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摘　 要:针对传统视觉方法在测量不同工件全尺寸时的局限性,提出了一种基于形状匹配的工件全尺寸在线检测方法。 该方法

通过将目标工件图像输入到改进的 Superpoin 关键点检测网络,得到所有关键点,并利用关键点实现工件轮廓的描述;然后将关

键点模板与目标工件的关键点一起输入点渲染层,使用增强关键点位置信息的 Superglue 特征全匹配算法,提取与模板点匹配

的关键点,以及关键点之间的距离,实现工件的全尺寸测量。 为了验证方法的有效性,分别进行了量块尺寸检测实验,标定板尺

寸检测实验和原电池尺寸检测实验,实验结果表明,对于 25
 

mm 零级量块(精度优于±0. 14
 

μm)的尺寸检测实验,系统十次重复

测量结果的最大偏差为±0. 02
 

mm,标准差为 0. 01
 

mm,表明系统具有较高的重复性精度;对于棋盘格标定板,尺寸测量误差不

超过±0. 03
 

mm,验证了该方法的可行性;在原电池的尺寸测量实验中,七号电池尺寸检测的误差范围为±0. 03
 

mm,平均耗时为

0. 08
 

s,五号电池的尺寸检测误差为±0. 03
 

mm,平均耗时为 0. 09
 

s,均能够满足该企业原电池产线生产过程中,在线检测的±
0. 05

 

mm 精度要求和 0. 1
 

s 的实时性检测要求。 相比于传统算法需要针对不同工件采用不同的检测算法,所提出的方法能够有

效适应不同工件的尺寸检测需求,并可广泛应用于工业现场的零件在线全尺寸检测。
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Abstract:
 

To
 

address
 

the
 

limitations
 

of
 

traditional
 

vision-based
 

methods
 

in
 

measuring
 

the
 

full
 

dimensions
 

of
 

different
 

workpieces,
 

this
 

paper
 

proposes
 

an
 

online
 

full-dimension
 

inspection
 

method
 

for
 

workpieces
 

based
 

on
 

shape
 

matching.
 

The
 

method
 

inputs
 

the
 

target
 

workpiece
 

image
 

into
 

an
 

improved
 

Superpoint
 

keypoint
 

detection
 

network
 

to
 

obtain
 

all
 

keypoints,
 

which
 

are
 

then
 

used
 

to
 

describe
 

the
 

workpiece
 

contour.
 

Then,
 

the
 

keypoint
 

template
 

and
 

the
 

keypoints
 

of
 

the
 

target
 

workpiece
 

are
 

fed
 

into
 

a
 

point
 

rendering
 

layer.
 

An
 

enhanced
 

Superglue
 

feature
 

matching
 

algorithm
 

with
 

augmented
 

keypoint
 

location
 

information
 

is
 

employed
 

to
 

achieve
 

full
 

matching,
 

extracting
 

keypoints
 

that
 

match
 

the
 

template
 

points
 

and
 

measuring
 

the
 

distances
 

between
 

keypoints,
 

thereby
 

enabling
 

full-dimension
 

measurement
 

of
 

the
 

workpiece.
 

To
 

validate
 

the
 

effectiveness
 

of
 

the
 

proposed
 

method,
 

experiments
 

were
 

conducted,
 

including
 

gauge
 

block
 

size
 

detection,
 

calibration
 

plate
 

size
 

detection,
 

and
 

electrochemical
 

cell
 

size
 

detection.
 

The
 

experimental
 

results
 

indicate
 

that
 

for
 

the
 

size
 

measurement
 

experiment
 

of
 

a
 

25
 

mm
 

Grade
 

0
 

gauge
 

block
 

( with
 

an
 

accuracy
 

better
 

than
 

±0. 14
 

μm),
 

the
 

maximum
 

deviation
 

of
 

the
 

system’s
 

ten
 

repeated
 

measurements
 

was
 

±0. 02
 

mm,
 

and
 

the
 

standard
 

deviation
 

was
 

0. 01
 

mm,
 

demonstrating
 

that
 

the
 

system
 

has
 

high
 

repeatability
 

accuracy.
 

For
 

the
 

checkerboard
 

calibration
 

plate,
 

the
 

size
 

measurement
 

error
 

does
 

not
 

exceed
 

± 0. 03
 

mm,
 

verifying
 

the
 

feasibility
 

of
 

the
 

proposed
 

method.
 

In
 

the
 

dimensional
 

measurement
 

experiment
 

of
 

primary
 

batteries,
 

the
 

AAA
 

battery
 

size
 

inspection
 

had
 

an
 

error
 

range
 

of
 

±0. 03
 

mm
 

with
 

an
 

average
 

processing
 

time
 

of
 

0. 08
 

s,
 

while
 

the
 

AA
 

battery
 

inspection
 

showed
 

an
 

error
 

of
 

±0. 03
 

mm
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with
 

an
 

average
 

time
 

of
 

0. 09
 

s.
 

Both
 

meet
 

the
 

enterprise’s
 

production
 

line
 

requirements
 

for
 

online
 

inspection,
 

which
 

demand
 

±0. 05
 

mm
 

accuracy
 

and
 

real-time
 

detection
 

within
 

0. 1
 

s.
 

Unlike
 

traditional
 

algorithms
 

that
 

require
 

specific
 

detection
 

methods
 

for
 

different
 

workpieces,
 

the
 

proposed
 

approach
 

exhibits
 

strong
 

adaptability
 

to
 

diverse
 

dimensional
 

detection
 

requirements
 

and
 

is
 

highly
 

applicable
 

for
 

online
 

full-size
 

inspection
 

of
 

parts
 

in
 

industrial
 

settings.
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0　 引　 言

　 　 在现代制造业中,工件尺寸检测作为质量控制和调

控产品工艺的重要手段,在产品生产过程中发挥着不可

或缺的作用。 随着工业自动化和智能制造的不断发展,
产线的自动化程度和生产速度也在不断提升,以人工和

接触式测量为主的传统尺寸检测方法极大地限制了生产

的效率[1] 。
随着数字图像处理技术的发展,基于机器视觉的尺

寸测量方法因其精度高、速度快、非接触测量等特点受到

了广泛应用[2] 。 赵朝朝等[3] 提出了一种改进 Canny 算子

下的工件尺寸测量方法,在检测到工件边缘后,通过主成

分分析方法(PCA)计算出工件方向,并根据轮廓点的投

影和相机标定系数计算出工件的实际尺寸,但是该方法

只能检测出工件的长边和短边尺寸,算法检测误差约为±
2

 

mm。 李小宝等[4] 提出了一种改进的自适应阈值 Canny
算法,通过最小二乘法拟合边界直线,图像矫正后,利用

固定的图像切割比,实现对电子束接头区域,线束区域和

主体区域的分割,并选取拟合边界上的中点作为尺寸测

量点,串行实现电子束产品的尺寸检测, 检测误差

±0. 1
 

mm 以内,平均检测耗时在 1
 

s 以内。 李晋鑫等[5]

