模型更有效地从

中等难度样本中提取特征,而不仅仅关注于易于或难以

处理的样本。
2. 4　 DMS-YOLO 模型

　 　 综上所述,本文提出了一种改进后的 YOLOv8 网络

结构,命名为 DMS-YOLO,其网络结构如图 6 所示。 首

先,构建 ACA-FPN 网络代替原来的 PAN 结构,从而实现

多尺度特征的有效融合,并利用上下文信息动态调整不

同特征的权重,增强了模型对多尺度道路缺陷的检测性

能。 其次,提出了 AMS-Dyhead 检测头,通过引入 DCNv3
替换空间感知注意力中的卷积网络以更好的捕捉不同形

状和尺度的目标,同时设计协同注意力机制使得模型在

分类和定位任务之间实现更细粒度的特征表达。 最后,
引入 Focaler-IoU 替代传统 CIoU 损失函数,通过焦点损失

机制使模型更加关注中等困难的样本,避免过度聚焦于

最容易或最难的样本,同时缓解正负样本不平衡问题,提
升了模型对小目标或模糊边界目标的检测能力。

图 6　 DMS-YOLO 网络结构

Fig. 6　 DMS-YOLO
 

network
 

structure

3　 实验与结果分析

3. 1　 实验数据集与实验环境

　 　 本文选用 RDD2022 数据集中来自中国的无人机和

车载摄像头拍摄的图像,该数据集是唯一同时涵盖无人

机与车载摄像头两种拍摄模式的数据来源[23] 。 这种多

样化的采集方式能够更贴近实际道路缺陷检测的应用场

景,有助于模型在不同采集条件下的性能验证与适应性

提升。 所选图像涵盖 5 种类型的道路缺陷,分别是纵向

裂缝 ( D00 )、 横向裂缝 ( D10 )、 网状裂缝 ( D20 )、 坑

洼(D40)以及修补(Repair),总计 4
 

378 张图像,共 8
 

764
个实例。 此外,数据集中包含多种光照条件(如晴天、阴
天以及湿滑路面),并且图像质量存在差异,部分图像存

在模糊现象,这些因素可以增强模型在实际应用中的鲁

棒性。 数据集按照 8 ∶ 1 ∶ 1 随机划分为训练集、验证集

和测试集。
为了验证所提出算法的有效性,本文建立了相应的

实验平台,所有消融实验均在相同实验环境与同样实验

配置参数下进行。 在实验过程中,使用 Ubuntu20. 04 作为

操作系统,GPU 型号为 NVIDIA
 

GeForce
 

RTX
 

3090,CPU 型

号为 Intel(R)
 

Xeon(R)
 

Silver
 

4310
 

CPU
 

@
 

2. 10
 

GHz。 运

行 库 版 本 为 CUDA11. 8, 深 度 学 习 框 架 采 用

PyTorch2. 1. 1,Python 版本为 3. 11. 9,并选择 YOLOv8n
作为基准网络模型。 实验参数设置如表 1 所示。

3. 2　 评价指标

　 　 实验采用精度( precision,P)、召回率( recall,R)、平
均精度 ( mean

 

average
 

precision, mAP ), F1-score、 参数

量(param)、计算量(GFLOPs)等指标评估 DMS-YOLO 模

型的性能。 各指标的具体计算公式如下:
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表 1　 实验参数表

Table
 

1　 Experimental
 

parameter
 

table
参数名 value

迭代次数 300
批大小 32

输入图像尺寸 640×640
工作线程数 8

优化器 SGD
学习率 0. 01
动量 0. 937

权重衰减系数 0. 000
 

5

　 　 P = TP
TP + FP

(6)

R = TP
TP + FN

(7)

AP = ∫1

0
P(R)dR (8)

mAP =
∑ N

i = 1
AP i

N
(9)

F1-score = 2(precision × recall)
precision + recall

(10)

