
第 39 卷　 第 8 期

·136　　 ·
电子测量与仪器学报

JOURNAL
 

OF
 

ELECTRONIC
 

MEASUREMENT
 

AND
 

INSTRUMENTATION
Vol. 39　 No. 8

2025 年 8 月

收稿日期:2024-12-02　 　 Received
 

Date: 2024-12-02
∗基金项目:国家自然科学基金( 61705045)、2023 年佛山市促进高校科技成果服务产业发展扶持项目( 2023DZXX02) 资助、校企联合项目

(25HK0104,24HK0610,21HK0095)资助

DOI:
 

10. 13382 / j. jemi. B2408002

新型 PIS-YOLO 模型下的 X 射线注塑缺陷
检测方法研究∗
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摘　 要:为了提高深度学习在 X 射线注塑工件缺陷检测中的准确性,实现更高精度的无损检测,提出了一种改进的 YOLOv8-seg
注塑件内部缺陷实例分割模型 PIS-YOLO。 首先为了减少参数量并提高特征融合能力,在主干网络中设计了一个多尺度特征融

合与通道数减小的 HG-Net 模块,取代传统 C2f 模块;进一步引入倒置残差移动块融合高效多尺度注意力( iRMB_EMA)模块增

强了深层传递,经由简化冗余连接的路径聚合网络-特征金字塔网络(PAN-FPN)完成特征融合。 同时增加一个额外的输出分割

检测头捕捉细小缺陷,提高了模型对小目标缺陷及缺陷边缘的精确识别。 在注塑工业零件自制数据集上,主干网络部分提出的

HG-Net 模块对比 C2f 模块实现了同架构下计算量减小 22. 03%,在此基础上,结合 iRMB_EMA 注意力融合模块与额外输出检测

头设计的模型整体的准确率相较于基准模型分别提升了 2. 9%和 5. 7%,且模型更轻量,计算复杂度更低。
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Abstract:
 

To
 

improve
 

the
 

accuracy
 

of
 

deep
 

learning
 

in
 

X-ray
 

injection
 

molding
 

workpiece
 

defect
 

detection
 

and
 

realize
 

higher
 

precision
 

nondestructive
 

testing,
 

an
 

improved
 

YOLOv8-seg
 

internal
 

defect
 

segmentation
 

model
 

PIS-YOLO
 

was
 

proposed
 

in
 

this
 

paper.
 

Firstly,
 

to
 

reduce
 

the
 

number
 

of
 

parameters
 

and
 

improve
 

the
 

feature
 

fusion
 

capability,
 

a
 

multi-scale
 

feature
 

fusion
 

and
 

channel
 

number
 

reduction
 

HG-Net
 

module
 

is
 

designed
 

in
 

the
 

backbone
 

network
 

to
 

replace
 

the
 

traditional
 

C2f
 

module.
 

The
 

iRMB_EMA
 

attentional
 

fusion
 

module
 

is
 

further
 

introduced
 

to
 

enhance
 

the
 

deep
 

transmission,
 

and
 

the
 

feature
 

fusion
 

is
 

completed
 

by
 

PAN-FPN
 

with
 

simplified
 

redundant
 

connections.
 

Meanwhile,
 

an
 

additional
 

output
 

segmentation
 

detection
 

head
 

is
 

added
 

to
 

capture
 

small
 

defects,
 

which
 

improves
 

the
 

model’
s

 

accurate
 

recognition
 

of
 

small
 

target
 

defects
 

and
 

defect
 

edges.
 

On
 

the
 

self-made
 

data
 

set
 

of
 

injection
 

molding
 

industrial
 

parts,
 

HG-Net
 

module
 

proposed
 

in
 

the
 

backbone
 

network
 

section
 

achieves
 

a
 

22. 03%
 

reduction
 

in
 

computation
 

under
 

the
 

same
 

architecture
 

compared
 

with
 

C2f
 

module.
 