提出了一种基于机器视觉的内丝接头凹槽尺寸测量系

统,首先利用固定阈值分割出工件,并利用双边滤波联合

Roberts 算子提取工件边缘,最后通过最小二乘法拟合实

现尺寸的检测,测量精度为±0. 01
 

mm,平均检测时间为

0. 37
 

s。 在传统尺寸检测方法中,往往只能实现工件长

和宽的测量,而对于工件局部的尺寸测量,一般是采用固

定的图像处理步骤,基于固定的阈值分割或者固定的图

片比例分割。
基于传统视觉的尺寸检测方法,因为测量工件全尺

寸的局限性以及抗干扰性差等缺点,难以适应逐渐多样

化的工件形状和日益复杂的工业场景。 相比之下,深度

学习方法以其独特的优势正在迅速成为工业生产过程中

检测领域的主流方案[6] 。 李帅等[7] 提出了一种基于深度

学习的柠檬尺寸自动检测方法,通过改进的 RCF 网络获

取更好的柠檬图像边缘,再利用 Opencv 的阈值-面积算

法获取柠檬尺寸。 戴先鑫等[8] 利用 YOLOv5 目标检测算

法实现螺栓区域的截取,并利用改进的 Canny 边缘检测

算法对截取区域进行检测,获取螺栓的轮廓信息,最后采

用霍夫两直线之间最短距离实现螺栓直径的测量,对不

同类型螺栓直径的检测误差率在 5. 5%以内。 孙小龙[9]

设计了一种基于深度学习的贝类海产品尺寸检测系统,
首先利用编 / 解码模式实现贝类海产品的图像分割,之后

再利用最小外接矩形框计算出贝类海产品的长度和宽

度。 综上可知,在目前的尺寸检测任务中,深度学习的方

法往往是用于边缘检测或目标区域的定位。
传统的尺寸测量方法往往是利用 Canny、 Sobel 和

Roberts 等边缘检测算子,通过分析图像中像素强度的显

著变化来提取物体的轮廓,进而以边缘点的集合作为物

体形状信息的表达[10] 。 而目前尺寸检测方面的深度学

习算法大多是用于边缘检测或目标区域的定位,并没有

改变传统尺寸检测的方式。 使用边缘点集合的方式实现

对工件的形状信息描述时,不仅存在数据量较大,在处理

一些复杂形状或者高分辨率图像时,计算和储存成本较

高的问题,而且边缘点集合的表达方式缺乏对工件整体

结构的抽象描述,难以直接用于高效的形状匹配或识别

任务。 此外,研究者们往往针对一种工件的尺寸进行研

究,例如针对机动车外廓尺寸的测量[11] ,针对螺纹关键

参数的测量[12] 等,分别由不同的研究者使用不同的算法

实现。
因此,本文针对目前尺寸检测方法存在的问题,提出

了一种基于形状匹配的全尺寸在线检测方法,与传统的

尺寸方法不同,本文不再依赖于密集的边缘点集合,而是

通过提取物体的几个关键点来实现对其轮廓信息的描

述,并利用点渲染层,给关键点附加属性,利用关键点之

间的距离实现工件的全尺寸测量。 基于形状匹配的尺寸

检测方法,使用自监督的检测网络,对于不同的工件尺寸

检测不需要重新训练[13] ,只需要将待检测工件的模板添

加到检测库中,不仅可以实现对于多种工件的全尺寸测

量,而且通过工件的关键点去计算尺寸的方法,具有较强

的泛化性和抗干扰能力。

1　 方法

　 　 基于形状匹配的工件全尺寸在线检测方法,检测过

程主要有 3 步:首先,通过轻量化关键点检测模型,实现

工件关键点及描述符的检测,并将检测结果和工件设定

的模板关键点一起输入到点渲染层中;之后,通过图注意

力增强匹配描述符,并利用最优匹配方法,筛选出待检测
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工件中与模板中点的特征对应的关键点;最后,根据检测

到的工件关键点,实现尺寸的测量。 算法检测流程如图

1 所示。

图 1　 尺寸检测流程

Fig. 1　 Dimension
 

inspection
 

process

1. 1　 轻量化关键点检测网络

　 　 为了更好地满足工业生产中的快速检测需求,通过

对比多种关键点检测算法,本文选择了 Superpoint 关键

点检测网络,并对其进行修改,通过引入深度可分离卷

积,调整网络结构,并加入 ECA 注意力机制,使得网络在

基本不损失检测精度的情况下,较大程度上减小了网络

的参数量和计算量。
Superpoint 是一种自监督网络框架,网络编码层采用

VGG 架构[14] ,由卷积层,池化层和非线性激活层组成。
网络结构和语义分割网络类似,由公共的编码器和独立

的关 键 点 解 码 网 络 和 描 述 符 解 码 网 络 组 成[15] 。
Superpoint 网络整体架构如图 1 所示。 对于网络共享的

编码器,一共使用了 8 个 padding 为 1,stride 为 1,卷积核

为 3×3 的卷积层,每个卷积层后使用 ReLU 非线性激活

函数,并分别在第 2、4、6 次激活函数后进行一次下采样,
下采样使用 2×2 的最大池化,编码器最终输出的 feature

 

