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摘　 要:以 YOLOv5 为基准模型,针对电子元件在电路板上检测容易出现漏检、精度较低的问题。 通过使用卷积块注意力模块

(convolutional
 

block
 

attention
 

module,
 

CBAM)在进行特征提取过程中提升检测精度,改进边界回归损失函数的方法来改善模型

在检测中出现的漏检问题。 首先,利用卷积层提取元件的特征信息;其次,在路径聚合网络( path
 

aggregation
 

network,
 

PANet)中

引入了 CBAM 模块,既丰富了元件特征信息,又改善了模型精度较低的问题;最后,通过多尺度预测和自适应的锚框来实现对

不同尺度元件的准确检测。 实验结果表明,改进后的 CCM-YOLO 算法在自制的数据集上的均值平均精度( mean
 

average
 

precision,
 

mAP)值达到 96. 8%,它的漏检率达到 4. 5%,相较于 YOLOv5 网络均值平均精度的 88. 8%,提高了 8. 3%的数值,在漏

检率上由原基准模型的 13. 7%降低了 9. 2%。 因此,该算法有效提高了检测精度,并显著减少了漏检,为元件检测提供了一种有

效的检测方案。
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Abstract:
 

In
 

this
 

paper,
 

YOLOv5
 

is
 

used
 

as
 

a
 

benchmark
 

model
 

to
 

address
 

the
 

problem
 

of
 

easy
 

leakage
 

and
 

low
 

accuracy
 

of
 

electronic
 

components
 

detection
 

on
 

circuit
 

boards.
 

The
 

leakage
 

problem
 

of
 

the
 

model
 

in
 

detection
 

is
 

improved
 

by
 

using
 

the
 

convolutional
 

block
 

attention
 

module
 

(CBAM)
 

to
 

enhance
 

the
 

detection
 

accuracy
 

in
 

the
 

process
 

of
 

feature
 

extraction
 

and
 

improving
 

the
 

boundary
 

regression
 

loss
 

function.
 

Firstly,
 

the
 

feature
 

information
 

of
 

components
 

is
 

extracted
 

using
 

convolutional
 

layers.
 

Secondly,
 

the
 

CBAM
 

module
 

is
 

introduced
 

into
 

the
 

path
 

aggregation
 

network
 

(PANet),
 

which
 

enriches
 

the
 

feature
 

information
 

of
 

components
 

and
 

improves
 

the
 

problem
 

of
 

lower
 

accuracy
 

of
 

the
 

model.
 

Finally,
 

accurate
 

detection
 

of
 

components
 

of
 

different
 

scales
 

is
 

achieved
 

by
 

multi-scale
 

prediction
 

and
 

adaptive
 

anchor
 

frames.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

improved
 

CCM-YOLO
 

algorithm
 

achieves
 

a
 

mean
 

average
 

precision
 

( mAP)
 

value
 

of
 

96. 8%
 

on
 

the
 

homemade
 

dataset,
 

and
 

it
 

achieves
 

a
 

leakage
 

detection
 

rate
 

of
 

4. 5%,
 

which
 

is
 

an
 

improvement
 

of
 

8. 3%
 

value
 

compared
 

to
 

the
 

88. 8%
 

of
 

the
 

mean
 

average
 

precision
 

of
 

the
 

YOLOv5
 

network,
 

and
 

the
 

leakage
 

detection
 

rate
 

is
 

reduced
 

from
 

13. 7%
 

of
 

the
 

original
 

baseline
 

model
 

is
 

reduced
 

by
 

9. 2%.
 

Therefore,
 

the
 

algorithm
 

in
 

this
 

paper
 

effectively
 

improves
 

the
 

detection
 

accuracy
 

and
 

significantly
 

reduces
 

the
 

leakage
 

detection,
 

providing
 

an
 

effective
 

detection
 

scheme
 

for
 

component
 

detection.
Keywords:object
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deep
 

learning;
 

electronic
 

components;
 

separable
 

convolution;
 