式中: TP 代表模型正确检测到目标对象的数量; FN 代

表模型漏检目标对象的数量; FP 代表误检目标对象的

数量。 各个类别的平均精度( AP)通常被视为精确率-召
回率曲线下的面积, mAP 是所有类别 AP 的平均值。
mAP@ 0. 5 是指当预测置信度为 0. 5 时,模型所能到达的

精确率,mAP@ 0. 5:0. 95 则是指当预测置信度在 0. 5 和

0. 95 之间时模型所能达到的精确率。 F1-score 是精确率

和召回率的加权平均,用以衡量模型的稳定性。
3. 3　 模块设计有效性分析

　 　 1)ACA-FPN 网络有效性分析

为了进一步验证 ACA-FPN 特征金字塔网络的有效

性,本文在 YOLOv8n 基准模型上添加了目前比较流行的

几种 特 征 融 合 网 络 的 实 验, 包 括 双 向 特 征 金 字

塔(BiFPN) [24] 、SlimNeck[25] 。 实验结果如表 2 所示。
表 2　 不同特征融合网络实验对比

Table
 

2　 Comparison
 

of
 

experiments
 

with
different

 

feature
 

fusion
 

networks
模型 mAP@ 0. 5/ % Precision / % Param/ (×106) 计算量 / GFLOPs

YOLOv8n 84. 9 83. 0 3. 01 8. 1
BiFPN 85. 3 82. 6 2. 0 7. 2

SlimNeck 85. 6 80. 9 2. 8 7. 3
ACA-FPN 86. 3 85. 7 3. 83 7. 7

　 　 从表 2 的实验结果可以看出,在 YOLOv8n 的基础

上,虽然 BiFPN、SlimNeck 能够减少参数量和计算量,但
其在精度提升方面效果有限。 BiFPN、SlimNeck 分别在

mAP@ 0. 5 上提升了 0. 4%和 0. 7%,但 Precison 均有所下

降,分别为 82. 6% 和 80. 9%。 相比之下, ACA-FPN 在

mAP@ 0. 5 和 Precision 上均取得了显著提升,mAP@ 0. 5
提升至 86. 3%, 相较于 YOLOv8n 提升了 1. 4%, 同时

Precsion 显著提高至 85. 7%。 此外,尽管 ACA-FPN 的参

数量略高于其他模型,但计算量仅为 7. 7
 

GFLOPs,低于

基准模型 YOLOv8n 的计算量。 综上所述,ACA-FPN
 

不

仅在检测精度上远超其他特征融合网络,还在保持计算

效率的同时,实现了对多尺度特征的更有效融合。
2)AMS-Dyhead 有效性分析

AMS-Dyhead 通过将可变形卷积 DCNv3 引入动态检

测头,增强了模型的空间感知能力,并提高了其对目标形

变的适应能力。 同时通过融合尺度注意力和任务注意力

提升了模型对不同尺度特征的响应能力和对多任务的特

征表达精度。 为了评估 DCNv3 在 AMS-Dyhead 中不同分

辨率位置对模型性能的影响,并确定最佳组合方式,设计

有效性实验如表 3 所示。 其中,YOLOv8n 为基准模型,
Dyhead 为未替换卷积的动态检测头,all 表示将全部卷积

替换为 DCNv3,high、mid、low 分别表示仅将高、中、低分

辨率卷积替换为 DCNv3,high&mid、high&low 和 mid&low
则分别表示同时替换高中分辨率、高低分辨率和中低分

辨率的卷积为 DCNv3。
由表 3 可知,引入 AMS-Dyhead 模块后,模型参数数

量有所降低,且在道路缺陷检测中精度大幅提升。 与

YOLOv8n 相比, AMS-Dyhead 在 mAP @ 0. 5 上提高了

1. 6%,Precision 提高了 2. 9%。 与原始 Dyhead 对比时,
AMS-Dyhead 在参数量下降的基础上,Precision 提升了

5%,mAP@ 0. 5 提升了 0. 3%,验证了设计的优化效果。
特别是当仅替换低分辨率特征图的卷积为 DCNv3 时,模
型能 够 在 最 大 程 度 提 升 精 度 的 同 时 参 数 量 降 至

