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基于 ESE-YOLO 的钢带表面缺陷检测研究

沈冰星　 黄洪琼

(上海海事大学信息工程学院　 上海　 200120)

摘　 要:针对传统钢带表面缺陷检测方法特征提取能力不足、检测精度受限以及计算资源消耗大的问题,提出了一种基于

YOLOv8 的 ESE-YOLO 模型,旨在有效检测钢带表面缺陷。 首先,为增强模型对边缘特征的提取能力,引入 EIEStem 高效前端模

块,该模块通过 SobelConv 分支提取图像的边缘信息,并结合池化分支捕获重要空间信息,从而提升模型对缺陷区域的感知能

力。 其次,在主干网络部分,将 shift-wise
 

convolution 与 C2f 模块融合,构建 C2f_SWC 模块,通过位移操作扩展模型的视野,增强

其对上下文信息的捕捉能力,进一步提高空间特征的提取精度。 此外,为优化特征金字塔网络的结构,采用高效多分支与尺度

特征金字塔网络(EMBSFPN)模块,根据不同尺度的特征层自适应选择多尺度卷积核,实现对多尺度感知信息的逐步获取,并通

过加权融合不同尺度特征的重要性提升检测精度,同时显著降低模型的参数量和计算成本。 实验结果表明,与原始 YOLOv8n
相比,ESE-YOLO 在 NEU-DET 数据集上的平均精度均值( mAP) 提高了 4. 1%,参数量下降 26. 8%,浮点运算量减少 64%;在
GC10-DET 数据集上,mAP 提高了 9. 9%。 ESE-YOLO 在显著提升检测精度的同时,大幅降低了计算资源需求,更好满足工业场

景中资源受限设备的部署需求。
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Abstract:
 

To
 

address
 

the
 

limitations
 

of
 

traditional
 

steel
 

strip
 

surface
 

defect
 

detection
 

methods,
 

such
 

as
 

insufficient
 

feature
 

extraction
 

capability,
 

restricted
 

detection
 

accuracy,
 

and
 

high
 

computational
 

resource
 

consumption,
 

this
 

study
 

proposes
 

ESE-YOLO,
 

a
 

model
 

based
 

on
 

YOLOv8,
 

designed
 

to
 

effectively
 

detect
 

surface
 

defects
 

on
 

steel
 

strips.
 

Firstly,
 

to
 

enhance
 

the
 

model’ s
 

ability
 

to
 

extract
 

edge
 

features,
 

an
 

EIEStem
 

efficient
 

front-end
 

module
 

is
 

introduced.
 

This
 

module
 

utilizes
 

a
 

SobelConv
 

branch
 

to
 

extract
 

edge
 

information
 

from
 

images,
 

combined
 

with
 

a
 

pooling
 

branch
 

to
 

capture
 

essential
 

spatial
 

information,
 

thereby
 

improving
 

the
 

model’ s
 

perception
 

of
 

defect
 

regions.
 

Secondly,
 

within
 

the
 

backbone
 

network,
 

shift-wise
 

convolution
 

is
 

integrated
 

with
 

the
 

C2f
 

module
 

to
 

construct
 

the
 

C2f_SWC
 

module.
 

This
 

integration
 

expands
 

the
 

model’ s
 

field
 

of
 

view
 

through
 

shift
 

operations,
 

enhancing
 

its
 

ability
 

to
 

capture
 

contextual
 

information
 

and
 

further
 

improving
 

the
 

accuracy
 

of
 

spatial
 

feature
 

extraction.
 

Additionally,
 

to
 

optimize
 

the
 

structure
 

of
 

the
 

feature
 

pyramid
 

network,
 

the
 

EMBSFPN
 

module
 

is
 

employed.
 

This
 

module
 

adaptively
 

selects
 

multi-scale
 

convolutional
 

kernels
 

based
 

on
 

different
 

feature
 

layers,
 

enabling
 

progressive
 

acquisition
 

of
 

multi-scale
 

perceptual
 

information.
 

By
 

weighted
 

fusion
 

of
 

the
 

importance
 

of
 

features
 

across
 

different
 

scales,
 

the
 

detection
 

accuracy
 

is
 

enhanced
 

while
 

significantly
 

reducing
 

the
 

model’ s
 

parameter
 

count
 

and
 

computational
 

cost.
 

Experimental
 

results
 

indicate
 

that,
 

compared
 

to
 

the
 

original
 

YOLOv8n,
 

ESE-YOLO
 

achieves
 

a
 

4. 1%
 

improvement
 

in
 

mAP
 

on
 

the
 

NEU-
DET

 

dataset,
 

with
 

a
 

26. 8%
 

reduction
 

in
 

parameters
 

and
 

a
 

64%
 

decrease
 

in
 

floating-point
 

operations.
 