map 大小为输入图片的 1 / 8。 用 H、W 表示输入图片的尺

寸,对于输入图片 I∈RH×W ,经过网络共享的 Encoder 后,

网络输出 feature
 

map 为 M ∈ RHc×Wc×128,其中 Hc = H / 8,
Wc = W / 8,并将网络输出分别传递给独立的关键点解码

器和描述符解码器。 在关键点解码器和描述符解码器

中,对于输入的 feature
 

map,具体为 M ∈ RHc×Hc×128,都是

首先经过一次卷积,将维度从 128 升到 256。 对于关键点

解码器,通过再次卷积,生成特征响应图 X ∈ RHc×Hc×65,通
过 Softmax 除去这 65 个通道中一个没有特征点的

dustbin,余下的特征响应图在平面位置(h,w)上的特征

向量 Xhw 映射回原图是一个 8×8 的区域,通过 Reshape 将

图像恢复成尺寸为 H × W 的特征点概率图,每一个关键

点对应一个置信度 scoresi 。 对于描述符解码器,在将维

度升到 256 后,得到张量 D ∈ RHc×Wc×256,通过双三次插值

和 L2 范数正则化,输出的描述符特征图为 B ∈ RW×H×256。
根据关键点解码器中输出的关键点坐标,每个关键点都

有一个 256 维度的描述符。
Superpoint 网络是使用自监督方式进行训练,主要训

练过程分为 3 个步骤。 1)将只包含编码器和关键解码器

的网络称为 Magicpoint 网络,基于点和线生成虚拟数据

集 Synthetic
 

Shapes,将三角形、棋盘格、立方体等,其角点

视为特征点作为正样本,椭圆和高斯噪声无特征点作为

负样本,训练 Magicpoint 网络。 为了更好的适应工件尺

寸检测,本文在虚拟数据集中,加入了直线曲线相交数据

集,将直曲线交点作为特征点,加入到 Magicpoint 网络训

练过程中;2) 使用训练后的 Magicpoint 网络对真实图片

进行预测,为了增强网络的特征点提取能力,将真实图片

和 N 张经过单应性变换后的真实图片输入到 Magicpoint
网络中,得到 N+1 张 heatmap 图,将其中 N 张经过单应性

变换后的 heatmap 经过单应性逆变换后与真实图片的

heatmap 累加在一起,并通过阈值截取后获得图像的真实

关键点,获得真实图像数据集;3)用该真实图像数据集训

练 Superpoint 网络,并使用单应性变换,生成最终的特征

点及描述符检测网络。 本文使用 COCO2017 数据集作为

真实图像数据。
本文 轻 量 化 关 键 点 检 测 网 络 的 损 失 函 数 与

Superpoint 网络的损失函数保持一致,需要考虑上半部分

的特征点损失 Lp 和下半部分的描述符损失 Ld ,并使用超

参数 λ 来平衡这两个损失,如式(1)所示。
L(X,X′,D,D′,Y,Y′,S) = Lp(X,Y) + Lp(X′,Y′) +

λLd(D,D′,S) (1)
式中: X、D、Y 表示将原图输入到 Superpoint 网络后输出

的特征点概率图,描述子特征图和原图特征点的标签值;
X′、D′、Y′ 为原图经过单应性变换后输入到 Superpoint 网
络后得到的输出,含义和 X、D、Y 相同。

对于特征点损失函数 Lp ,采用交叉熵损失函数,公
式如下:

Lp(X,Y) = 1
HcWc

∑
Hc,Wc

h = 1,

w = 1

lp(xhw,yhw) (2)

式中: xhw、yhw 分别表示 X,Y 在坐标 (h,w) 处的值。 lp 计

算公式如下:

lp(xhw;y) = - lg
exp(xhwy)

∑ 65

k = 1
exp(xhwk)( ) (3)

其中, lp 需满足的条件为,使得 xhw 在标签 y 对应的

通道上尽可能大。 xhwk 代表 X 在第 k 个通道中, 在坐

标(h,w) 处的值,每一个 xhwk 对应输入图片中一个 8×8
像素点的图片区域。

对于描述符损失函数 Ld ,公式如下:
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Ld(D,D′,S) = 1
(HcWc)

2∑
Hc,Wc

h = 1,

w = 1

∑
Hc,Wc

h′ = 1,

w′ = 1

ld(dhw;d′h′w′;shwh′w′)

(4)
式中: dhw、d′h′w′ 分别表示 D、D′ 在 (h,w)、(h′,w′ )处的

值, ld 为合页损失函数,用于确保最后解的稀疏性。 ld 计

算公式如下:
ld(d;d′;s) = λd·s·max(0,mp - dTd′) + (1 - s)·

max(0,dTd′ - mn) (5)
其中,使用超参数 λd 来平衡描述符内部正向对应损

失和负向对应损失值,使用 mp 和 mn 来限制正负方向上

的阈值。
同时,指示函数 shwh′w′ 用来判断 dhw 和 d′h′w′ 在原图中

对应的位置是否相近,公式如下:

shwh′w′ =
1,‖Hphw

- ph′w′ < 8‖

0,其他{ (6)

式中: phw 和 ph′w′ 分别表示 dhw 和 d′h′w′ 对应的图片单元的

位置中心坐标; Hphw
是将 ph′w′ 进行与原图相同的单应性

变换后得到的结果。 因为在共享编码层处采用了 8 倍下

采样,所以 Hphw
和 ph′w′ 之间的距离小于 8 个像素差则可

以认为是一个正确的匹配,对应到原图上则是相差一个

像素。
为了提升 Superpoint 模型的检测速度,使其满足工

业上用于实时尺寸检测的需求,本文对网络模型进行了

如下改进。
1)引入了深度可分离卷积,将共享编码层、关键点解

码层和描述符解码层中的标准卷积分解为深度卷积和逐

点卷积,大大减少网络的参数数量、计算量和模型大

小[16] 。 对于模型推理时间和运行时计算需求的影响,假
设输入特征图的尺寸为 H × W ,输入通道数为 N,卷积核

尺寸为 D × D ,输出通道数为 M,若不改变输入图像尺

寸,则标准卷积的计算量大小为:

图 2　 Superpoint 网络框架

Fig. 2　 Superpoint
 

network
 

framework

　 　 F = H × W × D × D × N × M (7)
深度可分离卷积过程中,深度卷积对每个输入通道

单独进行 D×D 的卷积,计算量为:
F = H × W × D × D × N (8)
逐点卷积对深度卷积的输出进行 1×1 卷积

 

,用于通

道混合,计算量为:
Fs = H × W × N × M (9)
所以,将标准卷积分解为深度卷积和逐点卷积后,计

算量减小比为:
Fw + FS

F
= 1
M

+ 1
D2 (10)

