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基于 TV-CGAN 算法的接地网腐蚀检测∗
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摘　 要:接地网作为保障电力系统安全的重要设备,其腐蚀状态检测的研究具有重大意义。 电阻抗成像技术作为接地网腐蚀成

像的重要方法之一,因其逆问题求解时的病态性导致重构效果偏差较大,为改善其成像质量及准确度提出了一种 TV-CGAN
(total

 

variation-conditional
 

generative
 

adversarial
 

Network)算法以检测其腐蚀状态。 首先,建立了接地网正问题模型求解出边界电

压,再用全变差正则化算法(total
 

variation,
 

TV)进行逆问题求解,得出初步接地网电导率分布图像。 然后,利用了条件生成对抗

网络算法,将 TV 法得出的图像进行二次成像,其生成器为引入卷积注意力模块的 U-Net 结构,判别器为 PatchGAN 卷积结构。
将方法应用于接地网腐蚀状态检测中,重建后图像结构相似度结果为 0. 907

 

8,峰值信噪比值为 16. 935
 

6,其腐蚀位置判断准确

率为 96. 35%,腐蚀程度判断误差为 8. 61%。 结果表明该方法有效改善了逆问题求解时的病态性问题,提升了接地网腐蚀成像

的质量,并提高了接地网腐蚀检测的准确度。
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Abstract:
 

Grounding
 

grid,
 

as
 

an
 

important
 

equipment
 

to
 

ensure
 

the
 

safety
 

of
 

power
 

system,
 

the
 

research
 

on
 

its
 

corrosion
 

state
 

detection
 

is
 

of
 

great
 

significance.
 

Electrical
 

impedance
 

tomography
 

is
 

one
 

of
 

the
 

important
 

methods
 

for
 

grounding
 

grid
 

corrosion
 

imaging.
 

Due
 

to
 

its
 

pathological
 

nature
 

when
 

solving
 

the
 

inverse
 

problem,
 

the
 

reconstruction
 

effect
 

has
 

a
 

large
 

deviation.
 

In
 

order
 

to
 

improve
 

its
 

imaging
 

quality
 

and
 

accuracy,
 

this
 

paper
 

proposes
 

a
 

total
 

variation-
 

conditional
 

generative
 

adversarial
 

network
 

(TV-CGAN)
 

algorithm
 

to
 

detect
 

its
 

corrosion
 

state.
 

First,
 

the
 

grounding
 

grid
 

forward
 

problem
 

model
 

is
 

established
 

to
 

solve
 

the
 

boundary
 

voltage,
 

and
 

then
 

the
 

total
 

variation
 

(TV)
 

regularization
 

algorithm
 

is
 

used
 

to
 

solve
 

the
 

inverse
 

problem
 

to
 

obtain
 

a
 

preliminary
 

grounding
 

grid
 

conductivity
 

distribution
 

image.
 

Then,
 

the
 

conditional
 

generative
 

adversarial
 

network
 

algorithm
 

is
 

used
 

to
 

perform
 

secondary
 

imaging
 

on
 

the
 

image
 

obtained
 

by
 

the
 

TV
 

method.
 

The
 

generator
 

is
 

a
 

U-Net
 

structure
 

that
 

introduces
 

the
 

convolutional
 

block
 

attention
 

module.
 

The
 

discriminator
 

is
 

a
 

PatchGAN
 

convolutional
 

structure.
 

This
 

method
 

was
 

applied
 

to
 

the
 

detection
 

of
 

grounding
 

grid
 

corrosion
 

status.
 

The
 

reconstructed
 

image
 

structure
 

similarity
 

result
 

was
 

0. 907
 

8,
 

the
 

peak
 

signal-to-noise
 

ratio
 

was
 

16. 935
 

6,
 

the
 

corrosion
 

position
 

judgment
 

accuracy
 

was
 

96. 35%,
 

and
 

the
 

corrosion
 

degree
 

judgment
 

error
 

was
 

8. 61%.
 