On
 

the
 

GC10-DET
 

dataset,
 

ESE-
YOLO

 

demonstrates
 

a
 

9. 9%
 

improvement
 

in
 

mAP.
 

Thus,
 

ESE-YOLO
 

significantly
 

enhances
 

detection
 

accuracy
 

while
 

drastically
 

reducing
 

computational
 

resource
 

requirements,
 

better
 

meeting
 

the
 

deployment
 

needs
 

of
 

resource-constrained
 

devices
 

in
 

industrial
 

scenarios.
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0　 引　 言

　 　 钢材是国家建筑中必不可少的重要材料,应用广泛,
特别是在基础设施建设中,它发挥着不可替代的作用。
目前,大多数钢材是通过对原材料进行压力加工来生产

的,以获得具有特定形状和性能的材料。 在压力加工过

程中,由于成本限制、设备限制、现有技术和表面粗糙度

等因素,钢材不可避免地会出现缺陷[1] 。 这些缺陷可能

包括裂纹、夹杂物、斑块、点蚀和其他缺陷[2] 。 一旦钢材

中出现这些缺陷,其承受压缩、拉伸、腐蚀等因素的能力

必然会受到不同程度的影响。 因此,在钢铁材料生产之

前,缺陷检测尤为重要。
目前,缺陷检测方法大致可分为传统缺陷检测、基于

机器视觉的缺陷检测和基于深度学习的缺陷检测 3 种类

型。 传统的缺陷检测方法主要包括人工采样[3] 、红外检

测[4] 和漏磁检测[5] 。 人工采样方法随机选择样本并通过

肉眼进行测试,但存在采样不平衡的问题,导致误差较

大。 此外,该方法容易受到人为因素及其他问题的影响。
红外检测通过监测钢材表面因缺陷引起的温度变化来检

测缺陷,但由于钢材的红外吸收能力限制,无法准确分类

缺陷。 漏磁检测则是通过检测有缺陷的钢表面是否存在

磁性来识别缺陷。 然而,该技术难以准确识别细小和狭

窄的裂纹,限制了其检测能力。
机器视觉检测技术是对传统检测的改进,它减少了

员工的工作量,并且不受环境影响。 基于机器视觉的缺

陷检测方法主要分为基于图像预处理的缺陷检测、分类

器、特征提取和图像分割 4 大类。 机器视觉检测方法在

识别钢材表面缺陷的任务方面取得了巨大进步,比传统

的缺陷检测方法更加高效和实用。 但是,它们普遍存在

多种缺陷类型分类不佳、需要人工提取特征、实时表现良

好但准确率差等问题。
因此,基于深度学习的缺陷检测技术已成为一个重

要的研究方向。 深度学习通过输入数据并自动提取特

征,不仅保留了无需人工操作和避免环境影响的优势,而
且省去了手动特征提取的步骤。 这种端到端的建模架构

简化了工业生产流程。 主流的深度学习目标检测算法包

括两阶段方法[6] , 如区域卷积神经网络 ( region-based
 

convolutional
 

neural
 

network,
 

R-CNN) [7] 、Fast
 

R-CNN[8] 、
Faster

 

R-CNN[9] 和 Mask
 

R-CNN[10] ,以及单阶段方法,如
单次多框检测器( single

 

shot
 

multiBox
 

detector,
 

SSD) [11]

和 YOLO(you
 

only
 

look
 

once) [12] ,以及基于 Transformer 架
构的 目 标 检 测 算 法 的 检 测 器 ( detection

 

transformer,
 

DETR) [13] 。 两阶段目标检测算法具有较高的检测精度,
但由于在检测过程中生成一系列候选框,其检测速度相

较于单阶段算法较慢。 单阶段目标检测算法则将检测任

务转化为回归问题[14] 。 Zhao 等[15] 提出了一种基于可变

形卷积和多尺度融合的 Faster
 

R-CNN 算法,尽管其模型

在检测钢材表面缺陷方面表现良好,但在检测速度上难

以满足工业需求。 吴健生等[16] 对 FasterR-CNN 算法采用

多尺度检测和融合卷积块注意力模块 ( convolutional
 

block
 

attention
 

module,CBAM) 机制,抑制复杂背景的影

响,使网络更专注与缺陷特征的提取。 在 NEU-DET 数据

集上测试,虽然平均精度从 0. 711 提高到 0. 795,但是检

测速度缓慢且模型泛化性低。
单阶段目标检测算法虽然精度相对较低,但其检测

速度较快,非常适合于钢材表面缺陷的工业检测任务。
YOLO 算法由 Redmon 等[17] 于 2016 年提出,是一种将检

测问题转化为回归问题的单阶段算法,支持端到端的缺

陷检测。 经过 YOLO9000[17] 、 YOLOv3[18] 和 YOLOv4[19]