对于模型的存储需求和训练复杂度的影响,标准卷

积的参数量为 D × D × N × M ,深度卷积的参数量为 D ×
D × N

 

,逐点卷积的参数量为 N × M ,所以标准卷积和被

分解为深度卷积和逐点卷积的参数量减少比结果亦为

1 / M + 1 / D2。

因此,若网络使用的卷积核尺寸为 3×3,即 D = 3,那
么深度可分离卷积的计算量和参数量约为标准卷积 1 /
9,大大加快了网络的推理速度,减小了存储需求和训练

复杂度。
2)在每层的激活函数后加入归一化层,增强网络的稳

定性和泛化能力[17] ,并将在共享编码器中卷积+池化的下

采样方式改为使用步长为 2 的深度可分离卷积,去除池化

操作,通过增加卷积过程中的步长,实现图像的下采样。
3)将关键点解码层和描述符解码层中,相同的第 1

个升维卷积层提前到共享编码器中,并将共享编码器总

层数更改为 7 层卷积,且第 2、4、6 层卷积的步长为 2,网
络输出通道数依次为[64,64,64,128,128,128,256]。 修

改后的 Superpoint 网络结构如表 1 所示,其中每一层代表

一次卷积操作,其中第 1 个数字代表输入通道大小,3×3
表示卷积核大小,最后一个数字表示输出通道大小,“ +
下采样”表示卷积步长为 2。 最终通过共享编码器的处

理,输出特征图大小为原图的 1 / 8[18] 。
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表 1　 Superpoint 网络结构

Table
 

1　 Superpoint
 

network
 

architecture
共享编码器 关键点解码器 描述子解码器

1×3×3×64 256×1×1×65 256×1×1×256
64×3×3×64+下采样 — —

64×3×3×64 — —
64×3×3×64+下采样 — —

64×3×3×128 — —
128×3×3×128+下采样 — —

128×3×3×256 — —

　 　 4)为了弥补上述操作对模型检测准确率的影响,本
文在共享编码器中加入了 ECA 注意力机制。 在深度卷

积神经网络中,通道注意力机制的主要作用是通过对特

征图的通道维度进行加权来增强网络对重要特征的关

注,同时抑制不重要的通道信息[19] 。 通道注意力通过动

态地调整每个通道的权重,提升模型对关键特征的表示

能力。 ECA 注意力机制认为传统的 SENet 注意力机制中

的全连接降维方式会对通道注意力机制带来负面影响,
并且试图捕捉所有通道之间的相关性会降低模型推理效

率[20] 。 ECA 通过快速的一维卷积来捕捉局部的通道间

关系,从而有效地减少了参数量和计算开销,注意力结构

如图 3 所示。 对于输入的特征,首先进行全局平均池化,
将尺寸为 C × W × χ 的输入特征图转化为为 1 × 1 × C 的

一维通道特征向量,之后通过 2 个局部交互的的全链接

层以捕捉通道间的关系。 随后,经过 Sigmoid 非线性激活

函数生成通道权重,最后将获取到的通道注意力权重加

权到输入特征图中,突出通道间重要特征,抑制次要

特征。

图 3　 ECA 注意力机制结构

Fig. 3　 Structure
 

of
 

ECA
 

attention
 

mechanism

1. 2　 点的渲染

　 　 通过 Superpoint 关键点检测网络后,输出描述符中

只携带点的坐标及特征,并不涉及明显的尺寸信息,因此

需要在众多关键像素点中,选取到携带尺寸信息的关键

点是本文的下一个目标。 受特征匹配算法的启发[21] ,当
检测工件尺寸时,本文将一张模板工件图片输入到关键

点检测网络中,得到图片的关键点信息,并人工在其中选

出可用于尺寸计算的关键点作为模板关键点,并对这些

模板关键点进行编号,作为点的附加属性。 对于一种工

件的尺寸检测,此过程只需进行一次,用于获取一张该工

件关键点的模板。 之后,待检测的工件图像经过关键点

检测网络后,得到该工件的所有关键点,通过将这些关键

点与模板关键点进行特征匹配,将待检测图像中,在模板

点中有对应特征匹配的关键点置为 1,在模板点中无对

应特征匹配的点置为 0,筛选出待检测图像中包含尺寸

信息的关键点。 本文将筛选出与模板点对应的工件关键

点的过程称之为点的渲染[22] 。 通过筛选出的带有编号

的特征点,利用点之间的距离,可以实现工件全尺寸的

检测。
在 Superglue 特征匹配网络的基础上,本文的点渲染

方法将模板图像的关键点信息 pA
i 及其描述符 dA

i ,以及目

标图像的关键点信息 pB
i 及其描述符 dB

i 作为输入,并将特

征匹配问题转为最优传输问题求解。 算法处理流程如图

4 所 示。 总 体 分 为 两 个 框 架, GNN ( graph
 

attention
 

networks)注意力机制和最优匹配层[23] 。 首先 GNN 注意

力机制通过两个策略来实现描述符的强化,一种是通过

在描述符中加入特征点位置信息,整合更多的上下文线

索,另一种是使用交替的交叉注意力和自我注意力层来

解决歧义。 之后的最优匹配层用于求解匹配描述符内

积,创建一个 M × N 矩阵并对其进行扩展, 之后利用

Sinkhorn 算法找到模板点的最佳分配[24] ,实现模板点和

特征点的配准,完成关键点的渲染。
1)全匹配任务

Superglue 用于特征点匹配时,考虑到实际应用场景

中的遮挡问题,某些源图像中的关键点可能在目标图像

中找不到匹配,或者目标图像中的某些点在源图像中没

　 　 　

图 4　 点渲染网络结构

Fig. 4　 Point
 

render
 

network
 

structure
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有对应的关键点,因此采用了部分匹配的逻辑,对部分的