2. 84×106。
表 3　 AMS-Dyhead 模块有效性实验

Table
 

3　 AMS-Dyhead
 

module
 

effectiveness
 

experiment
模型 mAP@ 0. 5 / % Precision / % Param / (106 ) 计算量 / GFLOPs

YOLOv8n 84. 9 83. 0 3. 01 8. 1
Dyhead 86. 2 80. 9 2. 88 8. 1

all 84. 7 83. 3 2. 78 8. 5
high 86. 3 85. 9 2. 84 8. 4
mid 85. 0 81. 6 2. 84 8. 4

high&mid 84. 6 84. 2 2. 81 8. 5
high&low 85. 9 84. 0 2. 81 8. 4
mid&low 85. 5 81. 6 2. 81 8. 5

low 86. 5 85. 9 2. 84 8. 4

3. 4　 消融实验

　 　 为了验证 DMS-YOLO 中各项改进点在道路缺陷检

测中的有效性,本文以 YOLOv8n 模型作为基础网络,在
RDD2022 数据集上进行消融实验,实验结果如表 4 所示。
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表 4　 消融实验结果对比

Table
 

4　 Comparison
 

of
 

results
 

of
 

ablation
 

experiments
序号 ACA-FPN AMS-Dyhead Focaler-IoU mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Precision / % Recall / % Param / ( ×106 ) 计算量 / GFLOPs

1 84. 9 58. 6 83. 2 80. 6 3. 01 8. 1
2 √ 86. 3 59. 2 85. 7 76. 7 3. 83 7. 7
3 √ 86. 5 59. 9 84. 8 79. 2 2. 84 8. 4
4 √ 85. 6 58. 6 85. 1 79. 5 3. 01 8. 1
5 √ √ 87. 4 58. 9 85. 3 81. 8 3. 67 8. 0
6 √ √ √ 87. 9 59. 8 85. 5 82. 7 3. 66 8. 0

　 　 由表 4 可知,与原始的 YOLOv8n 相比,使用 ACA-
FPN 网络,尽管参数量略有增加,但 mAP @ 0. 5 提升了

1. 4%,同时计算量减少 5%;改进的检测头 AMS-Dyhead
能够大幅提高模型检测精度,mAP @ 0. 5 提高了 1. 6%,
且参数量减少了 6%;将原 YOLOv8 网络中的边界框回归

损失函数重新设计为 Focaler-IoU,在保持模型参数量、计
算量不变的同时,mAP@ 0. 5 提升 0. 7%;融合 ACA-FPN
及 AMS-Dyhead 两个改进模块,mAP@ 0. 5 提升了 2. 5%,
参数量略有提升;最后,同时引入 ACA-FPN、AMS-Dyhead

和 Focaler-IoU
 

3 种改进策略,构建 DMS-YOLO 模型,该模

型的平均精度达到 87. 9%,在提升 3%的同时计算量有所

下降。 图 7 为通过每个训练轮次得到的 YOLOv8n 和

DMS-YOLO 模型的召回率和 mAP @ 0. 5 曲线变化对比。
从图 7 可以看出,DMS-YOLO 模型的召回率、mAP @ 0. 5
均高于原算法。 此外,DMS-YOLO 的参数量和计算量均

符合轻量化设计的要求,确保了模型在实际应用中易于

部署并具备实时性。

图 7　 曲线对比

Fig. 7　 Comparison
 

of
 

curve
 

variation

3. 5　 对比实验

　 　 为了评估 DMS-YOLO 改进算法的有效性,本文将

DMS-YOLO 模 型 与 其 他 主 流 的 目 标 检 测 模 型 在

RDD2022 数据集上进行了对比实验,实验包括二阶段有

锚框 模 型 Faster
 

R-CNN, 一 阶 段 有 锚 框 模 型 SSD、

YOLOv5n, 一 阶 段 无 锚 框 模 型 YOLOv8、 YOLOv9t、
YOLOv10n、YOLOv11n 和目前最新版本 YOLOv12n,以及

基于 Transformer 的 RT-detr 模型。 本文在相同的数据集

及实验条件下进行了实验,且模型均已收敛,实验结果如

表 5 所示。

表 5　 主流模型在 RDD2022 数据集上实验对比

Table
 

5　 Experimental
 

results
 

of
 

RDD2022
 

dataset
 

in
 

mainstream
 

models
模型 Precision / % Recall / % mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Param / ( ×106 ) 计算量 / GFLOPs F1-score / % 模型大小 / MB