The
 

results
 

show
 

that
 

this
 

method
 

effectively
 

improves
 

the
 

ill-conditioned
 

problem
 

in
 

solving
 

the
 

inverse
 

problem,
 

improves
 

the
 

quality
 

of
 

grounding
 

grid
 

corrosion
 

imaging,
 

and
 

improves
 

the
 

accuracy
 

of
 

grounding
 

grid
 

corrosion
 

detection.
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0　 引　 言

　 　 接地网是电力系统的重要保护装置,作用是遇到雷

电、设备短路、接地网故障等问题时,为其提供泄流通道,
将故障电流引入地面,以确保设备的安全和稳定运行[1] 。
在高压变电站和电力系统中,选用的接地网材料大多数

都是镀锌扁钢或圆钢,这些材料容易发生不同程度腐蚀

或断裂[2] ,导致接地性能下降,对电力系统安全运行造成

了很大的威胁,故开展接地网腐蚀检测的研究具有重大

意义。 传统腐蚀检测一般需要停电开挖找出腐蚀或断裂

的支路,整个过程繁琐测量复杂且具有盲目性,而现有的

非侵入式检测技在诊断接地网腐蚀时准确性及精度有

限[3-4] 。 目前基于深度学习的逆问题重建算法在电阻抗

成像技术( electrical
 

impedance
 

tomography,
 

EIT) 领域得

到广泛研究,在解决非线性问题求解方面体现出其特有

的优势[5-7] 。 故本文提出了一种基于 TV-CGAN ( total
 

variation-
 

conditional
 

generative
 

adversarial
 

network)算法的

接地网电阻抗成像方法,以提升接地网腐蚀检测的质量

和准确性。
电阻抗成像技术可以在无需大面积开挖的情况下,

重建接地网现场图像。 近年来许多学者将传统 EIT 技术

做出改进并运用到接地网腐蚀诊断领域[8-10] ,闫孝姮

等[11-12] 提出 Homotopy-Tikhonov 算法及 Tikhonov-TV 混合

正则化法应用于接地网成像中,以改善其求解病态性。
张维哲等[13] 提出 L1-L2 弹性范数算法,以提升接地网成

像质量及精度。 但由于接地网本身的复杂性,传统 EIT
算法仍无法直观的显示接地网腐蚀状态,难以有效的对

其进行诊断。
而深度学习在 EIT 研究上取得了良好的进展,如李

若愚等[14] 提出一种 WGAN-gp 网络减小了 EIT 重建图像

的伪影。 叶明等[15] 提出一种基于 U2-Net 深度学习模型

的电阻抗图像重建方法,以降低成像中心和面积误差。
施艳艳等[16] 提出一种全连接神经网络精准预测参考电

压重建颅脑图像。 王琦等[17] 提出一种卷积注意力机制

的 U-Net 网络,在肺部成像中取得较精准的成像效果。
接地网腐蚀检测需精准捕捉局部电阻变化,而传统

EIT 重建易受伪影干扰。 尽管已有深度学习方法改进

EIT 成像,但多未针对接地网信号进行局部特征优化。
为此,本文创新性地提出了一种基于 TV-CGAN 的接地网

成像算法,其一方面利用最小二乘迭代公式结合全变差

正则化法(total
 

variation,
 

TV)初步重建接地网图像,保留

了边缘锐化的优势;另一方面,通过引入基于 CBAM-
Unet(convolutional

 

block
 

attention
 

module-Unet)的生成器

和 PatchGAN 判别器的条件生成对抗网络,能够在特征

提取和信息捕捉上取得更优效果。 特别是,CBAM 跳跃

连接模块通过自适应调整注意力权重,有效聚焦于腐蚀

区域的细微变化,而 PatchGAN 则在局部细节判别上具

有优势,二者协同作用,使得本文提出的网络结构在接地

网信号处理和特征提取上表现出显著优势。 构建的 TV-
CGAN 算法有效的提高了接地网电阻抗成像的质量并改

善其腐蚀诊断的准确性。

1　 接地网 EIT 研究

　 　 在接地网的腐蚀诊断中,EIT 通过电流激励能精确

反演出电阻变化,更敏感地表征接地网腐蚀。 相比之下,
电容层析成像依赖于介电特性,电阻层析成像适用于地

质勘探,均难以有效检测金属腐蚀。 其测量原理如图 1
所示,通过向接地网引下线注入电流然后获取其他引下

线之间的电压,将测得的电压数据通过 EIT 正逆问题的

求解即可对接地网 EIT 成像,得出被腐蚀的支路情况。

图 1　 接地网电阻抗成像原理

Fig. 1　 Principle
 

diagram
 

of
 

ground
 

grid
 

impedance
 

tomography

1. 1　 接地网 EIT 正问题

　 　 正问题求解是在已知电导率分布求解各处电位,利
用有限元法将接地网检测区域分解为多个网格元素,并
离散成三角形单元,剖分后的网状图如图 2 所示,再利用

三角形的节点坐标信息 (x,y) 求解函数的插值点,最后

通过等价变分理论,对线性表达式进行求解即得出各处

电位。

图 2　 接地网模型剖分图

Fig. 2　 Grounding
 

grid
 

model
 

segmentation
 

diagram
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在二维准静态场中,接地网场域的边界问题可以等

价为变分问题,将场域总面积 S 转换为剖分三角单元的

面积之和形式,则边界问题可以写为:

F(ϕ) = ∫
s

1
2
σ

∂ϕ
∂x( )

2

+ ∂ϕ
∂y( )

2
é

ë
êê

ù

û
úú dxdy =

∑
n0

n = 1
∫
sn

1
2
σ

∂ϕ
∂x( )

2

+ ∂ϕ
∂y( )

2
é

ë
êê

ù

û
úú dxdy (1)