YOLOv5
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0　 引　 言

　 　 在当今信息爆炸时代,电子产品已成为人类生活不

可或缺的组成部分。 这些精密设备由数以万计的微型电

子元件构成,从微型贴片元件到电路板的组装,均需通过

精密焊接工艺实现电气连接。 然而,在微米级焊接过程

中极易出现焊点虚焊、元件位移等问题,特别是在震动或

热应力条件下,电路板上的微型元器件易发生脱落现象,
导致产品合格率下降,显著增加人工返修成本与生产损

耗。 而在工业自动化领域,目标检测技术是实现电路板

元件高效识别的关键环节。 随着电子设备微型化与集成

化的发展,电路板元件呈现高密度分布特性,导致检测过

程中易出现遮挡、误检及漏检问题。 因此,迫切需要一种

高精度、低漏检率的检测方法来提高电路板的自动化生

产水平。
对于元件检测早期的传统方法,绝大多数企业采用

人工目视检测,但准确率和效率极大地依赖检验人员的

工作状态和经验水平,长时间工作会对视力有损伤[1] ,且
这种持续负面的工作状态使元件检测的漏检率和误检率

大幅提高。 目前,机器视觉是元件识别的主流技术,边缘

检测[2] 等目标检测算法虽然模型简单,但对噪声信息敏

感、检测精度低,对于高分辨率图像需要大量计算资源,
难以满足元件检测的需求。 随着深度学习技术的发展和

计算机算力的提升,卷积神经网络( CNN)开始应用于目

标检测领域,这在一定程度上提高了目标检测的精度和

性能。 主流的深度学习目标检测算法又分为两大类。 第

1 类是以 Fast
 

R-CNN[3] 和 Faster
 

R-CNN[4] 为代表的基于

两阶段的目标检测算法,该类算法还有 R-CNN[5] 、Mask
 

R-CNN[6] 、R-FCN[7] 、Detectron2 等;第 2 类是基于一阶段

的目 标 检 测 算 法, 这 类 算 法 有 SSD[8] 、 RetinaNet[9] 、
YOLO[10] 、 YOLOv2[11] 、 YOLOv3[12] 、 YOLOv4[13-14] 、
YOLOv5[15-16] 等。 但检测目标针对的是电路板上的元件,
其分布密集,因此要求检测算法能够拥有更高的检测

精度。
为了设计精度更高的目标检测算法,学者们对现有

算法进行了许多改进,如对传统 NMS 进行改进,2017 年,
Bodla 等[17] 提出了 Soft-NMS,相较传统 NMS 方法,能够将

重叠度较高的检测框筛选出来;2019 年,Liu 等[18] 提出了

Adaptive
 

NMS,它依据目标的密度动态调整抑制阈值,能
够更显著地减少了误检情况。 检测性能的持续优化必须

依托于损失函数的系统性创新,2017 年,Lin 等[19] 提出了

Focal
 

Loss,有效解决了训练过程中的类别不平衡问题;
2018 年, Wang 等[20] 提出了 Repulsion

 

Loss, 通过引入

Repulsion
 

Loss,检测模型能够减少因遮挡引起的误检和

漏检;同一年,Zhang 等[21] 提出了 AggLoss,它有助于减少

相互遮挡而产生的误检;2022 年,吴一全等[22] 提出了多

尺度融合、注意力机制等改进方法解决了工业场景下

PCB 缺陷检测的精度与适应性不足的问题;张志杰等[23]

提出了 ETS-Net 轻量化模型与优化策略,解决了电子元

器件类间区分度低、实时性差的问题。 总体来说,这些改

进都提高了检测算法的性能,但在元件检测任务中仍然

存在一些问题:1)传统检测算法的漏检率还可以进一步

降低;2)传统机器学习算法应用在元件检测的检测精度

较低。
为了有效解决电路板上元件的密集分布对元件检测

模型性能产生影响的问题, 本文以检测性能较好的

YOLOv5 作为基准模型进行进一步的研究和改进,设计

出一种新型元件检测算法,改进部分如下:1)在特征融合

网络中添加卷积注意力机制模块 ( convolutional
 

block
 

attention
 

module,
 

CBAM) [24] ,以此能有效地提取元件特

征信息,增加模型检测的精度;2)用改进的边界回归损失

函数替换原边界回归损失函数,能够有效降低模型的漏

检率。

1　 相关工作

1. 1　 YOLOv5 算法

　 　 YOLOv5
 

是 一 种 单 阶 段 目 标 检 测 算 法。 它 在

YOLOv4 的基础上进行了改进,相比 YOLOv4,它的检测

性能提高了。 YOLOv5 重新构建了传统的目标检测任

务,将其视为一个边界框的回归问题。 它接受目标图像

并将其作为输入特征,通过模型的输出层,能够输出目标

的边界框、类别和位置信息。 此外,YOLOv5 还能够实现

对目标的实时检测。 YOLOv5 结构如图 1 所示。
YOLOv5 的架构由 4 个主要环节构成:数据输入、核

心网络、 特征融合和目标检测。 相较于 YOLOv3 和

YOLOv4 在处理不同目标检测数据集时,其锚框的初始

化策略更为先进。 它将锚框计算逻辑直接集成在训练过

程中,能够自动为不同的数据集调整并确定最佳的锚框

参数。 这意味着,YOLOv5 无需像其前身那样,依赖额外

的程序来预先计算并确定最优的锚框值,从而提高了训

练的自动化程度和效率。
主干网络部分[25] ( backbone) 主要进行特征处理的

过程,采用 CSPDarkNet53[16] 网络去处理尺寸不同的特征

图。 它主要包含 CBS 卷积模块、C3 模块以及 SPPF 模

块,CBS 模块有 3 个部分构成,有卷积操作( Conv)、批标

准化层(BN)和激活函数层( SiLU)串联构成。 批标准化

层能防止梯度的消失。 而激活函数能一定程度防止网络

层数叠加后的梯度爆炸与消失。
处于 Backbone 和 头 部 ( head ) 中 间 部 分 的 颈

部(neck) 部分, 使用了特征金字塔网络-路径聚合网
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图 1　 YOLOv5 的算法框架