Faster
 

R-CNN 52. 0 79. 8 71. 5 43. 3 41. 45 94. 4 63 108. 0
SSD 75. 4 51. 2 70. 9 39. 1 26. 77 60. 7 61 33. 7

YOLOv5n 82. 9 78. 5 83. 1 55. 7 2. 51 7. 2 80 5. 1
YOLOv8n 83. 0 80. 6 84. 9 58. 6 3. 01 8. 1 81 6. 0
YOLOv8s 84. 6 81. 6 85. 7 60. 2 11. 1 28. 7 83 21. 5
RT-detr 85. 5 79. 2 84. 0 57. 2 29. 3 105. 2 82 56. 4

YOLOv9t 83. 4 76. 5 84. 6 55. 6 2. 62 10. 7 79 17. 1
YOLOv10n 85. 2 75. 2 84. 3 56. 5 2. 71 8. 4 80 5. 5
YOLOv11n 85. 4 77. 3 84. 4 58. 3 2. 90 7. 6 81 5. 8
YOLOv12n 83. 5 78. 9 85. 2 57. 1 2. 56 6. 3 81 5. 3
DMS-YOLO 85. 5 82. 7 87. 9 59. 8 3. 66 8. 0 84 7. 3
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　 　 由表 5 可知,DMS-YOLO 模型在 RDD2022 数据集上

的检测性能优于其他主流检测模型。 DMS-YOLO 的

mAP@ 0. 5 和 mAP @ 0. 5: 0. 95 分别达到了 87. 9% 和

59. 8%,较 YOLOv8n 分别提高了 3%和 1. 2%,在精度和

召回率上, DMS-YOLO 同样表现出色, Precision 达到

85. 5%,Recall 达到 82. 7%,相较于基准模型提升明显。
同时,与当前最新版本 YOLOv12n 相比,尽管 DMS-YOLO
在轻量化指标上略有不足,但在精确率、召回率、mAP @
0. 5 和 mAP@ 0. 5:0. 95 等指标上均表现出明显优势,分
别提高了 2%、3. 8%、2. 7%和 2. 6%。 此外,DMS-YOLO
的 F1-score 为 84%,表明其在精度和召回率之间取得了

更好的平衡,具有较好的稳定性。 在保持高精度的同时,
DMS-YOLO 的参数量和计算量也表现合理。 尽管 DMS-
YOLO 的参数量为 3. 66×106,略高于 YOLOv8n 的 3. 01×
106,但其模型大小仅为 7. 3

 

MB,与 YOLOv8n 相差不大,
而较于 Faster-RCNN、SSD、RT-detr 及 YOLOv8s 等模型,
其计算量、参数量和模型大小明显更少,表现出较高的计