式中: σ 表示为电导率; ϕ 代表电场中的电位分布; n0 代

表剖分单元的总数; sn 代表第 n 个剖分单元的面积。 求

解注入电流与边界电压之间的单元系数矩阵,并合并成

总系数矩阵 K ,则被测区域的线性有限元方程组可以表

示为:
Kϕ = 0 (2)
假设向接地网注入和流出的电流为 I ,并且节点分

别对应于有限元模型的 m 和 n 节点,而其他节点不做处

理,即电位为 0。 此时可以将式
 

(2)改写为:
K11 K12 … 0 … K1N

K21 K22 … 0 … K2N
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Km1 Km2 … 0 … KmN
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(3)

再采用高斯消元的方法计算剖分单元的节点电位

U(ρ) = [ϕ1,ϕ2,…,…ϕN]。
1. 2　 接地网 EIT 逆问题

　 　 逆问题求解是通过测量接地网待成像区域边界电压

求解电导率分布,采用最小二乘法构造误差函数,以求解

满足计算电压和测量电压的差值在一定范围内的电导率

分布,其 EIT 逆问题数学模型为:

minF(ρ) = 1
2

‖U(ρ) - V‖2 (4)

式中: ρ 表示为真实电导率; U(ρ) 为计算电压; V 为真

实电压。 为了减轻逆问题求解的病态性,常采用 TV 正

则化方式来处理。 TV 正则化法采用在最小二乘法后加

入一个变差函数作为惩罚项,构建新的极小泛函数式为:

minF(ρ) = 1
2

‖U(ρ) - V‖2 + βTV(ρ) (5)

式中: β 为正则化参数。 其中引入关系矩阵 M 表示变差

函数,矩阵为 r × s,r 代表单元边数,s 代表单元数。 在接

地网实际应用中,M 是 1 × s 的行矩阵,如式
 

(6)所示,其
非零元素是第 i 个单元边相邻的剖分单元列为 1 和-1。

Mi = [0,…,0,1,0,…,0, - 1,…,0] (6)
为了解决两个相邻的电导率相同导致出现变差函数

值等于 0 的情况,需要在变差函数中加入一个尽可能小

的正值 γ ,所以变差函数写成:

TV(ρ) = ∑
r

i = 1
| Miρ | 2 + γ (7)

最终得到的接地网 EIT 迭代公式为:
ρ k+1 = ρ k - (JTJ + βMTP -1QM) -1·

(JT·(U(ρ k) - V) + βMTP -1Mρ k) (8)
式中: J 为雅可比矩阵。

P = (Mρ) 2 + γ (9)

Q = 1 - (Mρ) 2

(Mρ) 2 + γ
= 1 - (Mρ) 2

p2 (10)

1. 3　 接地网仿真数据集

　 　 本文在有限元方法的基础上, 借助 COMSOL 和

MATLAB 软件联合仿真,建立了接地网 3×3、2×3 结构不

同腐蚀位置,数量和腐蚀程度的仿真模型,其仿真示例如

图 3 所示。

图 3　 接地网仿真

Fig. 3　 Grounding
 

grid
 

simulation
 

diagram

以 3×3 接地网结构为例,其单支路横截面积为 0. 5×
0. 05

 

m,每段结点之间的距离为 5
 

m,未腐蚀的扁钢材料

电导率为 1×107
 

S / m,接地网材料一般在正常情况下与

腐蚀情况下的电导率比值在 10 倍数以内[18] ,所以本文

主要诊断电导率 1×106 ~ 1×107
 

S / m 的接地网腐蚀情况,
土壤部分的电导率为 5×10-3

 

S / m。 本文采用 16 电极相

邻激励模型,电极在被测区域四周环绕,依次注入电流并

测量相邻电极电压值,注入电流密度设置为 1
 

A / m,选取

被测接地网四周的 16 个可及节点,依次从相邻节点 P1 -
P2,P2 - P3,…,P15 - P16,P16 - P1 注入电流,循环测量除

被测节点外其余 13 个节点的相邻电位,组合得出 208 个

边界电压值。 数据集包括测量出的边界电压值,TV 算法

初步成像图,以及真实电导率分布图像共 4
 

500 组,其中

随机选取 80%作为训练集,10%作为验证集,10%作为测

试集。
如图 4 所示,传统的 EIT 成像法难以有效的重构出

接地网各支路的规整结构及腐蚀情况,故本文定义的真
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实腐蚀诊断图像如图 5 所示,用于指导 TV-CGAN 网络有

监督的学习生成电导率分布图像。 以 3×3 结构为例,其
电导率值与颜色值之间进行线性映射,将电导率成像图

从蓝色到黄色进行平滑过渡,则蓝色区域表示电导率更

低,黄色区域则电导率更高,利于对 TV-CGAN 接地网成

像后进行图像分析,以便进一步求解其腐蚀位置及腐蚀

程度。

图 4　 TV 正则化成像图

Fig. 4　 TV
 

regularized
 

imaging
 

result

图 5　 接地网真实腐蚀图像

Fig. 5　 Real
 

corrosion
 

image
 

of
 

grounding
 

grid

2　 TV-CGAN 成像算法
 

　 　 本文创新性的在传统 EIT 算法(TV 法)的基础上,利
用改进后的 CGAN 网络对成像进行后处理,构建的 TV-
CGAN 算法结构如图 6 所示,首先输入为 COMSOL 仿真