关键点匹配对进行赋值,而允许未匹配的关键点存在。
但当其用于本文的关键点渲染时,部分匹配的逻辑已不

再适用。 因此,本文将其修改为一个全匹配的过程,在点

渲染的操作中,保证每一个模板点,目标图像中都有一个

特征点与其对应,实现模板点的全匹配,如图 4 所示,红
色点为模板点,点渲染完成后,每一个模板点,在目标图

像中都有一个特征距离最近的特征点与其对应。
2)关键点位置信息的增强

在 superglue 特征匹配网络中,注意力机制 GNN 的策

略之一通过在描述符中加入特征点位置,整合更多的上

下文线索。 利用一个关键点编码器,将特征点位置信息

进行升维,形成一个可以与描述符进行相加的一个特征

向量,如式(11)所示。
χ(0)
i = d i + MLP(p i) (11)

式中: d i 和 p i 分别为第 i 个特征点的描述符和位置信息;
MLP 使用 5 个多层感知机(全链接),通道数分别为 3、
32、64、128、256。 在 p i 中,包含着特征点的位置信息以及

该点的置信度,由归一化后的关键点坐标和该点的置信

度 scoresi 拼接得来,公式如下:
p i = [(x i,y i)‖scoresi] (12)
其中,对于输入尺寸为 H × W 的工件图像,其中一个

特征点的坐标为 (X i,Y i)
 

,使用图像尺寸对特征点坐标

进行归一化的结果如式(13)所示。

x i =
X i

H
,y i =

Y i

W
(13)

为了使其更适应工件之间的特征点配任务,针对生

产中工件的形状基本固定的特点,本文对上述 p i 计算公

式做了如下修改。 首先,图片在经过关键点检测网络后,
通过工件关键点可以实现对工件外观轮廓的描绘,因此

本文使用工件尺寸实现对特征点坐标的归一化过程;其
次,通过引入超参数 λk 增加关键点位置信息在最终匹配

描述符中的比重,如式(14)所示。
p′i = [λk·(x′i,y′i)‖scoresi] (14)
其中,超参数 λk 用制关键点位置信息在描述符中的

权重,可以提升关键点位置信息对最终描述符的影响。
对于检测到的所有关键点,其最小外接矩形尺寸为 Ha ×
Wa ,最小外接矩形的中心点坐标为 (Xo,Yo) ,则在该工

件中,关键点的坐标归一化结果如式(15)所示。

x′i =
X i - Xo

Ha

+ 1
2

,y′i =
Y - Yo

Wa

+ 1
2

(15)

3)特殊关键点的误匹配矫正

当人类被给定一个模糊的关键点来完成匹配任务

时,他们会筛选初步匹配的关键点,通过检查每个关键点

的上下文线索,从其中找到真实的匹配。 因此,在进行尺

寸检测的模板点全匹配的过程中,除了概率较高的关键

点位置信息和视觉特征信息外,可以通过整合上下文线

索更好的实现匹配任务。
当工件特征相似关键点的位置接近时,因为描述符

和空间距离都相近,通过在描述符中增强位置信息也不

能有效地区分,可能会出现误匹配的情况。 在部分匹配

过程中,对于误匹配的筛选,主要的方法有两种。 第 1 种

是交叉匹配,将被匹配到的点进行反向匹配,如果第 1 次

匹配结果是将图像 A中的模板点 pA
i 和图像 B中的关键点

pB
i 相匹配,那么第 2 次匹配就反过来操作,将图像 B 中的

关键点 pB
i 与图像 A 中的模板点集进行匹配,如果匹配结

果与第 1 次匹配一致,则认为这是一对正确的匹配,反
之,则认为匹配对错误,将其剔除。 这种消除误匹配的方

法虽然准确率很高,但可能会导致在图像 A 中的模板点,
在图像 B 中没有关键点匹配。 第 2 种是比值检测,点的

特征匹配是通过找到一对点之间的特征距离最近,则认

为这是一对匹配点。 比值检测是分别计算模板点在图像

B 中距离相近的点以及相距次之的点之间的距离,然后

求取两个距离之间的比值判断匹配是否正确[25] 。 当比

值非常小时,证明 B 图中对应该模板点的两个特征点之

间距离差距非常大,则证明这是一对正确的匹配,但比值

检测的方法太依赖先验信息对阈值的选择。
上述两种误匹配都不适用于本文模板点的全匹配任

务,因此本文在交叉匹配的基础上加入了形状约束。 当

交叉匹配识别到错误点时,通过检测与误匹配点距离相

近的若干个点,并利用工件的固有形状作为约束条件,选
择其中满足约束的关键点作为正确匹配,以此确保每个

模板点都有一个正确的匹配点。 如图 5 所示,红色框为

工件关键点集的最小外接矩形框。 对于工件中特征相似

的关键点,可以通过不同的约束条件区分,如式 ( 16)
所示。

constraint =
cosα < cosβ,α ≠ β
‖OM1‖ < ‖OM2‖,α = β{ (16)

利用关键点检测后输出工件的关键点坐标,通过最

小外接矩形定位工件的几何中心 O 和工件偏转角度 θ ,
对于特征相似的两个目标关键点 M1、M2,如图 5( a) 所

示,通过限制关键点与工件几何中心点 O 之间角度完成

关键点的区分,当两点位于同一角度时,如图 5( b)所示,
通过点之间的距离区分。

2　 实验

　 　 本 文 实 验 过 程 中 使 用 的 深 度 学 习 框 架 为

Pytorch2. 0. 1+cu117,硬件环境为 12th
 

Gen
 

Intel( R)
 

Core
( TM )

 

i9-12900H
 

CPU 和 NVIDIA
 

GeForce
 

RTX
 

3070
 

Laptop
 

GPU,实验过程中的超参数和原网络保持一致,使
用 ADAM 优化器

 

,具体参数如表 2 所示。
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图 5　 形状约束条件

Fig. 5　 Shape
 

constraint

表 2　 实验参数

Table
 

2　 Experimental
 

parameter

参数名 具体参数
超参数 λd 250
超参数 λ 0. 000

 

1
正方向阈值 mp 1
负方向阈值 mn 0. 2

batchsize 32
初始学习率 lr 0. 001
衰减稀疏 β (0. 9,0. 999)

编码器超参数 λk 1. 1

2. 1　 关键点检测方法的公开数据集验证

　 　 参数量和运行速度对比如表 3 所示,通过本文对原

始 Superpoint 网络的改进,网络模型参数量被压缩为原

始网络的 7%。 对分辨率为 320×320 的图片进行关键点

检测,每秒钟处理图像帧数增加 8 张,计算速度提升为原

来的 125%。
表 3　 参数量和运行速度对比

Table
 

3　 Parameter
 

number
 

and
 

running
 

speed
 

comparison

网络模型 参数量 运行速度 / FPS
Superpoint 629

 