Fig. 1　 The
 

module
 

structure
 

of
 

YOLOv5

络(FPN-PAN) 结构,FPN 结构主要是自顶向下,不仅将

高层的语义信息传递下来,还能对其语义信息进行增强,
但它对定位信息没有传递。 为了弥补这一点,PAN 结构

就是对 FPN 的补充,通过自底向上将低层的强定位特征

向上传递,它们又被称之为双塔战术,添加它们的目的是

在这个地方进行多层次的特征合并。
Head 部分通过卷积操作完成目标检测的结果输出。

最新 版 的 YOLOv5 采 用 一 个 新 的 CIoU ( complete
 

intersection
 

over
 

union) [26] 损失函数,该损失函数考虑到

了边界框的损失,以解决边界框不重合问题。 还考虑到

进一步提高检测速度和精度,在原始边界框中间点距离

的基础上添加了长宽比的惩罚项,能够更好的将多余且

重复的框去掉,通过这种做法提准确率并能使得检测人

员更好的进行识别要检测的物品。
为了提高对元件图像目标的检测性能,解决模型漏

检、精 度 较 低 的 问 题, 根 据 元 件 检 测 模 型 特 点, 在

YOLOv5 模型的基础上进行改进。 改进分为两个方面:
首先,在特征融合网络中引入 CBAM 注意力机制模块,改
进模型的检测精度;其次,本文设计了一种新型边界回归

损失函数,帮助模型向准确度更高的方向靠近,提高模型

的收敛速度,并改善网络的漏检问题。 改进模型与基准

模型相比,检测精度得到提高,漏检问题得到改善。
1. 2　 CBAM 模块

　 　 CBAM 模块是一个专为卷积神经网络设计的注意力

机制组件。 它是一种混合域注意力机制,通过引入了通

道注意力模块( CAM) 和空间注意力模块( SAM),添加

CBAM 模块能让算法从图像的全局感受野中有差别地感

知图像信息,关注需要检测的区域,增强模型的检测精

度。 它结合最大池化和平均池化,弥补了仅使用平均池

化过程中缺失的特征信息,CBAM 模块结构如图 2 所示。
在 CBAM 模块中,输入特征会通过 CAM 和 SAM 两

个模块,这样可以使模块同时关注空间和通道信息,使网

络提取到更丰富、关键的高层特征。 CAM 会让模型注意

力关注特征通道,负责让输入特征图 T 并行进行最大池

化(max
 

pool)和平均池化( avg
 

pool),将得到的两个权重

矩阵经过 Shared
 

MLP 得到特征图 Mp(T) 和 Mg(T) ,最
后经过 Sigmoid 激活函数得到通道注意力权重 Mc(T),
则可以描述为:

Mc(T) = σW1[W0(T
c
max)] + W1[W0(T

c
avg)] (1)

式中:σ 为 Sigmoid 激活函数; Tc
max 是经过最大池化后生

成的特征图; Tc
avg 是经过平均池化后生成的特征图,然后

经过“卷积层-ReLU-卷积层” 组成的多层感知器( multi-
layer

 

perception,MLP) ReLU 是一种激活函数,具有负值

变 0,正值不变的单侧抑制性能,单侧抑制的作用能使神

经网络中部分神经元的输出为 0,这样能增加网络的稀

疏程度,在加快网络训练的同时,在一定程度上减少了过

拟合现象的产生。 其中 W0 ∈ RC / ( r ×C) 和 W1 ∈ RC×C / r 分别

为 MLP 中隐藏层和输出层的权重, W0 后面跟 ReLU 激活

函数,C 为通道数,r 为通道减速比。
SAM 会让模型注意力关注有意义的空间位置。

CAM 的输出会作为 SAM 的输入,SAM 对输入特征图进

行最大池化和平均池化,将得到的特征图进行拼接,再通

过一个卷积层和 Sigmoid 激活函数得到空间注意力权重

MS(T) ,其原理公式为:
MS(T) = σ[ f (7 ×7)(TC

max;T
C
avg)] (2)

2　 改进后的模型 CCM-YOLO
 

　 　 本 文 以 YOLOv5 为 基 准 模 型, 提 出 一 种 CCM-
YOLOv5 算法,改进后的算法结构如图 3 所示,首先在特

征融合网络( path
 

aggregation
 

network,
 

PANet) 中原有的

C3 模块上引入 CBAM 注意力机制模块,生成 CBAM_C3
结构, 将 其 命 名 为 CCM ( convolutional

 

block
 

attention
 

module
 

with
 

3
 

convolutions
 

module)模块,并替换原模型上

所有的 C3 模块。 CBAM 由通道注意力机制和空间注意

力机制两个核心组件构成:通道注意力机制通过建模通

道间的依赖关系,实现通道维度自适应特征重标定,能够

动态增强与目标元件相关的特征通道响应,抑制产生干

扰的通道,赋予模型在具有优秀的多尺度适应性同时拥

有良好的抗干扰能力;空间注意力机制通过空间维度的

信息聚合,生成空间注意力权重,实现突出目标区域,弱
化无关信息的功能,使模型更加适用于元件检测这一具

有精细几何特征的目标检测。 通过在 C3 模块中引入
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图 2　 CBAM 模块结构

Fig. 2　 The
 

module
 

structure
 

of
 

CBAM

图 3　 改进后的算法模型

Fig. 3　 The
 

improved
 

algorithm
 

mode
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CBAM 能更有效地提取多尺度电子元件的关键特征信