求出的边界电压值,使用传统 TV 法进行初步成像,后采

用 CBAM-Unet 结构的生成网络进行二次图像处理,无需

输入随机噪声,通过与采用 PatchGAN 网络结构的判别

器互相对抗博弈,不断学习信息特征以生成正确的样本,
得出更为清晰精准的接地网电阻抗成像图。

2. 1　 TV-CGAN 网络结构

　 　 1)生成器设计

U-Net 网络因其编码-解码结构被广泛应用于生成

器,特别适合 EIT 图像优化任务[19] 。 其特性在于对称的

跳跃连接,能够在编码过程中保留输入图像的细节信息

图 6　 TV-CGAN 成像算法结构

Fig. 6　 TV-CGAN
 

imaging
 

algorithm
 

structure

并在解码时重建出高分辨率图像[20] 。 本文构建的 U-Net
网络如图 7 所示,具有 5 层深度的 U 形结构,首先输入层

接收的是通过 TV 算法初步处理后的电阻抗成像图像,
其大小为 64×64×3,通过编码器进行特征提取,编码器由

多个下采样层组成,每个下采样层包含两个卷积层,卷积

核大小为 4×4。 其中第 1 个卷积层的步幅为 1,用于精细

的特征提取;第 2 个卷积层的步幅为 2,以替代传统的池

化层(pooling
 

layer),从而更好地保留图像重建中的细节

信息,通过这种结构,编码器能够在压缩图像尺寸的同

时,最大程度上保留细节特征,为了加快网络训练并防止

过拟 合, 编 码 器 中 引 入 了 批 量 归 一 化 ( batch
 

normalization)、Dropout 层以及 Leaky-ReLU 激活函数。

图 7　 生成器结构

Fig. 7　 Generator
 

structure
 

diagram

然后通过解码器进行特征上采样,逐步恢复特征图

的空间尺寸,解码器由上采样层构成,包含的反卷积网络

结构与编码器类似,使用相同的卷积核大小和步幅,以便

逐步放大特征图的分辨率,最终生成接地网腐蚀成像图,
其大小与输入保持一致,以确保图像的空间一致性。

为了进一步提升重建图像的质量,整个网络采用了跳

跃连接(skip
 

connections),将编码器提取的特征与解码器

中的特征进行融合,从而更好地保留细节和重要信息。 此
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外,在上采样和下采样之间集成了 CBAM( convolutional
 

block
 

attention
 

module)注意力机制[21] 。 CBAM 能够通过通

道注意力和空间注意力模块,独立地推断注意力图,从而

增强特征信息的传递。 CBAM 注意力机制的结构如图

8 所示。

图 8　 CBAM 注意力模块结构

Fig. 8　 CBAM
 

attention
 

module
 

structure

通道注意力机制通过全局平均池化和最大池化分别

计算输入特征图的不同通道重要性,而空间注意力机制

则通过特征图的局部信息分配权重。 对于输入特征图

F,通道注意力图计算公式为:
Mc(F) = σ(MMLP(AAνgPool(F)) + MMLP(MMaxPool(F)))

(11)
式中: AAνgPool 和 MMaxPool 分布是全局平均池化和平均最大

池化操作; σ 是 sigmoid 激活函数; MMLP 是共享权重的多

层感知机。 空间注意力图表达式如下:
Ms(F) = σ f 7 ×7([AAνgPool(F);MMaxPool(F)])( ) (12)