568 32
本文 42

 

314 40

　 　 为了评估修改后的特征点检测器性能,将本文特征

点检测算法的实验结果和传统方法 Harris 和 FAST 进行

对比, Harris 和 FAST 均 采 用 OpenCV 实 现, 分 别 在

Hpatches 公开数据集上进行重复性测试。 可重复率是

指,在同一个场景下变换视角或者光照拍摄的两张照片,
同时检测到的特征点与总特征点数量的比值。 Hpatches
数据集分为光照变换场景和视角变换场景两个部分,分
别在两组变化下进行评估结果如表 4 所示。 表 4 可以表

明,通过在原 Superpoint 网络中引入深度可分离卷积,优
化网络结构,压缩网络层数,引入高效通道注意力机制,
使得网络整体运行速度得到提升的同时,几乎不损失检

测精度,甚至光照变换场景下表现更优。

表 4　 特征点检测器性能评估

Table
 

4　 Characteristic
 

point
 

detector
performance

 

evaluation

方法
可重复率 / %

光照变换场景 视角变换场景

Harris 0. 53 0. 46
FAST 0. 47 0. 4

Superpoint 0. 66 0. 67
本文 0. 67 0. 66

2. 2　 尺寸检测的实例验证

　 　 1)量块尺寸检测实验

为了验证算法的可行性,对 25
 

mm 的零级量块(精

度优于 0. 14
 

μm)进行了尺寸检测实验分析。 首先利用

关键点检测算法设计量块的关键点,因为实际的量块存

在边倒圆的现象(在设计制造过程中,将量块的棱角加工

成圆弧形状,减少尖锐边缘),因此提取的量块关键点为

边倒圆的顶点以及每条边上的一个点,通过边上的点坐

标计算量块的标称尺寸。 在进行实际的尺寸检测时,量
块通过关键点检测模型后,得到的结果如图 6( a)所示,
通过点渲染层后,提取到的关键点如图 6(b)所示。

图 6　 25
 

mm 零级量块尺寸检测过程

Fig. 6　 Measurement
 

process
 

of
 

25
 

mm
 

grade
 

0
 

gauge
 

block

量块标称尺寸测量过程如图 7 所示,提取到能够代

表量块尺寸的特征点,即尺寸测量点后,通过所有关键点

的最小外接矩形计算量块的偏转方向,将尺寸测量点投

影到该偏转方向上,利用投影点之间的距离实现量块尺

寸的测量,系统尺寸检测结果如表 5 所示。 对 25
 

mm 的

零级量块(精度优于 0. 14
 

μm)的标称尺寸进行检测时,
系统测量结果的最大偏差为 ± 0. 02

 

mm, 标准差为

0. 01
 

mm,表明系统具有较好的重复性。
　 　 2)标定板尺寸检测实验

在使用传统视觉方法对标定版的棋盘格尺寸进行检

测时,往往使用固定的角点提取步骤,使用 Opencv 中的

findChessboardCorners 算子,该方法只针对棋盘格角点提

取,但其只能获取到棋盘格的角点坐标,这些角点并没有
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图 7　 量块尺寸检测示意图

Fig. 7　 Schematic
 

diagram
 

of
 

gauge
block

 

dimensional
 

measurement

对应的属性,因此不能通过点的直接选取实现尺寸的测

量。 而本文基于形状匹配的工件全尺寸在线检测方法,
在对棋盘格进行尺寸检测时,可以通过对模板点的命名,
直接实现所需关键点的选择,进而通过关键点之间的距

离实现棋盘格尺寸的检测。 首先通过关键点检测算法设

计标定板的关键点模板,本文将棋盘格的角点设为标定

板的模板点。 在进行实际的尺寸检测时,待检测的目标

棋盘格通过关键点检测模型后,得到的结果如图 8( a)所

示,将其和模板点一起输入到点渲染层后,提取到的关键

点如图 8(b)所示。
表 5　 25

 

mm 零级量块尺寸检测实验结果

Table
 

5　 Experimental
 

results
 

of
 

25
 

mm
 

grade
 

0
 

gauge
block

 

dimensional
 

measurement
测量次数 测量值 / mm 误差 / mm

1 25. 00 0. 00
2 25. 02 0. 02
3 25. 01 0. 01
4 25. 00 0. 00
5 25. 00 0. 00
6 25. 00 0. 00
7 24. 99 -0. 01
8 24. 98 -0. 02
9 25. 02 0. 02

10 24. 99 -0. 01
平均值 25. 00 -
标准差 0. 01 -

　 　 通过对点渲染后的棋盘格关键点进行处理,1×1 棋

盘格的标准尺寸为 3
 

mm×3
 

mm,以此标定相机的像元大

小,计算得到每个像素点代表的实际距离为 0. 02
 

mm。
利用 1×1 方格标定的像元大小,对棋盘格的尺寸检测结

果如表 6 所示。 从表 6 可以看出,方格尺寸测量的最大

误差为±0. 03
 

mm,表明了该尺寸检测方法的可行性,对
于 2

 

248×2
 

048 的标定板图像,检测一张标定板所有尺寸

的平均用时为 0. 14
 

s。

图 8　 标定板尺寸检测结果

Fig. 8　 Calibration
 

board
 

size
 

test
 

results

表 6　 棋盘格尺寸检测结果

Table
 

6　 Checkerboard
 

size
 

test
 

results
方格大小 测量值 / mm 实际值 / mm
1×1 方格 3. 00×3. 00 3. 00×3. 00
2×2 方格 5. 99×5. 99 6. 00×6. 00
3×3 方格 8. 99×3. 00 9. 00×9. 00
4×4 方格 11. 99×11. 99 12. 00×12. 00
5×5 方格 14. 98×14. 98 15. 00×15. 00

　 　 3)原电池尺寸检测实验

原电池图像采集系统如图 9 所示,利用双远心系统,
通过背光方式成像,利用限位装置保证电池始终处于同

一个水平面,并采用接近开关检测电池位置,实现电池图

像的采集。 利用标准量块对相机的像元大小进行标定,
得到相机的像素点与实际尺寸大小比为 0. 02

 

mm / pixel。

图 9　 原电池图像采集系统

Fig. 9　 Galvanic
 

cell
 

image
 

acquisition
 

system
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当使用传统视觉方法对电池尺寸进行检测时,往往