息,在保证计算效率的能够同时改善模型的检测性能这

样做能有效捕捉不同形状、不同尺寸的电子元器件更高

层、关键的特征信息,提高了特征提取的能力与目标检测

的准确性。 目标检测中比较新颖的损失函数有 CIoU、
DIoU[26] 等。 在对常规的检测任务中表现优异,但对于密

集电路板上的元器件的检测任务往往会出现很大的遗

漏,特别是对又小又密集的元件而言。 对于此,考虑到电

路板图像存在正负样本不平衡问题,采用基于 Focal
 

Loss
和 DIoU 两种损失函数的思想方法,在边界损失函数中引

入权重,降低简单样本带来的影响,增加困难样本的权

重,同时考虑预测框和真实框之间的距离和尺度。 将该

损失函数取名为 Focal-DIoU 损失函数。 经过实验证实,
在检测头部引入该损失函数这样做既能有效降低元件的

漏检率,也能显著提高模型的检测精度。
2. 1　 CCM 模块

　 　 由于元件安装密集,元件之间相互遮挡,一些元件的

特征信息较少,导致部分特征信息容易在深层网络中丢

失,造成模型检测精度较低等问题。 因此,在特征融合网

络 PANet 中原有的 C3 模块上引入 CBAM 注意力机制模

块,记作 CCM,能有效帮助模型对图片的重要位置和内

容进行关注,使元件信息更容易在网络中学习到,以此改

善模型的检测精度,原始的 C3 模块如图 4 所示,添加

CBAM 模块后的 C3 模块如图 5 所示。

图 4　 C3 模块结构

Fig. 4　 The
 

module
 

structure
 

of
 

C3

图 5　 CCM 模块结构

Fig. 5　 The
 

module
 

structure
 

of
 

CCM

2. 2　 Focal-DIoU 损失函数

　 　 YOLOv5 模 型 的 边 界 回 归 损 失 只 与 交 并

比(intersection
 

over
 

union,
 

IoU)有关,而交并比是一个衡

量预测边界框与真实边界框之间重叠程度的指标,通过

计算两者交集面积与并集面积的比值来评估预测框的定

位精度,即预测框与实际框的匹配程度。
IoU 是介于 0 ~ 1 之间的常数[25] 。 IoU 越大说明预测

与真实两个框的重合度越高,模型预测性能越好。 通常

会设定一个固定的 IoU 阈值,来判断预测框的正误性。
当 IoU 大于该阈值说明为预测正确的框,相反则是预测

错误的框[25] 。 为了降低漏检率、提高模型检测精度、提
高元件检测网络的收敛速度,本文改进算法的创新之一

是基于 Focal
 

Loss[19] 和 DIoU[26] 的思想方法,在边界回归

损失中引入权重,降低简单样本带来的影响,增加困难样

本的权重,同时考虑预测框与真实框的距离、尺度。 具体

如式(3)所示。

LIoU =
1 - IoU, IoU < α
RDIoU × W1 × (1 - IoU), IoU > α{ (3)

式中:预测框用字母 A 表示;真实框用 B 表示;IoU 为交

并比;如图 6 所示, RDIoU 为
ρ2(A,B)

c2 ,ρ2(A,B) 是中心点

坐标的欧氏距离,c 是最小外接矩形的对角线距离,为了

更清楚的展现真实框与预测框。 α 为衡量样本难易程度

的标准,通过实验得到衡量样本难度程度的标准值和权

重 W1, 因此, 在实验中设置 α 为 0. 45, W1 为 0. 5 ×
e -6×IoU×(1-α) ,消融实验的结果证实了该边界回归损失在

训练中能够很好地提升模型的元件检测精度、加快元件

检测网络收敛,也能降低元件检测网络的漏检率。

图 6　 RDIoU 计算示意图

Fig. 6　 RDIoU
 calculation

 

diagram

3　 实验结果与分析

3. 1　 数据集介绍

　 　 本文数据集为自建元器件数据集。 数据集包括电

容、二极管、发光二极管、电阻、晶体管、稳压二极管共 6
种类别,数据集一共 1

 

691 张图片,按照 8 ∶ 2 划分为训练

集和验证集。
3. 2　 实验环境搭建

　 　 本文实验环境配置及实验参数如表 1 所示。
3. 3　 评价指标

　 　 为了验证模型的可行性和有效性,通常采用不同性

能指标对该算法进行综合评估。 本文通过选取漏检

率(false
 

negative
 

rate,FNR)、精确率(precision)和平均准

确率均值(mean
 

average
 

precision,mAP)对元件检测结果

进行评价,其具体表达式描述如下。
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表 1　 实验环境及参数

Table
 

1　 Experimental
 

environment
 

and
 

parameters
配置名称 参数

系统 Windows
 

11
 

(64 位)
CPU AMD

 

Ryzen
 

7
 

4800H
 

with
 

Radeon
 

Graphics
GPU NVIDIA

 

GeForce
 

RTX
 

3050
深度学习框架 Pytorch

 

2. 4. 1+cuda
 

11. 8
Optimizer SGD

初始学习率 0. 01
momentum 0. 937

　 　 Precision 为:

Precision = TP
TP + FP

(4)

精确率代表分类模型预测出 True 样本的准确程度。
召回率(Recall)为:

Recall = TP
TP + FN

(5)

召回率代表分类模型识别出真实标签为 True 样本

的能力,召回率越高,漏检率越低。
FNR 为:
FNR = 1 - Recall (6)
漏检率代表模型正确预测负样本纯度的能力。
mAP 为:

mAP =
∑ N

i
AP i

N
(7)