等版本的演化。 在 YOLOv3 的基础上,YOLOv5 在输入端

引入了 Mosaic 数据增强、自适应锚框计算和自适应图片

缩放;骨干网络采用 C3 结构与 SPPF 结构;颈部设计为

特征金字塔网络( feature
 

pyramid
 

network,
 

FPN) [20] 和路

径聚合网络
 

( path
 

aggregation
 

network,
 

PAN) [21] 结构;检
测端的损失函数修改为 GIOU[22] 。 这些改进提升了检测

精度,但在钢材缺陷检测方面仍有进一步优化的空间。
在这方面,Zhao 等[23] 提出的 RDD-YOLO 通过设计

双特征金字塔网络( DFPN),增强了特征的融合,提高了

特征的丰富性和网络的深度,采用解耦头分离回归和分

类任务,提高了检测精度,但在一些模糊和小缺陷的检测

上,RDD-YOLO 的性能需要进一步提高。 朱成杰等[24] 基

于 YOLOv8 进行改进,通过引入 Focal
 

Modulation 和 C2f-
MB 结构,增强了模型对多尺度特征的表达能力,虽然通

过加入归一化瓦瑟斯坦距离 ( normalized
 

Wasserstein
 

distance,
 

NWD)损失函数,提升了模型对小目标缺陷的

检测能力,但在某些类别的精度上存在偏低的问题,可能

需要进一步优化。 李思思等[25] 设计的轻量化 FCSP
 

block 增强了主干网络和颈部网络的特征提取和融合能

力,提高了模型对缺陷的定位能力,并且通过引入可学习

参数促进动态特征融合,增强了小目标浅层特征的表达

能力,最后在光照减弱的 NEU-DET 数据集和 GC10-DET
数据集上的实验结果表明,模型具有良好的泛化能力。
虽然这些检测方法在检测精度上相比传统的缺陷检测和

机器视觉检测有所提升,但其检测方法对特定类型缺陷

的检测能力不足以及模型参数和计算量的增加。
综上所述,针对现有算法在工业环境中应用时面临

的边缘特征提取能力不足和钢材缺陷检测计算成本高等

问题,本文提出了一种基于 YOLOv8n 算法的钢带表面缺

陷检测新算法—ESE-YOLO,具有如下优势。
1)边缘特征提取能力的提升。 本文引入了 EIEStem

 

高效前端模块,通过
 

SobelConv
 

分支和池化分支精准提
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取图像的边缘信息及关键空间信息,显著增强了模型对

边缘特征的提取能力。 这一改进对于检测细小、模糊等

难以识别的缺陷具有极为重要的意义,而传统算法在边

缘特征提取方面往往存在明显的不足。
2)上下文信息捕捉的高效性。 在主干网络架构中,本

研究巧妙地将
 

shift-wise
 

convolution
 

与 C2f 模块相结合,构
建了 C2f_SWC 模块。 借助位移操作,模型能够捕捉更广泛

的上下文信息,从而显著提升空间信息的捕捉能力和检测

精度。 这一方法与现有算法在上下文信息捕捉方面的传

统手段形成了鲜明对比,展现了其独特的优势。
3)多尺度特征融合的优化。 本文采用了高效多分支

与尺度特征金字塔网络 ( efficient
 

multi-branch
 

&
 

scalr
 

FPN,EMBSFPN),根据不同尺度的特征层灵活选择合适

的多尺度卷积核,逐步获取多尺度感知信息。 同时,通过

自适应选择与加权融合不同尺度特征的重要性,不仅提

升了检测精度,还有效减少了模型的参数量和计算成本。
这一优化成功解决了现有算法在多尺度特征融合时面临

的计算成本高和参数量大的问题,为模型的高效运行提

供了有力保障。

1　 YOLOv8
 

模型结构

　 　 YOLOv8 是基于 Ultralytics 在前几代 YOLO 成功经验

的基础上构建的,融入了多个升级和创新功能,旨在进一

步提升性能与灵活性。 与前代相比,YOLOv8 引入了全

新的主干网络、无锚点检测头部以及新的损失函数等技

术创新,从而支持跨平台操作,从 CPU 到 GPU 均可高效

运行。 根据模型的深度和特征图大小,YOLOv8 提供了

多 个 版 本, 包 括 YOLOv8-s、 YOLOv8-n、 YOLOv8-m、
YOLOv8-l 和 YOLOv8-x,覆盖了 5 种不同的配置。

YOLOv8 的网络结构可以分为 Input、Backbone、Neck
和 Head

 