On
 

this
 

basis,
 

the
 

overall
 

precision
 

of
 

the
 

model
 

combined
 

with
 

the
 

iRMB_EMA
 

attention
 

fusion
 

module
 

and
 

additional
 

output
 

detection
 

head
 

is
 

improved
 

by
 

2. 9%
 

and
 

5. 7%,
 

respectively,
 

compared
 

with
 

the
 

benchmark
 

model,
 

and
 

the
 

model
 

is
 

lighter
 

and
 

less
 

complex.
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0　 引　 言

　 　 在现代工业制造中,X 射线缺陷检测技术已成为保

证产品质量和安全性的重要手段。 由于 X 射线能够穿透

材料并提供高分辨率的内部结构信息,该技术被广泛应

用于金属铸件、电子元件及复合材料的无损检测( NDT),
如在自动化集成电路封装缺陷检测系统中用来提高无损
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检测技术的检测精度和检测效率[1-3] ,在航空航天板壳结

构等复合材料无损检测应用场景对其内部损伤与缺陷进

行有效的无损检测与评价[4-5] 等。
注塑工业零件作为制造业的关键支撑领域,在全球

工业体系中占据着举足轻重的地位,随着材料科学与智

能制造技术的不断进步,对注塑工业零件生产的智能化、
精细化要求日益提升。 注塑零件的质量检测作为确保产

品质量与生产效率的重要环节,吸引了众多学者关注。
尽管基于机器视觉和深度学习的目标检测技术已被广泛

研究和应用,但在注塑产品领域的应用仍相对有限。 针

对注塑件缺陷特征简单、类型单一的特点,采用基于机器

视觉的方法实现对缺陷的自动检测,以满足实际检测需

求。 王亓才等[6] 基于图像处理技术,结合自动控制与视

觉算法,首次构建并实现了集成光学组件、机械结构、电
子设计与检测算法于一体的注塑产品杂质与焦料缺陷检

测系统。 为应对注塑制品图像中常见的光照分布不均问

题,杜娟等[7] 提出了一种基于行像素灰度校正的图像增

强算法,并借助二次定位的阈值分割技术,对柱形工件中

的异常区域进行了精准识别与分割。 Liu 等[8] 针对注塑

产品多样性、小尺寸和复杂背景的挑战,提出了一种注塑

产品缺陷检测模型 IMP-DETR,适合在实际场景中应用。
Hu 等[9] 创新性地升级了传统的 VGG16 网络,以便对不

合格的注塑部件进行进一步分类,改进的 VGG16 网络的

分类准确率达到 96. 67%,优于传统网络的 53. 33%。
近年来,基于深度学习的图像处理技术发展迅速,广

泛应用于计算机视觉各个领域。 然而,由于注塑件缺陷

在类型和形态上的多样性,给自动化检测技术带来了更

高的挑战。 卷积神经网络( convolutional
 

neural
 

network,
CNN)作为深度学习的重要模型,已广泛应用于图像识

别、目标检测及分割等任务[10] 。 当前主流的目标检测方

法主要分为双阶段检测模型和单阶段检测模型两类。 前

者包括如 SSD[11-12] 、Faster-RCNN[13-14] 等,具备较高的检

测精度;而后者以 YOLO 系列算法为代表[15-17] ,在实际应

用中仍最常用。
虽然现有方法在推进注塑工业缺陷检测领域从传统

人工转向机器智能方面取得了进展,但大多数方法仍然

采用目标检测来捕捉缺陷,且精度一般。 为了应对未来

的需求,注塑工业缺陷检测任务需要在目标检测基础上

引入分割任务,以更全面地分析注塑工业缺陷情况。 除

了分析缺陷数量外,还需要考虑缺陷面积、占比等更丰富

的信息。 因此,针对注塑工业缺陷检测的实例分割任务

研究成为该领域的趋势方向。