平均准度表示多类别的平均准度的综合评价。
其中,Precision 为真正正确的占总体预测为正的比

例。 Recall 为真正正确的占所有实际为正的比例。 mAP
指的是所有类型的平均精度。
3. 4　 消融实验

 

　 　 为了验证 CCM-YOLO 网络模型各组件的有效性,本
文在相同参数条件下定量分析了 CCM 模块、Improved_
LIou 损失函数以及双向特征金字塔( BiFPN)结构对模型

漏检率和 mAP@ 0. 5 的影响,设置输入图像大小为 640×
640,训练轮数设置为 100 轮,mAP@ 0. 5 为在 IoU 阈值为

0. 5 时的 mAP。 其中“ √”表示添加相应模块,“ ×” 表示

不加模块和不加损失函数,实验结果如表 2 所示。 首先,
CCM 模块的引入增强了模型对元件的检测能力,其通过

优化特征提取机制使漏检率降低了 0. 8 个百分点,同时

将 mAP@ 0. 5 提升至 92. 6%,证明该模块能有效改善复

杂工业场景下的目标表征能力。 其次,结合 Improved _
LIou 损失函数后,模型性能得到进一步优化,mAP @ 0. 5
和 Recall 指标分别提升至 97. 1%和 95. 5%,较基准模型

实现了 8. 3%和 9. 2%的显著提升,这表明改进后的损失

函数通过优化边界框回归过程,有效增强了模型对元件

细节特征的捕捉能力。 而当引入 BiFPN 进行多尺度特征

融合时,模型在复杂背景下的精确率下降了 2. 3%。 通过

消融实验, 最终确定最优模型架构为 CCM 模块与

Improved_LIou 损失函数的组合方案。 其在保持 96. 8%
高精确率的同时,将漏检率控制在 4. 5%,较原始模型降

低 9. 2%。 综 上 所 述, 基 准 模 型 融 合 CCM 模 块 和

Improved_LIou 后,不仅有效解决了遮挡导致的漏检问

题,同时通过增强特征判别性抑制了复杂背景干扰,为工

业视觉检测任务提供了新的技术路径。

表 2　 消融实验结果

Table
 

2　 Ablation
 

results
YOLOv5 CCM Improved_LIou BiFPN Precision / % Recall / % mAP@ 0. 5 / %

√ × × × 87. 8 86. 3 88. 8
√ √ × × 92. 6 87. 1 92. 6
√ × √ × 90. 7 88. 0 93. 1
√ √ × √ 90. 3 87. 4 91. 8
√ √ √ × 96. 8 95. 5 97. 1

3. 5　 边界回归损失函数收敛曲线

　 　 图 7 为基准算法和改进后的边界回归损失函数随着

训练次数的收敛情况。 通过下图对比可发现改进后的边

界回归损失函数下降明显,改进后的网络整体收敛速度

快于 YOLOv5 基准算法。
3. 6　 对比实验

　 　 为了进一步验证 CCM-YOLO 网络模型在元件检测

方面的优越性和有效性,将改进后的算法与主流目标检

测算 法 YOLOv3[12] 、 YOLOv5[16] 、 Faster
 

R-CNN[3] 以 及

YOLOv5-SE[27] 、YOLOv5-ECA[28] 进行对比实验,网络设

置输入图像大小为 640×640,训练轮数共 100 轮。 使用

FNR、Precision、Recall、mAP@ 0. 5 这 4 项指标进行对比,
结果如表 3 所示。

从表 3 可以看出,在相同的参数下,本文在基准模型

YOLOv5 上融合了 3 种不同的注意力机制:YOLOv5-SE、
YOLOv5-ECA、 YOLOv5-CBAM。 从 表 3 数 据 可 知,
YOLOv5 在加入 SE[27] 、ECA[28] 两种注意力机制后 4 项指

标均有一定程度的降低,主要由于 SE 模块缺少空间注意

力机制,当元件与背景在通道响应上相似时,其无法通过
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图 7　 原始模型与改进模型的边界回归损失函数曲线

Fig. 7　 Boundary
 

regression
 

loss
 

function
 

curves
for

 

the
 

original
 

and
 

improved
 

models

空间区分导致特征混淆;ECA 模块对于空间维度信息不

敏感,缺少对整个图像场景的全局理解,因此抗干扰能力

较差,易误将背景中的类似物体当作目标。 本文算法在

元件检测上的 mAP@ 0. 5 值优于其他方法,同时其漏检

率降低至 4. 5%。 本文算法 CCM-YOLO 与 YOLOv3、
YOLOv5 相比,各项指标都得到了显著的提升;与 Faster-
R-CNN 相比,虽然在精确率指标上存在 0. 2%的微小差

异,但在其他关键性能指标上均表现出显著优势。 CCM-
YOLO 与原始网络 YOLOv5 相比, mAP @ 0. 5 提升了

8. 3%,精确率提升了 9%,召回率提升了 9. 2%。 结果表

明,CCM-YOLO 与其他模型相比具有更好的检测性能,在
元件尺度差距较大、细小特征较多的检测任务中具有显

著优势。
表 3　 对比实验结果

Table
 

3　 Comparative
 

experimental
 

results (%)

Model FNR Precision Recall mAP@ 0. 5
YOLOv3

 

