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Research on improved automatic defect detection method of X-ray
injection parts under PIS-YOLO model

Lin Zihan Zhang Qiaofen Wang Guitang

(School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: To improve the accuracy of deep learning in X-ray injection molding workpiece defect detection and realize higher precision
nondestructive testing, an improved YOLOv8-seg internal defect segmentation model PIS-YOLO was proposed in this paper. Firstly, to
reduce the number of parameters and improve the feature fusion capability, a multi-scale feature fusion and channel number reduction
HG-Net module is designed in the backbone network to replace the traditional C2f module. The iRMB_EMA attentional fusion module is
further introduced to enhance the deep transmission, and the feature fusion is completed by PAN-FPN with simplified redundant
connections. Meanwhile, an additional output segmentation detection head is added to capture small defects, which improves the model’
s accurate recognition of small target defects and defect edges. On the self-made data set of injection molding industrial parts, HG-Net
module proposed in the backbone network section achieves a 22.03% reduction in computation under the same architecture compared
with C2f module. On this basis, the overall precision of the model combined with the iRMB_EMA attention fusion module and additional
output detection head is improved by 2. 9% and 5. 7%, respectively, compared with the benchmark model, and the model is lighter and
less complex.
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Table 1 Experimental configuration information
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Table 2 Comparative effects of five attention mechanisms

(=R7S Seg mAP@O0. 5/% Params/ ( x10°) JH5 3/ GFLOPs T/ fps
YOLOv8-seg 82.4 3.51 12.0 80.7
YOLOv8-seg+EMA 82.6 2.69 10.5 66. 1
YOLOv8-seg+CBAM 82.9 2.58 10.3 42.0
YOLOv8-seg+SE 82.0 2.52 10. 3 68. 8
YOLOv8-seg+CA 83.1 3.52 12. 1 52.7
YOLOv8-seg+iRMB_EMA 83.5 2.70 10.5 71. 4

MEZRSE RS  IRMB_EMA A H.F CBAM , 7 H4 i
A AEBRAEIAIE T Seg mAP@0. 5 HL15 0. 7% , il
JEHEES 29 fps, LT EMA, 7838 fin/b i 2500 A
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Table 3 Ablation results of the improved model

sl P/% R/ % Seg mAP@0.5/% WK/ fps A E/GFLOPs Params/ ( x10°)
YOLOv8-seg 86.3 76.7 82.4 80.7 12.0 3.51
YOLOv8-seg+HG-Net 84.3 74.8 81.0 71.9 12.2 3.26
YOLOv8-seg+iRMB_EMA 85.0 77. 4 83.5 71. 4 10.5 2.70
YOLOv8-seg+HG-Net +ffl 3~ 87.3 78.7 85.6 78.0 9.8 2.54
AL 89.4 78.9 86. 1 88.3 9.4 2.40
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Fig. 6 Comparison of average accuracy of defect detection of

different size objects before and after improvement

MAT45 , B0 SSD, YOLO Z 41145 ) F XUy Bt H Fr 6 I 5
2 (CH S L — FR A X I, B P RS S H
FF, L4 Faster R-CNN  Mask R-CNN 4§) . A< SCR A PIS-
YOLO 5 HoAth 3 98 A9 2R B RTOU B B H B A ) 34 3k 0t 47
XFLG, AR BIF HBE R RE . 7F X G498 TR id
REDUAE: 55 v | ST S5 43 RIS Y M RE 25 SR 3R 4 T
M 4 ATLOIMEL R, YOLO RN F L RINL T Mask R-
CNN, i 7E YOLO Z %1, YOLOv8n H %1 f) 14 fite 5y
i, 2t E— RS  PIS-YOLO fPEREIS 2 T i & 42
T, FE WA R Sy A B T Ee K,

x4 FRERBHIXTEL L

Table 4 Comparative experiments of different models

x| Segment mAP@0.5/% W% /fps Params/(x10°%)
YOLOv7-seg 81.4 23.6 11.93
YOLOv8n-seg 82.4 80.7 3.51
AL 86. 1 88.3 2.40
Mask R-CNN 80. 8 16.4 13.90
YOLACT 82.2 61.2 2.79

R T VAR R () S BRI T RE T, AR SCHE T AR 3
ol X 4% 5 el P 2 AR ARSI 45 2R L EAT X LE, Gl 7 s

FEXT S FLER A IEA TR, Mask R-CNN 76 70 & 15
FE 5 TH R R K YOLOVT A & 77 78 I & B0 42, i
YOLOvS JE IR 70 ) 25 By H B0 o 42 4G A% 4R R 1 1) [7)
M, TSRS ET S5 v TR LG A AL FE AL BN RSH E br i
FEIAE AR BN RO AN Btk S5 R i x5
B 43 E4T- 55 79 YOLOv8-seg, X /1N B A5 B A I 55 SR Z AR T
FIPIA , (E MBI 12 G ARG T SR AN o K i 7
A B HER AN 32 1 PIS-YOLO PR L0 £ 5 i 40 15 15 8,
DA I 22 ROBEFRRAE 1 B8 -l A5, ol 45 55 20 1 S o e 00 285
BARTLL AR N b, Mok 4% PIS-YOLO HA7 #4f
vz AetE



5 8 3]

B PIS-YOLO #RES TR Y XS24 SR BB A I 7 38 5% - 143

(a) Mask R-CNN

(b) YOLOV7

—

(¢) YOLOv8(Base)

K7 BRRSCR XL

Fig. 7 Comparison of model effects
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