式中: f7×7 表示大小 7×7 的卷积操作;“;”表示特征拼接。
最终通过与输入特征逐点相乘的方式,CBAM 能够有效

地强化对电导率变化特征的权重分配,从而在接地网腐

蚀情况复杂分布下,优化 EIT 重建效果。
2)判断器设计

判别器采用了 PatchGAN 网络结构,这种结构能够

有效捕捉图像中局部区域(patch)级别的细微特征,相较

于全局判别器,PatchGAN 通过将输入图像划分为若干小

块,逐个判断这些小块的真假,以确保模型能够学习到图

像中的局部纹理和高频信息。 其网络结构由多个组件构

成,首先是一个输入层,输入的图像尺寸为 64×64×3,随
后是多个下采样层,每个下采样层由卷积层、批归一化层

以及 Leaky
 

ReLU 激活层组成。 卷积层采用大小为的卷

积核,步幅设置为 2,用于提取输入特征图的局部特征。
批归一化层用于归一化卷积后的特征图,以加速模型的

训练过程并稳定梯度变化。 紧接着的 Leaky
 

ReLU 激活

函数引入了非线性函数,负斜率参数设置为 0. 2,以便在

负值区域保留梯度,有助于缓解梯度消失问题。 网络的

最后是一个输出层,该层使用一个 1×1 大小的卷积核,生
成一个实数值,表示判别器对输入图像的真假判断结果。
2. 2　 损失函数及训练流程

　 　 本文 TV-CGAN 成像法构建了多尺度融合损失函数。

设计的目标函数包括对抗损失, L1 损失,直方图匹配损

失的加权融合,使得图像质量、结构相似性、颜色匹配能

一致性优化。 其中对抗损失函数如下:
L

CGAN
(D,G) = Ex,y ~ pdata(x,y) [logD(x,y)] +

Ex ~ pdata(x) [log(1 - D(x,G(x)))] (13)
式中: x表示条件输入的图像; y为目标真实图像; pdata 表

示数据的分布。
L1 损失定义为生成样本与真实样本之间绝对值误差

的平均值,如式(14)所示。 相对于 L2 损失, L1 损失拥有

更好的鲁棒性,可以生成更加平滑的图像,更适用于接地

网腐蚀成像任务中[22] 。
L1 = E(x,y) ~ pdata(x,y) [‖y - G(x)‖1] (14)
为了调整生成图像的腐蚀程度的准确性,加入直方

图匹配损失,有利于校正色彩偏差,增强色彩保真度,使
得生成图像的电导率分布更接近于真实接地网腐蚀情

况,其表达式为:
Lwas = Wwas(Hy,HG(x) ) (15)

式中: Hy 和 HG(x) 通过计算真实图像和生成图像的直方

图得到; Wwas 表示将生成图像转换为真实图像的最小成

本,其公式如式(16)所示。
Wwas = inf

γ∈Π(Hy,HG(x))
E( i,j) -γ[‖i - j‖] (16)

建立总的目标函数 G 如式
 

(17) 所示,其中 λ
1
值为

0. 1, λ 2 为 1。
L = argmin

G
max

D
L

CGAN
(D,G) + λ

1
L

1
+ λ 2Lwas (17)

为提高训练效率,本文运用了自适应网络训练流程。
因本文 TV-CGAN 网络在应对接地网电阻抗成像时,需生

成的图像种类较复杂,所以设计的判别器能力更强,帮助

生成器跳出“模式崩溃”,生成多样化样本。 为找到生成

器和判别器训练间平衡点,整个训练过程如图 9 所示,首
先,将训练数据和测试数据进行归一化,然后设置生成网

络与判别网络的结构参数:包括损失函数参数、激活函数

参数、批处理大小参数、迭代次数等,采用 Adam 优化器

进行网络训练。 接着,固定 G 训练 D,D 的上限训练周期

为 Q 次,为避免 D 陷入死循环,出现过拟合情况,本文设

定了判别阈值M,当 D的损失 L(D) < M时,会优先退出 D
的训练,转而训练 G。 然后,固定 D 训练 G,G 的上限训练

周期为 P 次,当总的训练轮速 Epochs < K 时则继续对抗

训练,直到 Epochs = K 结束迭代训练,生成器则能够稳定

准确的输出接地网电导率分布图像。

3　 实验结果分析
 

3. 1　 图像质量评价指标

　 　 为了直观的体现本算法的有效性及优越性,本文从

定量的角度来分析仿真数据的成像结果。 使用图像相关
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图 9　 训练流程

Fig. 9　 Flowchart
 

of
 

the
 

training
 

process

系数(image
 

correlation
 

coefficient,
 

ICC)对未知拓扑的接

地网初步 EIT 成像进行评价,如式
 

(18)所示。

Iicc =
∑

n

i = 1
ρ i -ρ i( ) ρ∗

i -ρ∗
i( )

∑
n

i = 1
ρ i -ρ i( ) 2·∑

n

i = 1
ρ∗
i -ρ∗

i( ) 2

(18)

式中: ρ 为重构电导率; ρ∗ 为实际电导率。
使用结构相似性( structural

 

similarity
 

index,
 

SSIM)、
峰值信噪比(peak

 

signal
 

to
 

noise
 

ratio,
 

PSNR)来评估二次

图像重建的效果,求解式为:

Sssim(x,y) =
(2μ xμ y + c1)(2σ xy + c2)

(μ 2
x + μ 2

y + c1)(σ 2
x + σ 2

y + c2)
(19)

式中: ux 和 σ x 分别代表生成图像的平均值和标准差; uy

和 σ y 分别代表目标图像的平均值和标准差; σ xy 代表 x
和 y 图像的协方差; c1 和 c2 为常数,通常取 6. 502

 

5 和

58. 522
 

5。 Sssim(x,y) 值介于 0 和 1 之间,1 表示两幅图像

完全相同。
求解 PSNR 值时首先需要先计算各个目标图像的均

方误差(mean
 

squared
 

error,
 

MSE),如式(20)所示。

Mmse( i,j) = 1
mn∑

m-1

i = 0
∑
n-1

j = 0
( I( i,j) - K( i,j)) 2 (20)

式中: I( i,j) 和 K( i,j) 分别代表原始图像和对比图像的

像素值。 则峰值信噪比(PNSR)表示为:

Ppnsr = 10lg(
Mmax

2

M
) (21)