31. 2 86. 7 68. 8 82. 5
YOLOv5 13. 7 87. 8 86. 3 88. 8

YOLOv5-SE 35. 6 76. 1 64. 4 75. 3
YOLOv5-ECA 31. 4 85. 6 68. 6 82. 9

YOLOv5-CBAM 12. 9 92. 6 87. 1 92. 6
Faster

 

R-CNN 10. 9 97. 0 89. 1 94. 9
本文 4. 5 96. 8 95. 5 97. 1

3. 7　 模型实际预测结果

　 　 为了直观地描述出 CCM-YOLO 网络模型的检测效

果,将改进前后模型在测试集上的检测结果图进行了直

观的对比, 如图 8 所示。 首先, 通过对比图可知由

YOLOv3 检测后的图 8(b1)左下角的晶体管、图 8(b2)左

下角的二极管以及图 8(b3)中的两个黑色电容和左下角

的电阻均未被检出;而由基准模型的 YOLOv5 检测后的

图 8(c1)左上角的晶体管、图 8( c2) 左下角的二极管以

及图 8(c3)左上角的电阻和右上角的电容未被检出。 显

然,本文算法优于前面两种模型的检测结果。 其次,对比

YOLOv3、YOLOv5 两种模型的检测结果,本文算法的检

测结果在置信度这一指标上表现出明显的优势。

图 8　 模型实际预测结果

Fig. 8　 The
 

model
 

actually
 

predicts
 

the
 

results

4　 结　 论

　 　 本文针对元件检测过程中出现的漏检、精度较低的

问题,基于 YOLOv5 算法提出了引入 CBAM 与 C3 结合的

CCM 模块、改进边界回归损失函数的元件检测算法。 通

过在原生 YOLOv5 头部网络中引入 CBAM 模块,与 C3 模

块结合,提高模型对图片的重要位置和内容的关注度,将
模型注意力集中在元件关键特征上,改善模型检测精度。
通过改进边界回归损失函数,帮助模型的元件检测精度

得到提升、改善模型漏检问题、加快元件检测网络收敛。
实验结果验证了本文算法的有效性,其表明,本文模型收

敛速度较快、检测精度较高,并且降低了漏检率,均优于

其他传统深度学习元件检测算法,对元件检测提供了一

定的参考价值。 本文算法在轻量化上仍有较大进步空

间,未来将会沿着当前的进展继续研究。

参考文献

[ 1 ]　 马志程,
 

李丹,
 

张宝龙.
 

基于改进
 

Mask
 

R-CNN
 

的光

学元件划痕缺陷检测研究[ J].
 

电子测量与仪器学

报,
 

2023,
 

37(4):
 

231-239.
MA

 

ZH
 

CH,
 

LI
 

D,
 

ZH
 

B
 

L.
 

Research
 

on
 

scratch
 

defect
 

detection
 

of
 

optical
 

elements
 

based
 

on
 

improved
 

Mask
 

R-
CNN [ J ].

 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37(4):
 

231-239.
[ 2 ]　 YU

 

X,
 

LIN
 

X,
 

DAI
 

Y,
 

et
 

al.
 

Image
 

edge
 

detection
 



·178　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

based
 

tool
 

condition
 

monitoring
 

with
 

morphological
 

component
 

analysis [ J].
 

ISA
 

transactions,
 

2017,
 

69:
 

315-322.
[ 3 ]　 GIRSHICK

 

R.
 

Fast
 

R-CNN[ J].
 

ArXiv
 

preprint
 

arXiv:
1504. 08083,

 

2015.
[ 4 ]　 REN

 

S,
 

HE
 

K,
 

GIRSHICK
 

R,
 

et
 

al.
 

Faster
 

R-CNN:
 

Towards
 

real-time
 

object
 

detection
 

with
 

region
 

proposal
 

networks[J].
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2016,
 

39(6):
 

1137-1149.
[ 5 ]　 GIRSHICK

 

R,
 

DONAHUE
 

J,
 

DARRELL
 

T,
 

et
 

al.
 

Rich
 

feature
 

hierarchies
 

for
 

accurate
 

object
 

detection
 

and
 

semantic
 

segmentation [ C ]. Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2014:
 

580-587.
[ 6 ]　 HE

 

K,
 

GKIOXARI
 

G,
 

DOLLAR
 

P,
 

et
 

al.
 

Mask
 

R-CNN[C].
Proceedings

 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision.
 

2017:
 

2961-2969.
[ 7 ]　 DAI

 

J,
 

LI
 

Y,
 

HE
 

K,
 

et
 

al.
 

R-FCN:
 

Object
 

detection
 

via
 

region-based
 

fully
 

convolutional
 

networks [ J ].
 

Curran
 

Associates
 

Inc. 2016, DOI: 10. 48550 / arXiv.
1605. 06409.

[ 8 ]　 LIU
 

W,
 

ANGUELOV
 

D,
 

ERHAN
 

D,
 

et
 

al.
 

Ssd:
 

Single
 

shot
 

multibox
 

detector [ C]. Computer
 

Vision – ECCV
 

2016:
 

14th
 

European
 

Conference,
 

Amsterdam,
 

The
 

Netherlands,
 

October
 

11 – 14,
 

2016,
 

Proceedings,
 

Part
 

I
 

14.
 