算效率和部署优势。 因此,DMS-YOLO 模型在道路缺陷

检测任务中相较于其他模型具有更高的检测精度和稳定

性,同时在精度与模型轻量化之间实现了良好的平衡,具

有较高的实际应用价值。
3. 6　 可视化分析

　 　 为了更直观评估改进后的 DMS-YOLO 模型在道路

缺陷检测中的检测效果,本文在 RDD2022 数据集上挑选

了多组复杂场景图片进行测试,如图 8 所示。 从图 8 可

以观察到,YOLOv8n 模型存在误检和冗余框的问题。 例

如,将图 8(b1)中的落叶检测为坑洞,在图 8( b3)中对同

一目标生成了多个目标框,图 8( b4)中则将斑马线边缘

检测为裂缝。 而改进后的模型可以在图像复杂背景的情

况下获得较好的检测效果。 因此,DMS-YOLO 成功改进

了原模型,在道路缺陷检测过程中,增强了特征提取和融

合能力,提高了算法面对复杂样本的处理能力,降低了误

检率和漏检率。
然而,尽管 DMS-YOLO 在处理复杂样本方面取得了

一定进步,它在质量较差的图像上仍然面临挑战。 例如,
模型能够在背景相对简单的模糊图像中维持较好的性

能,如图 8(c2)所示。 而当面对图片模糊且伴随复杂背

景的图像时,例如图 8(c4)中,模型将路面标记线的油漆

掉落误判为道路裂缝。

图 8　 检测效果对比

Fig. 8　 Comparison
 

chart
 

of
 

detection
 

effect
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3. 7　 泛化性分析

　 　 为了进一步验证 DMS-YOLO 模型的泛化能力及鲁

棒性,本研究选取公开数据集 SVRDD[26] 进行测试。 该数

据集涵盖了北京市 5 个区的道路破损图像,共计 8
 

000
张,涵盖了不同环境干扰及各种光照条件。 数据集中共

7 个类别的道路损伤类型,分别为纵向裂缝、横向裂缝、
龟裂、坑槽、纵向修补、横向修补和井盖。 表 6 为 DMS-
YOLO 在该数据集上的实验结果。

表 6　 改进模型在 SVRDD 数据集上的实验结果

Table
 

6　 Improve
 

the
 

experimental
 

results
 

of
 

the
model

 

on
 

the
 

SVRDD
 

dataset
指标 YOLOv8n DMS-YOLO

mAP@ 0. 5 / % 59. 6 61. 3
mAP@ 0. 5:0. 95 / % 35. 1 35. 9

Recall 54. 0 56. 7
F1-score 60. 0 61. 0

Param / ( ×106 ) 3. 01 3. 67
计算量 / GFLOPs 8. 1 8. 0

　 　 由表 6 可以看出,改进后的模型在计算量下降的前

提下,在 SVRDD 数据集中,其 mAP @ 0. 5、 mAP @ 0. 5:
0. 95、Recall 及 F1-score 分别提升了 1. 7%、0. 8%、2. 7%
和 1%,提升效果明显,验证了改进模型具有普适性和鲁

棒性。

4　 结　 论

　 　 为解决复杂道路场景中多尺度、形变目标检测出现

误检、漏检的问题,本文设计了基于
 

YOLOv8
 

模型改进的

检测模型 DMS-YOLO。 首先,设计了 ACA-FPN,采用全

局化多尺度特征融合和上下文加权处理,提高了模型在

背景复杂、光照变化及缺陷多样性等复杂场景中的特征

表达能力和目标识别精度。 其次,提出 AMS-Dyhead,通
过引入

 

DCNv3
 

卷积并结合尺度注意力与任务注意力,提
升了模型对形态变化、边界不规则的道路缺陷的检测能

力。 最后,引入 Focaler-IoU
 

损失函数使模型更关注中等

难度样本,有效提升了对小目标的检测精度。 实验结果

表明, 本 文 提 出 的 DMS-YOLO 模 型 在 RDD2022 和

SVRDD 数据集上的多项指标均高于基准模型,同时具备

易部署性和实用性。
在未来的研究中,计划扩充和丰富道路缺陷数据集,

涵盖更广泛的缺陷类型,进一步提升检测算法的精度与

泛化能力。 此外,为了增强模型的适应性和鲁棒性,将采

集更多低质量的实际道路图像,包括模糊、低光照以及部

分缺陷被遮挡等情况,从而全面提高模型在实际应用中

的性能。 同时,也将考虑采用更轻量化的方法来优化模

型,在保证检测精度的前提下,尽可能减少模型的体积和

计算需求,使其更方便部署在内存和计算能力受限的嵌

入式设备中。
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