式中: Mmax 为图像的最大像素值, Mmax = 2n - 1;图像峰值

信噪比越高,代表图像质量越好,失真越少。
基于接地网本身支路较规整的特性,本文对 TV-

CGAN 成像后的电阻抗成像图进行了支路分割,以便更

好的进行腐蚀诊断。 再计算各支路电导率值 σ 并判别出

腐蚀支路。 电导率值求解如式(22)所示。

σ = 1
N ∑

N

i = 1
(k·(C i - Cmin) + σmin) (22)

式中: N 为该支路单元总数; C i 为单元颜色值; Cmin 是颜

色最小参考值; k 是映射比例系数; σmin 是腐蚀下限电导

率值,取 1×106
 

S / m;σmax 是腐蚀上限电导率值,取 1×107
 

S / m,则腐蚀程度 ξ 计算如下:

ξ =
σ - σmin

σmax - σmin

× 100% (23)

根据判断出的腐蚀支路及腐蚀程度再计算出判断准

确率 A 及腐蚀误差 R 为:

A = T
T + F

(24)

R = 1
N ∑

N

i = 1
(ξ x - ξ y)

2 (25)

式中: T 表示正确检测出腐蚀的支路数; F 表示漏检的腐

蚀支路数; ξ x 表示计算的腐蚀程度; ξ y 为实际的腐蚀

程度。
3. 2　 初步成像结果分析

　 　 为了验证深度学习模型的有效性,并探讨其与传统

数值算法的关系,本文对多种数值算法进行了比较研究。
选取了反投影算法 ( back-projection,

 

BP )、 Landweber、
NOSER、Tikhonov 正则化以及 TV 正则化等方法,评估它

们在接地网电阻抗成像中的性能,其中选取了具有代表

性的腐蚀模型进行仿真成像。 在仿真中腐蚀位置为蓝色

部分,电导率为 2×106
 

S / m,未腐蚀区域处为灰色部分,
电导率为 1×107

 

S / m。
各数值算法成像效果如图 10 所示,可以明显观察

到,传统 EIT 算法在接地网成像的重建过程中仍存在严

重的病态求解问题。 由于成像结果对电极位置敏感,导
致左上角电极区域出现边界效应,而整体电导率拓扑图

中支路边缘的清晰度较差,并伴有伪影现象。 这使得腐

蚀区域与土壤之间的实际电导率差异难以有效区分,传
统算法仅能大致检测出接地网的边界信息及腐蚀位置,
重建效果与实际情况存在较大偏差。 值得注意的是在这
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些算法中,TV 正则化表现最好,其成像效果最为稳定且

边缘保留效果最佳。

图 10　 各数值算法成像对比

Fig. 10　 Comparison
 

diagram
 

of
 

numerical
 

algorithm
 

imaging

不同算法在各模型成像相关系数如表 1 所示,可以

得出,TV 正则化算法在各模型上均取得最高的相关系

数,表明该算法在成像和边缘细节保持上具有明显优势。
为此本文选择将 TV 正则化算法与条件生成对抗网络相

结合,以进一步提升接地网图像重建的质量和准确性。

表 1　 各数值算法成像图像相关系数

Table
 

1　 Imaging
 

Iicc  of
 

each
 

numerical
 

algorithm
算法 模型 1 模型 2 模型 3
BP 0. 789

 

1 0. 541
 

2 0. 451
 

9
Landweber 0. 764

 

8 0. 734
 

6 0. 774
 

9
Tikhonov 0. 864

 

4 0. 819
 

7 0. 831
 

4
NOSER 0. 865

 

6 0. 901
 

6 0. 884
 

8
TV 0. 879

 

5 0. 921
 

2 0. 901
 

3

3. 3　 二次成像结果分析

　 　 为了提高二次成像训练效率,本文使用的自适应训

练器根据判别网络 D 的损失值有效减少训练次数,最大

化平衡生成器及判断器间的博弈。 本文设定每轮中 D 最

大训练次数为 20,G 固定训练次数 20,如图 11 所示,在

训练周期中,对 D 训练次数都少于最大设定次数,有效避

免判别器训练过度,从而加快生成器的优化速度,并提高

整体训练效率。

图 11　 判断器训练次数图

Fig. 11　 Discriminator
 

training
 

iterations
 

graph

为了验证本文算法的有效性,在测试集上进行了实

验验证,选取了部分接地网腐蚀成像图作为示例,如图

12 所示。

图 12　 TV-CGAN 重建成像示例图

Fig. 12　 TV-CGAN
 

optimized
 

reconstruction
 

example
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从图 12 的成像结果可以看出, 本文提出的 TV-
CGAN 成像算法对于接地网多层次、复杂的几何形状的

