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Grounding grid corrosion detection based on TV-CGAN algorithm

Zhang Anan Ji Chaohai Zhang Liang Ma Wenbo Huang Yuanfeng Liu Jiansheng

(School of Electrical Information, Southwest Petroleum University, Chengdu 610500, China)

Abstract: Grounding grid, as an important equipment to ensure the safety of power system, the research on its corrosion state detection
is of great significance. Electrical impedance tomography is one of the important methods for grounding grid corrosion imaging. Due to its
pathological nature when solving the inverse problem, the reconstruction effect has a large deviation. In order to improve its imaging
quality and accuracy, this paper proposes a total variation- conditional generative adversarial network (TV-CGAN) algorithm to detect its
corrosion state. First, the grounding grid forward problem model is established to solve the boundary voltage, and then the total variation
(TV) regularization algorithm is used to solve the inverse problem to obtain a preliminary grounding grid conductivity distribution image.
Then, the conditional generative adversarial network algorithm is used to perform secondary imaging on the image obtained by the TV
method. The generator is a U-Net structure that introduces the convolutional block attention module. The discriminator is a PatchGAN
convolutional structure. This method was applied to the detection of grounding grid corrosion status. The reconstructed image structure
similarity result was 0. 907 8, the peak signal-to-noise ratio was 16. 935 6, the corrosion position judgment accuracy was 96.35% , and
the corrosion degree judgment error was 8. 61%. The results show that this method effectively improves the ill-conditioned problem in
solving the inverse problem, improves the quality of grounding grid corrosion imaging, and improves the accuracy of grounding grid
corrosion detection.
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Fig. 1 Principle diagram of ground grid impedance tomography
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Fig.2 Grounding grid model segmentation diagram
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Fig.3 Grounding grid simulation diagram
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Table 1 Imaging I, of each numerical algorithm

Bk RS 1 AL 2 B 3
BP 0.789 1 0.541 2 0.451 9
Landweber 0.764 8 0.734 6 0.774 9
Tikhonov 0.864 4 0.819 7 0.831 4
NOSER 0.865 6 0.901 6 0.884 8
TV 0.879 5 0.921 2 0.901 3
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Fig. 14  Corrosion severity comparison diagram
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Table 2 A and R of different models in one imaging

el R A/ % WE R/ %
23 (gl 98. 8 5.8
3x3(FRF ) 97.1 6.4
2x3 (RUE ) 93.5 8.1
3x3 (AU ) 90. 3 10.3
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Fig. 16 Secondary imaging results at different 8 -values
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Fig. 17 Quantitative metrics at different 8 -values
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Table 3 Evaluation metrics for imaging algorithms

; AT (2x3) i (3x3)
RS
S gsim P Ssim P
TV-AE 0.751 2 11.094 6 0.721 6 10. 347 4
TV-VAE 0.788 4 11.691 0 0.754 3 10.513 2
TV-UNet 0.8321 13.2430 0.8146 11.312 9
TV-AAE 0.847 7 14.9713 0.834 1 12.480 3
TV-CGAN 0.911 2 17.237 9 0.904 5 16.633 2
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Table 4 Accuracy and error analysis of imaging algorithms

(%)
Ak R A ®%ER
TV-AE 70. 16 35.13
TV-VAE 76. 61 30. 16
TV-UNet 83.94 22.84
TV-AAE 85.33 18. 46
TV-CGAN 96. 35 8. 61
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Fig. 18 Comparative imaging results from different algorithms
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Table 5 Table of evaluation indicators

for different algorithms

i R (2x3) : PRI (3%3)
S P S P
CNN 0.8583 14.4859 0.8132 12.321 8
U-Net 0.8693 15.7788 0.8349 13.932 4
CBAM-UNet 0.9112 17.2379  0.904 5 16. 633 2
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Table 6 Accuracy and diagnostic errors

of different algorithms (%)
(=R7R iR PR
CNN 90. 22 17. 81
U-Net 94. 61 11. 56
CBAM-UNet 96. 35 8.61
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