利用边缘检测方法得到电池边缘点,通过固定的图像分

割比例提取电池的目标区域,进而实现对应尺寸边缘点

的选取,利用边缘点之间的距离实现尺寸的检测。 而且

这种基于固定阈值分割的方法,阈值的获得往往是在电

池尺寸参数的基础上,通过多次实验获得的经验参数。
当电池的尺寸参数发生变化时,这种基于固定阈值分割

比例测量电池尺寸的方法,往往不能正确选取到电池尺

寸对应的边缘点。 而中国作为全球电池企业的主要供应

商,不同国家之间的原电池尺寸参数不同,不同型号电池

的尺寸参数也不同,在电池产线长期生产过程中,电池模

具的松动与磨损等等,也会导致电池尺寸参数的变化,因
此使用固定阈值分割比例实现电池尺寸检测的方法不适

用于目前国内企业的生产需求。 而本文利用电池形状特

征提取的关键点来实现对其形状信息的描述,电池尺寸

参数的变化并不影响其抽象的形状信息,并可通过关键

点之间的距离,一次性实现电池所有尺寸的计算,具有较

强的泛化性和抗干扰能力。
使用本文基于智能形状匹配的零件全尺寸检测方法

对原电池进行尺寸检测时,目标电池图像通过轻量化关

键点检测模型和点渲染层后,选择到的能够代表电池尺

寸信息的关键点如图 10 所示。 将关键点投影到电池偏

转方向后,通过投影点之间的距离,实现电池的全尺寸

测量。

图 10　 原电池尺寸检测结果

Fig. 10　 Primary
 

cell
 

size
 

test
 

result

静态拍摄下,对同一个七号电池的尺寸进行重复 10
次测量,观察检测的重复性。 以电池肩高,拔高外径和负

极凸起直径为例,测量结果如表 7 所示。 对于分辨率为

2
 

296×992 的电池图像,选择电池的肩高,拔高外径和负

极凸起直径尺寸进行测量分析,由表 7 可得,系统检测重

复性精度为 0. 03
 

mm(K = 3,P = 99%),检测平均耗时约

为 0. 08
 

s,表明本文方法能够完成静态测量任务。
而电池产线在正常运转时,其并不能长时间保持同

一个速度,因为生产过程中的可能遇到的锌膏甩出,缺少

壳体等问题,产线速度在 0 ~ 600 个 / min 范围内变化。 因

此会导致接近开关触发相机进行拍摄的时间内,电池位

移了不同的距离,在图像中表现出电池位于图像中的不

同位置,甚至电池会超出相机的视野范围,进而导致电池

位于相机的不同焦平面,相机像素点标定值不准确等问

　 　 　 表 7　 同一个七号电池拍摄十次尺寸测量结果

Table
 

7　 Take
 

ten
 

dimensional
 

measurements
of

 

the
 

same
 

AAA
 

battery
序号 肩高 / mm 拔高 / mm 负极凸起直径 / mm

1 42. 09 10. 09 6. 34
2 42. 09 10. 09 6. 34
3 42. 09 10. 09 6. 35
4 42. 09 10. 09 6. 34
5 42. 11 10. 11 6. 35
6 42. 09 10. 09 6. 34
7 42. 09 10. 09 6. 34
8 42. 09 10. 09 6. 35
9 42. 11 10. 09 6. 34

10 42. 09 10. 09 6. 34
平均值 42. 09 10. 09 6. 34
标准差 0. 01 0. 01 0. 01

题。 为了解决这个问题,本文在系统中加入了增量型编

码器,用于检测产线转速,通过控制延迟拍摄的时间来确

保相机触发拍摄时,电池始终处于同一位置。 设从接近

开关检测到电池,到相机开始拍摄,耗时为 t1,期间产线

速度不变,电池盘半径 r = 160
 

mm,当产线以最大速度运

转时,W1 = 600 个 / min,不进行延时拍摄;当产线运行速

度为 Ws 时,设定延时时间为 Δt,若相机两次进行延时触

发拍摄时,电池始终处于同一位置,则有:
W1

60
× r × t1 =

Ws

60
× r × ( t1 + Δt) (17)

求解式(17)可得:

Δt =
W1 - Ws

Ws

× t1 (18)

因此, 可 设 置 相 机 延 迟 触 发 拍 摄 时 间 为 Δt =
W1 - Ws

Ws
t1,确保相机拍摄时,电池始终处于同一位置。

在本实验中,t1 = 0. 03
 

s 时,实验效果最佳,产线以不同速

度运转时,电池处在图片中的相同位置。
之后分别在生产速度为 400 和 600 个 / min 的七号电

池产线上进行实验检测,当产线运行到最大速度时,随机

抽取 10 个电池,用螺旋测微计测量 5 次的结果的平均值

作为真实值,与系统检测结果进行对比,400 个 / min 产线

的测量结果如表 8 所示,600 个 / 分钟产线的测量结果如

表 9 所示。 由表 8、9 可得,因为电池生产工艺问题,七号

原电池的肩高尺寸波动较大,而拔高外径和凸起直径的

尺寸波动较小。 在七号原电池 400 和 600 个 / min 产线

上,电池尺寸测量的误差范围均在±0. 03
 

mm 内,能够满

足该企业原电池产线±0. 05
 

mm 的精度要求。 对一个电

池所有尺寸的检测时间平均耗时为 0. 08
 

s,能够满足该

企业原电池最高生产速度 600 个 / min 的要求。
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表 8　 七号电池系统测量值和真实值对比(400 个 / min)
Table

 