因此,基于实例分割任务的特性,论文创新性地提出

一种新型的 PIS-YOLO ( precise
 

instance
 

segmentation
 

for
 

YOLO)的缺陷检测模型,以模型更加轻量化、解决传统模

型在缺陷检测任务中精度低为出发点,从而实现更快速、

高效、更适合实例分割检测任务的目标。

1　 PIS-YOLO 实例分割模型优化设计

　 　 本文在 YOLOv8 模型的基础上进行改进的 PIS-
YOLO 实例分割模型优化设计,并将其应用到注塑件内

部缺陷检测中。 首先通过引入轻量化的 HG-Net 模块替

代 YOLOv8 中的 C2f 结构,从而有效降低模型复杂度并

提升检测速度。 随后,在特征融合阶段引入倒置残差移

动块融合高效多尺度注意力( iRMB_EMA)模块,以增强

模型对缺陷特征的提取能力,从而提升检测精度。 最后,
对检测头进行优化设计,采用更少的通道数和卷积层设

计解耦头,以进一步提高检测精度并减少模型的计算

开销。
1. 1　 主干网络的 HG-Net 模块设计

　 　 本文提出的 PIS-YOLO 模型的 Backbone 主干层 HG-
Net 由 Conv、HG-Block 和 SPPF 组成,Conv 在处理过程中

逐级减小特征图的空间分辨率,同时提取不同层级的语

义信息,有助于模型感知多尺度的目标特征;HG-Block
通过部分跨阶段连接和残差结构,有效减少计算量和参

数规模,同时提升特征表达能力;SPPF 通过多尺度池化

操作,增强网络的多尺度特征表达能力,更好地应对不同

大小的目标物体。
HG-Net 模块的整体结构如图 1(a)所示。 HG-Net 是

一种结合了多层次、多尺度特征提取与增强的神经网络

架构,其核心在于 HG-Block。 在主干网络的优化设计

中,主要利用通道数减少的思想创新性地对 HG-Net 的

HG-Block 模块进行了改进,HG-Block 模块的整体结构如

图 1(b) 所示。 在模块特征提取过程中,通过堆叠多个

3×3 卷积层来构建丰富的特征图,并利用不同尺度的卷

积操作(如 3×3、5×5、7×7) 来捕获图像的多样化特征。
这些多尺度特征图随后被融合成一个大尺寸的特征图,
并通过 1×1 卷积层进行通道整合或降维。 为了进一步提

升特 征 表 示 能 力, 引 入 了 轻 量 级 通 道 注 意 力 模

块(enhanced
 

squeeze
 

excitation,ESE) 来增强特定通道的

特征响应。 最终,通过残差连接将 ESE 模块的输出与初

始输入特征图相加,以缓解梯度消失问题并促进更好的

训练效果,通过部分卷积和跨阶段连接,HG-Block 模块

减少冗余计算,同时增强特征表示的能力,这对于轻量化

模型特别重要,能够在保持高精度的同时显著降低计算

量和参数量。
与 C2f 模块先通过卷积变换通道维度、再通过 Split

方式保留部分特征参与后续处理的机制不同,HG-Block
在中间阶段的通道数量与最终输出一致,无需执行额外

的通道调整操作。 HG-Block 通过在增加堆叠层数的同

时,将大量特征信息压缩至较少的维度,从而在不降低模
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图 1　 HG-Net 模块结构和 HG-Block 模块结构

Fig. 1　 HG-Net
 

module
 

structure
 

and
 

HG-Block
 

module
 

structure

型性能的前提下有效减轻了计算复杂度。 相比于 C2f 模
块多次调用普通卷积操作,HG-Block 在整个过程中仅使

用一次普通卷积,并且充分的多维连接使得特征提取能

力得以有效维持。 因此,HG-Block 不仅在特征提取方面

具备更高效率,还在边缘设备上拥有更好的计算性能。
在 PIS-YOLO 网络结构中, HG-Net 通过逐级堆叠

HG-Block,结合全局平均池化和全连接层,实现了对输入

数据的精确分类或回归任务,充分展示了其在处理复杂

图像数据时的强大能力,这对于快速准确的对象识别至

　 　 　