电阻抗成像,虽有少许噪点,但能有效地凸显接地网边缘

的过渡,腐蚀处电导率的变化,其重建图像清晰,能准确

地判断出接地网腐蚀位置。
模型 e 的各支路的腐蚀情况如图 13 所示,可以得出

支路 2 和支路 24 有较为严重的腐蚀,支路 2 计算得出的

电导率为 1. 8×106
 

S / m,其腐蚀程度为 82%,支路 24 电导

率为 2. 2×106
 

S / m,其腐蚀程度为 78%,所计算的腐蚀误

差非常小,验证了本方法的准确性。

图 13　 模型 e 各支路腐蚀情况图

Fig. 13　 Corrosion
 

situation
 

diagram
 

of
 

each
 

branch
 

in
 

Model
 

e

图 14 所示为随机选取部分测试数据得出腐蚀检测

情况,通过 TV-CGAN 成像测量出腐蚀处的腐蚀程度 ξx

与真实腐蚀处腐蚀程度 ξy ,可得出实际计算出的腐蚀程

度与真实情况基本一致。 其不同腐蚀程度的检测腐蚀误

差均控制在较低范围内,进一步验证了本模型对接地网

腐蚀程度的准确检测。

图 14　 测量腐蚀程度对比

Fig. 14　 Corrosion
 

severity
 

comparison
 

diagram

为了进一步探究接地网网格尺寸对腐蚀诊断效果的

影响,在 2×3、3×3 条件下分别对单腐蚀和双腐蚀情况进

行了测试,其腐蚀位置识别准确度 A 与腐蚀程度的误差

R 结果如表 2 所示。
表 2　 不同结构下腐蚀准确率及误差

Table
 

2　 A
 

and
 

R
 

of
 

different
 

models
 

in
 

one
 

imaging
模型 准确率 A / % 误差 R / %

2×3(单腐蚀) 98. 8 5. 8
3×3(单腐蚀) 97. 1 6. 4
2×3(双腐蚀) 93. 5 8. 1
3×3(双腐蚀) 90. 3 10. 3

　 　 综合表 2 评价指标可以得出本文提出的 TV-CGAN
算法在 2×3 和 3×3 网格中单腐蚀情况下腐蚀支路为单

支路时准确率最高,在双支路下仍有不错的准确率及较

低的误差。 因在双支路腐蚀下初步成像的伪影干扰,且
腐蚀程度较小时其特征变换较为细微,不易提取特征,导
致在双支路腐蚀时出现误差增大。 相比于传统的 EIT 成

像方法,本文方法仍有较大的优势,有利于接地网腐蚀诊

断的应用。
3. 4　 泛化实验

　 　 传统的 TV 全变差算法的权重参数 β 值在初步成像

中起着重要作用。 为了验证本方法的泛化性,将 β 参数

取不同的值进行初步成像,再通过 TV-CGAN 算法进行接

地网腐蚀检测。 结果如图 15 所示,在 β 值不同时影响迭

代过程的最优解的选取,初步成像有较大的区别,导致腐

蚀位置的检测不准确。

图 15　 不同 β 值下的初步成像

Fig. 15　 Preliminary
 

imaging
 

results
 

at
 

different
 

β -values

不同 β 值下的二次成像如图 16 所示,可以看出,不
同的参数设置即使对初步成像有一定的影响,但是本方

法仍能准确识别出腐蚀的位置,其腐蚀程度的误差较小,
泛化能力较好。
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图 16　 不同 β 值下的二次成像

Fig. 16　 Secondary
 

imaging
 

results
 

at
 

different
 

β -values

不同 β 值的量化指标如图 17 所示,通过在不同 β 下

的二次成像量化指标表明, β 为 0. 4 时 Sssim 最大,值为

17. 681
 

2, Ppnsr 最优,值为 0. 921
 

9,达到峰值点,因此在

实验中选取 TV 正则化参数为 0. 4,通过 TV-CGAN 算法

得出最佳的接地网电阻抗成像图。

图 17　 不同 β 值下的量化指标

Fig. 17　 Quantitative
 

metrics
 

at
 

different
 

β -values

3. 5　 对比实验

　 　 为了全面展示 TV-CGAN 在图像重建任务中的优势,
本文选取了多个基于编码-解码结构的深度网络进行对

比实验。 这些网络包括传统的自编码器( autoencoder,
 

AE)、变分自编码器( variational
 

autoencoder,
 

VAE)、对抗

自编码器( adversarial
 

autoencoder,
 

AAE)以及采用 U-Net
结构的模型等进行成像指标分析,结果如表 3、4 所示。

从表 3 可知,TV-CGAN 在各项指标上均取得了最高

值。 这意味着在接地网图像重建过程中,TV-CGAN 不仅

能更好地还原整体图像的结构,而且在细节恢复上也具

有明显优势。 由表 4 可知,准确率和误差值进一步验证

了 TV-CGAN 的优势,表现出更高的鲁棒性和精确度,能
够更可靠地反映原始图像的信息。

表 3　 不同算法成像的评价指标

Table
 

3　 Evaluation
 

metrics
 

for
 

imaging
 

algorithms

算法
模型(2×3) 模型(3×3)

Sssim Ppnsr Sssim Ppnsr

TV-AE 0. 751
 

2 11. 094
 

6 0. 721
 

6 10. 347
 

4
TV-VAE 0. 788

 

4 11. 691
 

0 0. 754
 

3 10. 513
 

2
TV-UNet 0. 832

 

1 13. 243
 

0 0. 814
 

6 11. 312
 

9
TV-AAE 0. 847

 