8　 Comparison
 

between
 

system
 

measurement
 

values
 

and
 

true
 

values
 

for
 

the
 

AAA
 

battery
 

(400
 

units
 

per
 

minute)
序号 测量值(肩高 / 拔高外径 / 凸起直径) / mm 参考值 / mm 误差 / mm

1 42. 09 / 10. 07 / 6. 30 42. 08 / 10. 09 / 6. 31 0. 01 / 0. 02 / 0. 01
2 42. 05 / 10. 07 / 6. 32 42. 04 / 10. 07 / 6. 33 0. 01 / 0. 00 / 0. 01
3 42. 09 / 10. 10 / 6. 32 42. 07 / 10. 09 / 6. 33 0. 02 / 0. 01 / 0. 01
4 42. 14 / 10. 10 / 6. 32 42. 15 / 10. 09 / 6. 33 0. 01 / 0. 01 / 0. 01
5 42. 14 / 10. 10 / 6. 30 42. 15 / 10. 09 / 6. 29 0. 01 / 0. 01 / 0. 01
6 42. 16 / 10. 05 / 6. 30 42. 15 / 10. 07 / 6. 31 0. 01 / 0. 02 / 0. 01
7 42. 12 / 10. 10 / 6. 30 42. 13 / 10. 09 / 6. 31 0. 01 / 0. 01 / 0. 01
8 42. 09 / 10. 10 / 6. 30 42. 09 / 10. 09 / 6. 31 0. 00 / 0. 01 / 0. 01
9 42. 09 / 10. 07 / 6. 35 42. 08 / 10. 07 / 6. 33 0. 01 / 0. 00 / 0. 02

10 42. 12 / 10. 07 / 6. 30 42. 13 / 10. 09 / 6. 29 0. 01 / 0. 02 / 0. 01

表 9　 七号电池系统测量值与真实值对比(600 个 / min)
Table

 

9　 Comparison
 

between
 

system
 

measurement
 

values
 

and
 

true
 

values
 

for
 

the
 

AAA
 

battery
 

(600
 

units
 

per
 

minute)
序号 测量值(肩高 / 拔高外径 / 凸起直径) / mm 参考值 / mm 误差 / mm

1 42. 07 / 10. 07 / 6. 32 42. 09 / 10. 07 / 6. 33 0. 02 / 0. 00 / 0. 01
2 42. 09 / 10. 07 / 6. 35 42. 06 / 10. 09 / 6. 35 0. 03 / 0. 02 / 0. 00
3 42. 09 / 10. 10 / 6. 30 42. 08 / 10. 07 / 6. 29 0. 01 / 0. 03 / 0. 01
4 42. 14 / 10. 07 / 6. 30 42. 13 / 10. 09 / 6. 31 0. 01 / 0. 02 / 0. 01
5 42. 16 / 10. 10 / 6. 32 42. 14 / 10. 11 / 6. 31 0. 02 / 0. 01 / 0. 01
6 42. 12 / 10. 10 / 6. 32 42. 13 / 10. 09 / 6. 31 0. 01 / 0. 01 / 0. 01
7 42. 12 / 10. 07 / 6. 32 42. 13 / 10. 09 / 6. 31 0. 01 / 0. 02 / 0. 01
8 42. 16 / 10. 07 / 6. 35 42. 15 / 10. 09 / 6. 35 0. 01 / 0. 02 / 0. 00
9 42. 09 / 10. 07 / 6. 32 42. 10 / 10. 07 / 6. 33 0. 01 / 0. 00 / 0. 01

10 42. 09 / 10. 07 / 6. 30 42. 09 / 10. 07 / 6. 29 0. 00 / 0. 00 / 0. 01

　 　 之后,将系统在五号电池 600 个 / min 产线上进行尺

寸检测实验,尺寸检测数据如表 10 所示,电池尺寸测量

的误差范围在±0. 03
 

mm 内,检测平均耗时为 0. 09
 

s,表

明本系统不受到电池尺寸参数变化的影响,可以很好的

适应不同型号电池的全尺寸检测任务。

表 10　 五号电池系统测量值与真实值对比(600 个 / min)
Table

 

10　 Comparison
 

between
 

system
 

measurement
 

values
 

and
 

true
 

values
 

for
 

the
 

AA
 

battery
 

(600
 

units
 

per
 

minute)
序号 测量值(肩高 / 拔高外径 / 凸起直径) / mm 参考值 / mm 误差 / mm

1 47. 76 / 13. 99 / 9. 12 47. 75 / 13. 99 / 9. 10 0. 01 / 0. 00 / 0. 02
2 47. 73 / 13. 99 / 9. 10 47. 7213. 98 / 9. 11 0. 01 / 0. 01 / 0. 01
3 47. 66 / 13. 97 / 9. 12 47. 68 / 13. 99 / 9. 10 0. 02 / 0. 02 / 0. 02
4 47. 84 / 13. 99 / 9. 11 47. 82 / 14. 00 / 9. 11 0. 02 / 0. 01 / 0. 00
5 47. 69 / 14. 01 / 9. 12 47. 67 / 14. 00 / 9. 10 0. 02 / 0. 01 / 0. 02
6 47. 76 / 13. 99 / 9. 10 47. 79 / 14. 00 / 9. 10 0. 03 / 0. 01 / 0. 00
7 47. 72 / 13. 97 / 9. 10 47. 70 / 14. 00 / 9. 11 0. 02 / 0. 03 / 0. 01
8 47. 78 / 13. 97 / 9. 08 47. 79 / 13. 99 / 9. 09 0. 01 / 0. 02 / 0. 01
9 47. 66 / 14. 01 / 9. 10 47. 69 / 13. 99 / 9. 11 0. 03 / 0. 02 / 0. 01

10 47. 69 / 13. 99 / 9. 12 47. 70 / 14. 00 / 9. 10 0. 01 / 0. 01 / 0. 02

3　 结　 论

　 　 针对目前尺寸检测算法局限于特定类型的工件,难
以适应不同工件的全尺寸检测问题,本文提出了一种基

于智能形状匹配的零件全尺寸在线视觉检测方法,通过

在 Superpoint 特征点检测网络中引入深度可分离卷积,
压缩网络模型,添加 ECA 注意力机制,实现工件关键点

及其描述符的检测,利用关键点实现工件形状的描述。
之后利用增强关键点位置信息的 Superglue 特征全匹配

算法,得到与工件模板点对应的目标关键点,利用关键点

之间的距离实现零件的全尺寸测量。 通过量块,标定板
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和不同型号原电池的尺寸检测实验证明,通过更改工件

的模板点,本文的算法可以很好的适应不同种类工件的

全尺寸检测任务,对于量块,标定板和原电池的尺寸测量

误差均在±0. 03
 

mm 以内,且该方法已经用于实际电池生

产过程中的尺寸检测任务。
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