关重要。
1. 2　 注意力机制 iRMB_EMA 模块设计

　 　 凭借结构灵活、易于集成以及良好的性能表现,注意

力机制在众多先进的网络架构中得到了广泛应用。 如通

道注意力[18] ( squeeze-and-excitation, SE)、 轻量级注意

力[19]( spatial
 

attention, SA)、 坐标注意力[20] ( coordinate
 

attention,CA), 以及多头自注意力[21] ( multi-head
 

self-
attention,MHSA),同时,融合空间注意力和通道注意力的

复合机制( convolutional
 

block
 

attention
 

module,CBAM)等

方法也引起了研究者的持续关注与深入探索。
虽然上述注意力机制在引导网络关注关键特征方面

表现出色,但 SE 仅针对通道注意力,未能兼顾空间注意

力。 而像 BAM 与 CBAM 这类结构虽然融合了通道与空

间的感知能力,但它们未能有效整合多尺度的空间信息,
限制了特征表达的丰富性,并且在处理远距离依赖关系

方面存在不足,而这对于实例分割任务至关重要。 为此,
本文设计了一种 EMA 模块,在保证较少模型参数量的同

时,增强了模型的高通道分辨率和高空间分辨率。
EMA 模块通过构建空间与通道维度之间的信息交

互关系,有效增强了图像特征的表达能力。 其核心在于

对整体与局部特征间的关联程度进行精准建模,从而实

现对远距离与近邻区域依赖关系的同时感知,其结构如

图 2 所示。

图 2　 EMA 模块结构

Fig. 2　 EMA
 

module
 

structure
 

diagram

　 　 EMA 单元首先将输入张量 x ∈ RC×H×W 沿通路方向

划分为若干子集,从而便于捕捉多样的语义特征。 划分

方式可记为 x = [x0,x1, …,xG-1], 其中每个子张量

x i ∈ RC×H×W,且分组总数 G ≪ C。 为提取各子集的关注
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权重,EMA 构建了 3 个并行的分支模块,其中两个位于

1×1 卷积路径上,另一个则采用 3×3 卷积进行局部感知

建模。 在 1×1 路径中,采用了一种一维的全局平均池化

方法,分别沿水平与垂直进行投影编码,以增强通道内的

信息表达能力,该过程的具体计算如式(1)、(2)所示。

ZH
C(H) = 1

W ∑
0≤i≤W

xc(H,i) (1)

ZW
C(H) = 1

H ∑
0≤j≤H

xc( j,W) (2)

式中: C 表示输入通道数; H、W 分别表示输入特征的空

间维度; xc 表示第 c 通道的输入特征。
接着,将上述两个方向上的编码结果在垂直方向上

进行拼接(Concat),并应用相同的 1×1 卷积处理,且该卷

积操作保持原始通路数量不变。 卷积输出随后被拆分为

两个独立向量,并分别输入到两个 Sigmoid 激活单元中,
用以逼近二维卷积特征中的二项分布特性。 每一组内的

两个通路注意图通过逐元素乘积进行融合,从而实现两

条 1×1 支路间差异化的跨维度信息交互。 而后利用二维

全局平均操作对该路径输出的整体空间特征进行编码,
二维全局平均池化操作如式(3)所示。

ZC = 1
H × W∑

H

j
∑

W

i
xc( i,j) (3)

该计算旨在整合整幅图像的空间上下文信息,同时

捕捉长距离区域之间的依赖关系。 其中 C 为输入特征图

的通道数, H、W 分别表示输入特征的空间维度, xc( i,j)
表示第 c 通道在位置 ( i,j) 处的输入特征。

接下来,最小尺度路径的输出会先进行形状调整,具
体为将其转换为一个尺寸为 R1×C / / G

1 与 RC / / G×HW
1 的矩阵相

乘操作,以便后续进行特征融合。 在此基础上,利用一个

基于二维高斯图的 Softmax 非线性函数,来对前面的线性

映射结果进行更精细的拟合。 同时,对于包含 3×3 感受

野的分支,采用带权卷积的方式来捕获各通道间的局部

联系,从而提取更丰富的尺度层次信息。
通过矩阵点积计算,对各个并行分支的特征输出执

行逐元素乘法操作,得到第 1 个空间感知权重图,该图能

够有效整合当前阶段内的多尺度信息。 接着,在具备 3×
3 感受范围的支路中,借助二维全局平均池化方法,对整

体空间范围的特征进行编码处理。 同时,在激活融合操

作展开前,需将 1×1 卷积分支的输出调整为相应的维度,
即形状为 R1×C / / G

3 × RC / / G×HW
1 的矩阵格式。 通过上述操作,

可以构建出第 2 个空间感知图,其具备对空间信息的完

整保留能力。 最终,将每个组中的特征响应映射为两个

对应的注意权重集合,并通过归一化 Softmax 机制建模像

素之间的关系,以增强图像中各像素的全局上下文联系。
倒置残差移动块 ( inverted

 