7 14. 971
 

3 0. 834
 

1 12. 480
 

3
TV-CGAN 0. 911

 

2 17. 237
 

9 0. 904
 

5 16. 633
 

2

表 4　 不同算法成像的准确率及误差

Table
 

4　 Accuracy
 

and
 

error
 

analysis
 

of
 

imaging
 

algorithms
(%)

算法 准确率 A 误差 R
TV-AE 70. 16 35. 13

TV-VAE 76. 61 30. 16
TV-UNet 83. 94 22. 84
TV-AAE 85. 33 18. 46

TV-CGAN 96. 35 8. 61

　 　 这表明传统编码-解码网络(如 U-Net 或 VAE)容易

过度平滑和丢失细节,从而损失了许多细微特征。 而

TV-CGAN 通过对抗训练和生成器改进,引入了对抗训练

机制,克服了传统自编码器在优化过程中容易陷入局部

最优的缺陷,从而有效地提升了接地网电阻抗图像重构

时的细节恢复、准确度和结构保真度。
3. 6　 消融实验

　 　 本文为验证采用 CBAM-UNet 生成网络的提升作用,
与生成网络采用卷积神经网络 ( convolutional

 

neural
 

network,CNN),U-net 下进行了实验对比。 在相同条件下

训练 100 轮,在测试集的成像效果如图 18 所示,CNN 生

成器模型由于结构简单,生成图像在腐蚀处的图像细节

不够清晰,缺乏色彩空间信息的捕捉能力,且存在伪影。
U-Net 构成的生成网络则更好的保留了空间信息和局部

特征,生成图像质量优于传统 CNN。 加入 CBAM 注意力

机制后,网络能更自适应的选取重要的通道特征,提高了

生成器捕捉图像全局结构和细节方面的能力,减少了伪

影和失真现象。
不同算法的评价指标如表 5 所示,加入 CBAM 注意

力机制后的 U-Net 生成器生成的接地网图像相比于 U-
net 生成 图 像 Ppnsr 平 均 值 提 升 2. 079

 

9, 比 CNN 高

3. 531
 

7, Sssim 值相对于 U-Net 和 CNN 分别提升 0. 055
 

8
和 0. 072

 

1,这些提升充分表明本方法在接地网信息特征

提取上和细节恢复方面更为出色,从而实现了更高的成

像质量,充分体现了方法的有效性,在接地网电阻抗成像

研究中发挥了更大的作用。
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图 18　 不同算法的成像对比

Fig. 18　 Comparative
 

imaging
 

results
 

from
 

different
 

algorithms

表 5　 不同算法的评价指标

Table
 

5　 Table
 

of
 

evaluation
 

indicators
for

 

different
 

algorithms

算法
模型(2×3) 模型(3×3)

Sssim Ppnsr Sssim Ppnsr

CNN 0. 858
 

3 14. 485
 

9 0. 813
 

2 12. 321
 

8
U-Net 0. 869

 

3 15. 778
 

8 0. 834
 

9 13. 932
 

4
CBAM-UNet 0. 911

 

2 17. 237
 

9 0. 904
 

5 16. 633
 

2

　 　 如表 6 所示,计算了不同算法在测试集上的腐蚀支

路判断准确率 A 及腐蚀程度误差 R 。

表 6　 不同算法的准确率及诊断误差

Table
 

6　 Accuracy
 

and
 

diagnostic
 

errors
of

 

different
 

algorithms (%)

算法 准确率 误差

CNN 90. 22 17. 81
U-Net 94. 61 11. 56

CBAM-UNet 96. 35 8. 61

　 　 实验结果表明,本文提出的 TV-CGAN 成像算法在改

进生成网络为 CBAM-Unet 结构后其腐蚀位置判断准确

率 A 相对于 CNN 结构提升 6. 13%,腐蚀程度误差 R 减少

9. 20%,相对于 U-Net 网络准确率 A 提升 1. 74%,误差 R
减少 2. 95%,这充分表明本文方法在接地网腐蚀诊断研

究中更具优势,进一步验证了其卓越的有效性与准确性。

4　 结　 论

　 　 为了改善接地网电阻抗成像时传统算法的病态性问

题,本文提出了一种基于 TV-CGAN 的接地网电阻抗成像

算法以诊断接地网腐蚀状况。 TV-CGAN 生成器以 U-Net
结合 CBAM 注意力机制架构捕捉全局特征信息,使用多

尺度融合目标损失,采用自适应训练方式,通过接地网不

同腐蚀位置,不同腐蚀程度的仿真实验证明,本文方法显

著的提升了接地网腐蚀诊断图像的质量及准确度,得到

了边界完整且腐蚀情况明确的接地网图像。 综上,本文

所提出的方法为接地网电阻抗成像提供了新的思路,有
望进一步推动接地网腐蚀诊断检查方面的应用。

未来工作将继续扩充不同腐蚀数量及腐蚀程度的接

地网数据集,以更精准地展现接地网腐蚀状态。 同时融

合细微特征细节提取,提升模型在多支路腐蚀情况成像

时的识别性能,减小成像误差。
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