Springer
 

International
 

Publishing,
 

2016:
 

21-37.
[ 9 ]　 KANG

 

M,
 

JI
 

K,
 

LENG
 

X,
 

et
 

al.
 

Contextual
 

region-
based

 

convolutional
 

neural
 

network
 

with
 

multilayer
 

fusion
 

for
 

SAR
 

ship
 

detection [ J ].
 

Remote
 

Sensing,
 

2017,
 

9(8):
 

860.
[10]　 REDMON

 

J.
 

You
 

only
 

look
 

once:
 

Unified,
 

real-time
 

object
 

detection[C]. Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2016.
[11]　 REDMON

 

J,
 

FARHADI
 

A.
 

YOLO9000:
 

better,
 

faster,
 

stronger [ C ]. Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2017:
 

7263-7271.
[12]　 REDMON

 

J.
 

YOLOv3:
 

An
 

incremental
 

improvement [J].
 

ArXiv
 

preprint
 

arXiv:1804. 02767,
 

2018.
[13]　 张明路,郭策,吕晓玲,等. 改进的轻量化 YOLOv4 用

于电
  

子元器件检测[ J]. 电子测量与仪器学报,2021,
35(10):17-23.
ZHANG

 

M
 

L,
 

GUO
 

C,
 

LYU
 

X
 

L,
 

et
 

al. Improved
 

lightweight
 

YOLOv4
 

for
 

electronic
 

component
 

detection
 

[J].
Journal

 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2021,
 

35(10):
 

17-23.
[14]　 BOCHKOVSKIY

 

A,
 

WANG
 

C
 

Y,
 

LIAO
 

H
 

Y
 

M.
 

YOLOv4:
 

Optimal
 

speed
 

and
 

accuracy
 

of
 

object
 

detection[J].
 

ArXiv
 

preprint
 

arXiv:2004. 10934,
 

2020.
[15]　 侯艳丽,唐博华. 基于改进 YOLOv5 的 PCB 缺陷检测

算法[J]. 国外电子测量技术,2023,42(11):24-32.
HOU

 

Y
 

L,
 

TANG
 

B
 

H.
 

PCB
 

defect
 

detection
 

algorithm
 

based
 

on
 

improved
 

YOLOv5
 

[ J ].
 

Foreign
 

Electronic
 

Measurement
 

Technology,
 

2023,
 

42(11):
 

24-32.
[16]　 LI

 

X,
 

WANG
 

C,
 

JU
 

H,
 

et
 

al.
 

Surface
 

defect
 

detection
 

model
 

for
 

aero-engine
 

components
 

based
 

on
 

improved
 

YOLOv5[J].
 

Applied
 

Sciences,
 

2022,
 

12(14):
 

7235.
[17]　 BODLA

 

N,
 

SINGH
 

B,
 

CHELLAPPA
 

R,
 

et
 

al.
 

Soft-NMS—
improving

 

object
 

detection
 

with
 

one
 

line
 

of
 

code [ C ].
Proceedings

 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision.
 

2017:
 

5561-5569.
[18]　 LIU

 

S
 

HUANG
 

D,
 

WANG
 

Y.
 

Adaptive
 

nms:
 

Refining
 

pedestrian
 

detection
 

in
 

a
 

crowd[ C]. Proceedings
 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2019:
 

6459-6468.
[19]　 LIN

 

T
 

Y,
 

GOYAL
 

P,
 

GIRSHICK
 

R,
 

et
 

al.
 

Focal
 

loss
 

for
 

dense
 

object
 

detection [ C ]. Proceedings
 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision.
 

2017:
 

2980-2988.
[20]　 WANG

 

X,
 

XIAO
 

T,
 

JIANG
 

Y,
 

et
 

al.
 

Repulsion
 

loss:
 

Detecting
 

pedestrians
 

in
 

a
 

crowd[ C]. Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2018:
 

7774-7783.
[21]　 ZHANG

 

S,
 

WEN
 

L,
 

BIAN
 

X,
 

et
 

al.
 

Occlusion-aware
 

R-
CNN:

 

Detecting
 

pedestrians
 

in
 

a
 

crowd[ C]. Proceedings
 

of
 

the
 

European
 

Conference
 

on
 

Computer
 

Vision
 

(ECCV).
 

2018:
 

637-653.
[22]　 吴一全,赵朗月,苑玉彬,等. 基于机器视觉的 PCB 缺

陷检测算法研究现状及展望 [ J]. 仪器仪表学报,
2022,43(8):1-17.
WU

 

Y
 

Q,
 

ZHAO
 

L
 

Y,
 

YUAN
 

Y
 

B,
 

et
 

al.
 

Research
 

on
 

PCB
 

defect
 

detection
 

algorithm
 

based
 

on
 

machine
 

vision:
 

Current
 

status
 

and
 

prospects
 

[ J].
 

Chinese
 

Journal
 

of
 

Scientific
 

Instrument,
 

2022,
 

43(8):
 

1-17.
[23]　 张志杰,顾寄南,李静,等. 基于深度学习的电子元器

件快速检测算法研究 [ J]. 电子测量技术, 2022,
45(10):93-101.
ZHANG

 

ZH
 

J,
 

GU
 

J
 

N,
 

LI
 

J,
 

et
 

al.
 