4 个主要模块。 YOLOv8 网络结构如图 1 所示。
Input 模块负责将输入图像按指定比例调整至训练所需

的大小,并执行包括缩放和色调调整等预处理操作。
Backbone 模块则专注于提取图像的核心特征,包含卷积

模块 C2f、替代 C3 模块的 CSPLayer_2Cnov 以及 YOLOv5
中使用的空间金字塔池化模块( SPPF)。 Neck 模块通过

结合 FPN 和“双流 FPN”路径聚合结构,有效地整合不同

尺度的特征,显著提升了效率和速度。 Head 模块则与

YOLOv6 和 YOLOX 中的结构相似,但相较于 YOLOv3、
YOLOv4 和 YOLOv5 所使用的解耦式检测头,YOLOv8 采

用了耦合式检测头。
此外,YOLOv8 继续使用 3 个输出分支,但每个分支

进一步细分为两个部分,分别负责边界框的分类和回归。
考虑到模型的整体检测能力,实验选用了 YOLOv8-n 作

为基线模型,并将在此基础上进行改进。

图 1　 YOLOv8 网络结构

Fig. 1　 Architecture
 

of
 

YOLOv8
 

network
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2　 钢带表面缺陷检测模型
 

ESE-YOLO

2. 1　 网络结构

　 　 钢带表面缺陷检测在实际应用中至关重要,它能够

实时、准确地识别和分类钢带表面的各种缺陷,从而提高

产品质量、降低生产成本、确保生产安全,并且通过智能

化的检测流程,提升生产效率和自动化水平。 针对钢带

表面缺陷检测在实际应用中特征提取能力不足,以及限

制了其在计算资源受限的设备上部署的问题,本文在

YOLOv8 的基础上,设计了一种有效的钢带表面缺陷检

测模型 ESE-YOLO,网络结构如图 2 所示。

图 2　 ESE-YOLO 网络结构

Fig. 2　 Architecture
 

of
 

ESE-YOLO
 

network

　 　 ESE-YOLO 模型结构通过首先引入了
 

EIEStem
 

这一

高效的图像处理模块,增强模型对边缘细节的识别能力。
其次,在模型的主干网络中,将

 

shift-wise
 

convolution
 

与
 

C2f
 

模块相结合,创建了
 

C2f_SWC
 

模块。 这种设计使得

模型能够通过位移操作捕捉更丰富的上下文信息,进而

提高空间特征的识别精度。 最后,通过应用 EMBSFPN,
模型能够根据各特征层的不同尺度选择合适的卷积核,
逐步整合多尺度的特征信息。 此外,模型还能自适应地

选择和融合不同尺度的特征,这不仅提高了检测的准确

性,还有效降低了模型的参数数量和计算开销。
2. 2　 EIEStem 模块

　 　 YOLOv8 由于卷积操作可能导致信息丢失,特别是

在处理小目标时,这种信息丢失会大幅度降低检测能力。
小目标在图像中占据的像素较少,如果特征图过小,可能

会导致小目标的特征被过度压缩或丢失,从而影响边缘

特征的准确提取。 针对 YOLOv8 边缘特征提取能力不足

的缺点,本文在特征提取的首层引入了 EIEStem 模块。
EIEStem

 

模块通过结合
 

Sobel
 

算子和池化操作,充分利用

了边缘信息和局部特征,从而增强了特征提取的多样性

和鲁棒性。 SobelConv
 

模块通过
 

Sobel
 

算子提取图像的梯

度特征,专注于边缘检测,Sobel
 

算子分为水平和垂直两

个方向的梯度计算,其卷积核如下。
水平方向(Gx):

Kx =
- 1 0 1
- 2 0 2
- 1 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(1)

水平方向(Gy):

Ky =
- 1 - 2 - 1
0 0 0
1 2 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

(2)

假设图像的像素值为 I(x,y) ,则梯度计算公式为:
Gx = Kx·I (3)
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Gy = Ky·I (4)
通过 Gx 和 Gy 计算梯度幅值和方向:
梯度幅值:

G = Gx
2 + Gy

2 (5)
通常为了简化计算,也可以用绝对值代替:
G =| Gx | +| Gy | (6)
梯度方向:

θ = arctan(
Gy

Gx
) (7)