residual
 

mobile
 

block,
iRMB) 将 卷 积 神 经 网 络 擅 长 的 局 域 特 征 捕 获 与

Transformer 在长距离依赖建模上的灵活性相结合,相较

于传统的卷积结构,该模块能够在较深层中更有效地融

合整体语义信息,同时保持模型的高效性与轻量化特征

表达能力。 改进后的 iRMB 结构如图 3 所示。

图 3　 iRMB_EMA 模块结构

Fig. 3　 iRMB_EMA
 

module
 

structure
 

diagram

1. 3　 轻量级解耦头设计

　 　 YOLOv8-seg 模型在解耦头部结构上分别捕捉目标

的位置信息与类别特征,由于回归与分类的任务侧重点

不同,采用独立分支进行特征学习有助于提升整体检测

精度。 但与此同时,该方法也带来了一定的额外计算开

销。 从卷积算子的执行原理来看,较大的卷积窗口虽然

有助于平滑特征图,但同时也显著增加了运算量。 因此,
预测阶段的主要计算压力集中在解耦头中的 3×3 卷积操

作上,尤其在特征维度和输入分辨率提升的情况下,推理

复杂度显著增加。 为了解决这一问题,提出了一种改进

后的轻量解耦头设计,采用更小的通道维度和更浅的卷

积结构来降低计算成本,如图 4 所示。

图 4　 原始解耦头(a)和改进后的解耦头(b)
Fig. 4　 Original

 

decoupling
 

head
 

(a)
 

and
improved

 

decoupling
 

head
 

(b)
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首先利用一次 1×1 的卷积操作将通道数减少至 64,
然后分别传递至独立的分类与回归分支进行特征处理。
对于生成掩码权重的分支,其结构设计与分类部分相似,
将原先连续两个 3×3 卷积替换为由 1×1 和 3×3 卷积组

成的组合方式,最后通过分类结构预测掩码相关系数。
该改进方法能够有效缓解分类与回归任务关注点不同所

带来的干扰,同时显著降低输出检测头的参数规模与计

算开销。
1. 4　 优化后的 PIS-YOLO 网络模型

　 　 综上,优化后的 PIS-YOLO 网络模型如图 5 所示,其
主要由主干特征提取网络、特征融合网络和实例分割网

络 3 个部分组成。 图像输入阶段,首先将注塑件内部缺

陷图调整为 640×640 分辨率,并划分为 3 个通道作为输

入。 如图 5(a)所示,主干网络部分首先使用一组基础卷

积 Conv 模块(卷积核大小为 k、步长为 s)对输入图像进

行一次二倍压缩,以减少计算开销。 随后,通过 5 组 HG-
Block 模块逐步提取缺陷区域在 4 种不同尺寸下的表征

特征;最终,采用 SPPF 模块对最小特征图进行多维度信

息整合。 在特征融合阶段(图 5( b)),借助类似于 PAN-
FPN 的结构,对 3 组中间层特征进行跨尺度整合,同时引

入 iRMB_EMA 注意力机制以增强关键缺陷区域的表达

能力。 如图 5( c)所示,在实例分割部分,采用解耦检测

头结构,以减少分类与定位损失之间的相互影响,从而提

高分割精度和稳定性。

图 5　 PIS-YOLO 结构

Fig. 5　 PIS-YOLO
 

structure
 

diagram

2　 数据集准备与试验评价

　 　 为了验证优化后的 PIS-YOLO 网络模型的有效性,
论文进一步将其应用在 X 射线注塑工件缺陷检测中。 论

文数据集由项目合作单位广东欧派克家居智能科技有限

公司提供,通过实际 DR 成像技术共收集注塑工件 X 射

线图像 550 张作为注塑件内部缺陷原始数据集,再通过 3
种数据增强方法随机缩放 ( random

 

resize) [22] 、图像融

合(Mixup) [23] 、随机拼图( Mosaic) [24] 获得图像共 1
 

770
张、包含缺陷样例 3

 