Research
 

on
 

the
 

fast
 

detection
 

algorithm
 

of
 

electronic
 

components
 

based
 

on
 

deep
 

learning
 

[J].
 

Electronic
 

Measurement
 

Technology,
 

2022,
 

45(10):
 

93-101.
[24]　 WOO

 

S,
 

PARK
 

J,
 

LEE
 

J
 

Y,
 

et
 

al.
 

Cbam:
 

Convolutional
 

block
 

attention
 

module[ C]. Proceedings
 

of
 

the
 

European
 

Conference
 

on
 

Computer
 

Vision
 

(ECCV).
 

2018:
 

3-19.
[25]　 杨永跃,夏远超. PCB 缺陷检测深度学习算法的精度

改进[J]. 电子测量与仪器学报,2023,37(5):11-19.



　 第 7 期 CCM-YOLO:
 

一种改进的电路板密集区域元件检测方法 ·179　　 ·

YANG
 

Y
 

Y,
 

XIA
 

Y
 

CH.
 

Accuracy
 

improvement
 

of
 

deep
 

learning
 

algorithm
 

for
 

PCB
 

defect
 

detection
 

[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37(5):
 

11-19.
[26]　 ZHENG

 

Z,
 

WANG
 

P,
 

LIU
 

W,
 

et
 

al.
 

Distance-IoU
 

loss:
 

Faster
 

and
 

better
 

learning
 

for
 

bounding
 

box
 

regression[C].
Proceedings

 

of
 

the
 

AAAI
 

Conference
 

on
 

Artificial
 

Intelligence,2020,
 

34(7):
 

12993-13000.
[27]　 HU

 

J,SHEN
 

L,SUN
 

G. Squeeze-and-excitation
 

networks[C].
Proceedings

 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2018:
 

7132-7141.
[28]　 WANG

 

Q,
 

WU
 

B,
 

ZHU
 

P,
 

et
 

al.
 

ECA-Net:
 

Efficient
 

channel
 

attention
 

for
 

deep
 

convolutional
 

neural
 

networks [ C ].
Proceedings

 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition.
 

2020:
 

11534-11542.
作者简介

　 　 吴必胜,2022 年于长江大学获得学士

学位,现为长江大学硕士研究生,主要研究

方向为深度学习与图形图像处理。
E-mail:

 

2429536349@ qq. com
Wu

 

Bisheng
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Yangtze
 

University
 

in
 

2022.
 

He
 

is
 

now
 

a
 

M. Sc.
 

candidate
 

in
 

Yangtze
 

University.
 

His
 

main
 

research
 

interests
 

include
 

deep
 

learning
 

and
 

graphics
 

and
 

image
 

processing.
高康松,现为长江大学本科生,主要研

究方向为深度学习与计算机视觉。
E-mail:

 

1391578495@ qq. com
Gao

 

Kangsong
 

is
 

now
 

a
 

B. Sc.
 

candidate
 

at
 

Yangtze
 

University.
 

His
 

main
 

research
 

interests
 

include
 

deep
 

learning
 

and
 

computer
 

vision.

　 　 陈松,2019 年于长江大学获得学士学

位,现为长江大学硕士研究生,主要研究方

向为图像处理与深度学习。
E-mail:

 

webflex_cs@ 163. com
Chen

 

Song
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Yangtze
 

University
 

in
 

2019.
 

He
 

is
 

now
 

a
 

M. Sc.
 

candidate
 

at
 

Yangtze
 

University.
 

His
 

main
 

research
 

interests
 

include
 

image
 

processing
 

and
 

deep
 

learning.
贺建飚,1989 年于华中科技大学获得

硕士学位,现为中南大学副教授,主要研究

方向为人工智能与计算机视觉。
E-mail:

 

hejianbiaopaper@ 163. com
He

 

Jianbiao
 

received
 

his
 

M. Sc.
 

degree
 

from
 

Huazhong
 

University
 

of
 

Science
 

and
 

Technology
 

in
 

1989.
 

He
 

is
 

now
 

an
 

associate
 

professor
 

at
 

Central
 

South
 

University.
 

His
 

main
 

research
 

interests
 

include
 

artificial
 

intelligence
 

and
 

computer
 

vision.
 

谢凯(通信作者),2006 年于上海交通

大学获得博士学位,现为长江大学教授,主
要研究方向为信号与信息处理、图形图像处

理、人工智能以及大数据分析。
E-mail:

 

pami2009@ 163. com
Xie

 

Kai
 

(Corresponding
 

author)
 

received
 

his
 

Ph. D.
 

degree
 

from
 

Shanghai
 

Jiao
 

Tong
 

University
 

in
 

2006.
 

He
 

is
 

now
 

a
 

professor
 

at
 

Yangtze
 

University.
 

His
 

main
 

research
 

interests
 

include
 

signal
 

and
 

information
 

processing,
 

graphics
 

and
 

image
 

processing,
 

artificial
 

intelligence,
 

and
 

big
 

data
 

analysis.
徐浩飞,现为长江大学本科生,主要研

究方向为深度学习与计算机视觉。
E-mail:

 

3172187554@ qq. com
Xu

 

Haofei
 

is
 

now
 

an
 

B. Sc.
 

candidate
 

at
 

Yangtze
 

University.
 

His
 

main
 

research
 

interests
 

include
 

deep
 

learning
 

and
 

computer
 

vision.


