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CCM-YOLO: An improved component detection method for
dense regions of circuit boards
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Abstract: In this paper, YOLOvVS is used as a benchmark model to address the problem of easy leakage and low accuracy of electronic
components detection on circuit boards. The leakage problem of the model in detection is improved by using the convolutional block
attention module (CBAM) to enhance the detection accuracy in the process of feature extraction and improving the boundary regression
loss function. Firstly, the feature information of components is extracted using convolutional layers. Secondly, the CBAM module is
introduced into the path aggregation network (PANet), which enriches the feature information of components and improves the problem
of lower accuracy of the model. Finally, accurate detection of components of different scales is achieved by multi-scale prediction and
adaptive anchor frames. The experimental results show that the improved CCM-YOLO algorithm achieves a mean average precision
(mAP) value of 96. 8% on the homemade dataset, and it achieves a leakage detection rate of 4. 5% , which is an improvement of 8. 3%
value compared to the 88. 8% of the mean average precision of the YOLOvS network, and the leakage detection rate is reduced from
13.7% of the original baseline model is reduced by 9.2%. Therefore, the algorithm in this paper effectively improves the detection
accuracy and significantly reduces the leakage detection, providing an effective detection scheme for component detection.
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Table 1 Experimental environment and parameters

B3 Windows 11 (64 {37)
CPU AMD Ryzen 7 4800H with Radeon Graphics
GPU NVIDIA GeForce RTX 3050
VR4 > HE4L Pytorch 2. 4. 1+cuda 11. 8
Optimizer SGD
EUE GBI 0.01
momentum 0.937
Precision 4 :
. TP
Precision = (4)
TP + FP
Kl 2R A BRI ) True FEA Y UERAFLEE
B (Recall) H
TP
Recall = (5)
TP + FN

A R A3 AL T AR R True A
HYRE T, A 13y I A BRI
FNR
FNR =1 = Recall (6)
TRk 284 QAR TE i 0000 7 A 40 B 1Y)
mAP 4.
> AP,
N
V- R B R 22 1P BHE B B 2R G VEA
Hrp Precision Sh B 1E 1E B 1) 5 ST A 1F 1) H
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(7)

x2
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0.5 I mAP, JLAR N7 FoR B AR R AR B < x” FeR
ANIBEH R I 26 pR AL, SR Z5 S 3R 2 s, 1 4G,
CCM R 5] AR50 T A A 0 R g AG RE fy , HLal ot
PEACFFIE S UL 4 U A5 SRR AR T 0. 8 A~ A 434k, [ B
# mAP@O0. 5 2T+ = 92. 6% , UF W iZ AR B e 3% B
T s T HbRFRAERE J1, R, 454 Improved _
Llou $12 sV , B Pk A5 2]k — {4k , mAP@ 0. 5
H1 Recall $8HR73 BIARTH 2 97. 1% 1 95. 5% , %5 KL 7Y
SCELT 8.3%FN 9. 2% b AR T X R W MGH BBk
PRI I DA A 320 SRR ] A R A R 5 T AR TR X ST
YR RYIIERE TT . 245 1A BiFPN 472 R RHIE
Al BORTE S S 50T AR TR T 2. 3%, it
TH S5 06, e 2 E LA AU H O CCM R
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TR A SRR (R A R U A R 45 T T 4. 5% , 88 )5 I A 1 [
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AL [ s 30 o B SR R TR N A ) T 2 ST, O T
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Table 2 Ablation results

YOLOv5 CCM Improved_LIou BiFPN Precision/ % Recall/ % mAP@ 0. 5/%
vV x X x 87.8 86.3 88. 8
vV Vv x x 92.6 87.1 92.6
V x VvV x 90. 7 88.0 93.1
Vv Vv X Vv 90.3 87.4 91.8
Vv 2 vV x 9.8 95.5 97.1
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YOLOv5-SE'™" [ YOLOv5-ECA "™ HE 47 % b 5256 W 2% %
B AER KN N 640x640, YR KL 100 48,
FNR ,Precision .Recall mAP@ 0. 5 X 4 W45 R gEA7%7 He
SERANEE 3 PR,

M 3 LA FEARI SR AR SO SE e TR
YOLOvS LRlE T 3 FAS TR 1 2 J1 AL . YOLOvS-SE |
YOLOvS-ECA, YOLOv5-CBAM, M £ 3 %t #i§ n] %0,
YOLOvS 7EHIA SEP" ECAS Wi g & HHL 5 4 Wifs
PRI —E FEBE IRFAR, E 2 T SE BBl 2s (1) 7 5
JIWLA, S Io 5T A E e AR, e i
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RIEAL 2 4.5%, A XLH % CCM-YOLO 5 YOLOv3,
YOLOvS AHL, &R AR 15 2 T B & W32 T+ 5 Faster-
R-CNN ALY, AR TEAE 0 R 48 b5 L AFTE 0. 2% M T/ 2
S (AL AR REFR bR B R B B i, cCM-
YOLO 5 JF 45 ™ 2% YOLOvS AH lb, mAP @ 0.5 &7 T
8.3% BRI T 9%, A 4L 1 9.2%, 4R E
B ,CCM-YOLO 5 HAMERIAR e HAT 3 b i AP B, 7
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ERH
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Table 3 Comparative experimental results (%)

Model FNR Precision Recall mAP@ 0. 5
YOLOv3 31.2 86.7 68. 8 82.5
YOLOv5 13.7 87.8 86.3 88.8
YOLOv5-SE 35.6 76.1 64.4 75.3
YOLOvS-ECA 31.4 85.6 68. 6 82.9
YOLOv5-CBAM 12.9 92.6 87.1 92.6
Faster R-CNN 10.9 97.0 89.1 94.9
X 4.5 96. 8 95.5 97.1

3.7 EBEILERTUNLE R

T B AR Y CCM-YOLO 5 £ 455 7810 (14 6 1 26
S BRSNS SR AT T
R XF L, a8 Fr s, S, kX Lk B AT A
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