665 个。 其中含缺陷数据集含 I 级气

孔缺陷 752 张,II 级气孔缺陷 1
 

541 张,III 级气孔缺陷

874 张, IV 气孔级缺陷 497 张。 缺陷采用开源软件

labelImg 标记,获得 txt 格式标记文件。 对 1
 

770 张缺陷

数据集按照 7 ∶ 3 比例,随机分训练集、验证集各 1
 

239
张、531 张。

为评估本文所提出模型的性能表现,需搭建相应的

实验环境,该环境由硬件系统与软件系统两部分组成。
其中,硬件部分依托于实验室配备的深度学习工作站,具
备良好的并行处理能力。 相关的软硬件配置信息详如表

1 所示。
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表 1　 实验配置信息

Table
 

1　 Experimental
 

configuration
 

information
实验环境 版本型号

操作系统 Ubuntu18. 04(64
 

bits)
编程语言 Python

 

3. 9
CUDA 12. 1
Pytorch 2. 1. 0

编程软件 Pycharm
 

Community
显卡 GeForce

 

GTX
 

3080Ti
显存 16

 

G
处理器 (CPU)Intel

 

Core
 

i7-9700K
内存条 32G

 

DDR4
 

3200
 

MHz

　 　 论文采用召回率(recall,R)、精确率(precision,P)浮

点运算量(FLOPS)、帧数每秒(FPS)以及 Segment 平均精

度均值(mAP)来评价模型的识别精度和计算复杂度。
Segment

 

mAP @ 0. 5 表示当预测掩码和真实标注掩

码之间的交集超过 0. 5 时,每个类别的平均精度( AP),
其计算公式如式(4)所示。

mAP = 1
N ∑

N

i = 1
AP i (4)

精确率是指正确识别图像的比例,其计算公式如

式(5)所示。

P = TP
TP + FP

(5)

召回率表示正确识别阳性物体的比例,其计算公式

如(6)所示。

R = TP
TP + FN

(6)

式中:TP 为真正例,代表模型成功判断为目标类别的样

本数;FP 为假正例,表示模型误将非目标类别样本判定

为目标类别的数量;FN 为假负例,则是指模型未能识别

出的实际属于目标类别的样本数量。 AP 是根据精确率-
召回率曲线下的积分值所得,其值越高,说明检测效果越

好。 mAP 是所有类别的 AP 的均值,用于综合评估模型

在整个数据集上的检测能力。
浮点计算总量是衡量网络计算开销和复杂度的重要

指标。

3　 实验分析

3. 1　 多种注意力机制对比实验

　 　 为验证构建 iRMB_EMA 注意力机制的改进算法对

注塑工件内部气孔缺陷的检测效果,本文选取了对于缺

陷检测有较好效果的 5 种注意力机制进行比较,包括

EMA、CBAM、SE 和 CA,使用这 5 种注意力机制在自制数

据集上进行性能对比实验,实验环境和参数设置均保持

一致,对比结果如表 2 所示。

表 2　 5 种注意力机制对比效果

Table
 

2　 Comparative
 

effects
 

of
 

five
 

attention
 

mechanisms
算法 Seg

 

mAP@ 0. 5 / % Params / ( ×106 ) 计算量 / GFLOPs 帧率 / fps
YOLOv8-seg 82. 4 3. 51 12. 0 80. 7

YOLOv8-seg+EMA 82. 6 2. 69 10. 5 66. 1
YOLOv8-seg+CBAM 82. 9 2. 58 10. 3 42. 0

YOLOv8-seg+SE 82. 0 2. 52 10. 3 68. 8
YOLOv8-seg+CA 83. 1 3. 52 12. 1 52. 7

YOLOv8-seg+iRMB_EMA 83. 5 2. 70 10. 5 71. 4

　 　 从实验结果来看,iRMB_EMA 相比于 CBAM,在增加

少量参数量的条件下,Seg
 

mAP@ 0. 5 提高 0. 7%,检测速

度提高 29
 

fps。 相比于 EMA,在增加少量参数量的代价

下,Seg
 

mAP@ 0. 5 提升 1. 1%,检测速度提高 5
 

fps。 表明

构建的注意力机制 iRMB_EMA 有更好的检测精度和实

时检测性能,证明了 iRMB_EMA 模块的有效性。

3. 2　 改进点消融实验

　 　 为验证本文所提出的每个改进模块的有效性,设计

了 5 组消融实验,使用相同的实验环境和数据集进行训

练和测试, 以确保可比性。 现对比每个添加模块对

YOLOv8-seg 性能的影响,实验结果如表 3 所示。

表 3　 改进模型消融实验结果
Table

 

3　 Ablation
 

results
 

of
 

the
 

improved
 

model
模型 P / % R / % Seg

 

mAP@ 0. 5 / % 帧率 / fps 计算量 / GFLOPs Params / ( ×106 )
YOLOv8-seg 86. 3 76. 7 82. 4 80. 7 12. 0 3. 51

YOLOv8-seg+HG-Net 84. 3 74. 8 81. 0 71. 9 12. 2 3. 26
YOLOv8-seg+iRMB_EMA 85. 0 77. 4 83. 5 71. 4 10. 5 2. 70

YOLOv8-seg+HG-Net+解耦检测头 87. 3 78. 7 85. 6 78. 0 9. 8 2. 54
本文 89. 4 78. 9 86. 1 88. 3 9. 4 2. 40
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　 　 由表 3 可知,原始 YOLOv8-seg 模型的准确率、召回

率分别为 86. 3%和 76. 7%,体现实例分割精度的 Segment
 

mAP@ 0. 5 可达到 82. 4%,帧数为 80. 7
 

fps,浮点运算量

为 12. 0
 

GFLOPs,模型参数量为 3. 51×106;添加轻量级主

干网络 HG-Net, 虽然模型的准确率、 召回率、 Segment
 

mAP@ 0. 5 等指标都有所下降,但可显著降低模型的权

重,降低了模型 7. 2%的参数量,其原因在于 HG-Net 可能

减少了深层网络结构的通道数或者使用了更少的卷积

核,导致模型捕获的特征信息量下降,使检测能力有所削

弱,但是参数量的减少意味着模型在嵌入式设备或计算

资源有限的环境下更具优势,能够显著降低计算资源消

耗。 此外,在模型的特征融合部分加入 iRMB_EMA 注意

力机制后,模型的识别准确率提升 0. 8%、召回率提升了

3. 5%、Segment
 

mAP @ 0. 5 提升 3. 1%、帧数每秒降低了

0. 5
 

fps,计算量降低了 13. 9%,表明在模型中引入 iRMB_
EMA 注意力机制后,在保证低参数量的同时保证模型的

高通道分辨率和高空间分辨率,进而增强模型对关键特

征的提取能力,使模型在对重要信息、多尺度目标的检测

能力上得到大幅提升。 最后,加上对解耦头的改进,结果

表明模型的识别准确率提升 2. 7%、召回率提升了 1. 7%、
Segment

 

mAP@ 0. 5 提升 2. 5%,帧率提升 9. 3%、计算量

降低 6. 7%、参数量降低 5. 9%,可见对模型解耦头的改

进,可有效降低模型头部的参数量,减少参数冗余,提升

类别和边界框回归的协同能力,从而降低模型浮点运算

量,图片处理速度大幅提升。
最后,相对于原始 YOLOv8-seg 模型,PIS-YOLO 在各

项指标上的提升分别为准确率提升 3. 6%、召回率提升

2. 9%、 Segment
 

mAP @ 0. 5 提 升 4. 5%、 帧 率 提 升 了

9. 4%、浮点运算量降低 21. 7%、参数量降低 31. 6%。 由

此可得出,通过对 YOLOv8-seg 模型的改进,各个改进模

块对模型各项评价指标的提升都起到了一定的作用,改
进之后的 YOLOv8-seg 不仅可实时完成对目标的分割,在
多尺度目标识别上效果显著,达到了轻量级网络设计

要求。
为了验证改进算法 PIS-YOLO 对于不同大小目标气

孔缺陷的检测效果,对比原始 YOLOv8-seg 和 PIS-YOLO
在注塑工件内部的各类型缺陷检测上的实例分割任务平

均精度,对比结果如图 6 所示。
由图 6 可知,PIS-YOLO 在各个不同大小目标缺陷中

均有良好的检测精度,其中 I 级气孔的检测平均精度提

高 2. 6%,II 级气孔的检测平均精度提高 1. 2%,III 级气

孔的检测平均精度提高 8. 3%,IV 级气孔的检测平均精

度提高 3. 1%。
3. 3　 对比实验

　 　 依据实现流程的差异,缺陷检测算法可被划分为单

阶段目标检测算法(仅需单次特征提取便能完成目标检

图 6　 改进前后不同大小目标缺陷检测的平均精度对比

Fig. 6　 Comparison
 

of
 

average
 

accuracy
 

of
 

defect
 

detection
 

of
different

 

size
 

objects
 

before
 

and
 

after
 

improvement

测任务,例如 SSD、YOLO 系列等) 和双阶段目标检测算

法(首先生成一系列候选区域框,再判定其中是否含有目

标,比如 Faster
 

R-CNN、Mask
 

R-CNN 等)。 本文采用 PIS-
YOLO 与其他主流的单阶段和双阶段目标检测算法进行

对比,以此来验证其模型效能。 在 X 射线注塑工件缺陷

检测任务中,典型实例分割模型的性能结果如表 4 所示。
从表 4 可以观察到,YOLO 系列算法的表现优于 Mask

 

R-
CNN,而在 YOLO 系列中,YOLOv8n 模型的性能最为出

色。 经过进一步优化后,PIS-YOLO 的性能得到了显著提

升,在准确性和实时性方面均达到了最优水平。

表 4　 不同模型的对比实验

Table
 

4　 Comparative
 

experiments
 

of
 

different
 

models
模型 Segment

 

mAP@ 0. 5 / % 帧率 / fps Params / ( ×106 )
YOLOv7-seg 81. 4 23. 6 11. 93

YOLOv8n-seg 82. 4 80. 7 3. 51
本文 86. 1 88. 3 2. 40

Mask
 

R-CNN 80. 8 16. 4 13. 90
YOLACT 82. 2 61. 2 2. 79

　 　 为了评估模型的实际应用能力,本文使用上述的 3
种网络与改进网络在检测结果上进行对比,如图 7 所示。

在对气孔缺陷进行识别时,Mask
 

R-CNN 在预测置信

度方 面 整 体 偏 低; YOLOv7 模 型 存 在 漏 检 现 象; 而

YOLOv8 原始模型则容易出现重复检测及错误识别的问

题。 在实例分割任务中,原始模型在处理小尺寸目标时

表现欠佳,整体分割效果不及改进后的模型。 而针对实

例分割任务的 YOLOv8-seg,对小目标的检测效果要优于

前两者,但从缺陷边缘部位的检测效果和分割精度上看,
拥有高分辨率分支的 PIS-YOLO 因其更丰富的细节信息

以及多尺度特征的更好融合,使得最终的实际检测结果

要优于以上模型。 因此,改进网络 PIS-YOLO 具有较好

的泛化性。
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图 7　 模型效果对比

Fig. 7　 Comparison
 

of
 

model
 

effects

4　 结　 论

　 　 为了提高注塑工件内部气孔缺陷的检测精度和速

度,本文提出了一种针对小目标工业场景 X 射线注塑工

件缺陷检测的轻量化缺陷检测网络 PIS-YOLO,主要通过

3 个创新模块来提升性能与效率。 为了有效减少模型的

参数量和计算量,增强模型的特征提取和表达能力,结合

部分卷积操作设计了 HG-Net 模块。 其次,采用共享卷积

层并结合 iRMB_EMA 注意力机制,优化特征的上下文处

理,提升了模型的目标定位和分割性能。 最后,采用特征

通道数减少的解耦检测头,有效减少了模型的参数量和

计算复杂度,提高了模型对尺度变化的特征性。 实验结

果表明,PIS-YOLO 在自制数据集上的表现优越,模型泛

化能力强,参数量仅为 2. 40×106,计算量为 9. 4
 

GFLOPs,
权重大小为 4. 9

 

MB,准确率为 89. 4%,体现实例分割精

度的 Segment
 

mAP@ 0. 5 可达到 86. 1%,显著优于同类算

法,PIS-YOLO 模型不仅提升了检测精度,也在保持高效

性的同时,大幅度降低了资源消耗,展示了在工业应用中

的广泛潜力和实际应用价值。
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