使用 3D 卷积层来实现逐通道的边缘检测,并且不参

与训练过程,减少了计算复杂度[26] 。 SobelConv
 

网络结

　 　 　 　

构如图 3 所示。 EIEStem
 

模块通过将
 

Sobel
 

特征和池化

特征进行融合,不仅保留了细节信息,还能够通过卷积层

进一步提取高层次特征。 整体结构能够在多尺度上处理

图像的局部特征,对于检测任务具有很好的性能,且减少

了计算量。 EIEStem
 

网络结构图如图 4 所示。

图 3　 SobelConv
 

网络结构

Fig. 3　 Architecture
 

of
 

SobelConv
 

network

图 4　 EIEStem
 

网络结构

Fig. 4　 Architecture
 

of
 

EIEStem
 

network

2. 3　 C2f_SWC 模块

　 　 YOLOv8 因其传统卷积神经网络 ( convolutional
 

neural
 

network,CNN) 结构的局限性,尽管 YOLOv8 采用

了 C2f 结构来增加网络的感受野并改善梯度流动,但其

骨干网络仍然受限于局部感受野的限制,无法从图像的

其他位置捕获信息。 因此本文将原始
 

C2f
 

与
 

shift-wise
 

convolution
 

组合,以进一步增强网络提取上下文空间信

息的能力。 shift-wise
 

convolution 是通过对输入特征图的

每个通道进行独立的卷积处理, 增强特征的表示能

力[27] 。 Shift-wise
 

Convolution
 

的计算公式可以表示为:

Y( i,j,c) = ∑
kH
2

p = -kH2
∑

kW
2

p = -kW2
X( i + p,j + q,c)·K(p +

Δp,q + Δq,c) (8)
式中: Y( i,j,c) 是输出特征图中的像素值; Δp、Δq 是由

移位操作产生的偏移量,控制卷积核的相对位置或感受

野的移动; p 和 q 分别表示卷积核在水平和垂直方向的

索引; X( i + p,j + q,c) 是输入特征图的像素值,表示在坐

标 ( i,j) 处周围的局部区域; K(p + Δp,q + Δq,c) 是经过

移位的卷积核,表示在应用偏移量后,对应位置的权重。
C2f_SWC 的优点在于通过引入可重参数化的大卷

积核和膨胀卷积,有效提升了模型的感受野,并减少了计

算 量。 Bottleneck _ SWC 类 通 过 使 用
 

Reparam
 

LargeKernelConv
 

代替标准卷积层,能够在保持卷积效果

的同时,降低计算开销。 Bottleneck_SWC 网络结构如图 5
所示。 而

 

C2f_SWC
 

类通过堆叠多个
 

Bottleneck_SWC
 

模

块,增加了网络的深度,从而增强了特征提取的能力。
C2f_SWC 网络结构如图 6 所示。

图 5　 Bottleneck_SWC
 

网络结构

Fig. 5　 Architecture
 

of
 

Bottleneck_SWC
 

network

图 6　 C2f_SWC
 

网络结构

Fig. 6　 Architecture
 

of
 

C2f_SWC
 

network
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2. 4　 EMBSFPN
 

特征金字塔网络

　 　 YOLOv8 在处理小目标时的效果不佳,因为 YOLOv8
将输入图像分成了较小的网格,每个网格只预测一个目

标,因此难以处理尺度变化较大的目标。 并且 YOLOv8
相对于其他目标检测算法而言,训练速度较慢,由于其骨

干网络较深且参数较多,训练过程需要较长的时间。 为

解决上述问题,本文采用
 

EMBSFPN
 

特征金字塔网络,
EMBSFPN 网络结构如图 7 所示。 EMBSFPN

 

具有多尺度

高效卷积模块和全局异构核选择机制。 具有较大感受野

的网络更适合检测较大的物体,反之,较小尺度的目标则

从较小的感受野中受益,因此在
 

FPN
 

阶段,对于不同尺

度的特征层选择不同的多尺度卷积核以适应并逐步获得

多尺度感知场信息[28] 。 EMBSFPN
 

采用
 

BiFPN
 

中的多尺

度特征加权融合,把
 

Concat
 

替换成
 

Add
 

来减少参数量和

计算量的情况下,还能通过不同尺度特征的重要性进行

自适用选择加权融合[29] 。 EMBSFPN
 

采用高效上采样模

块
 

置信区间上界(exploration
 

via
 

upper
 

confidence
 

bound,
EUCB),EUCB

 

首先使用上采样操作将特征图尺寸放大,
然后通过应用深度卷积和批量归一化来增强这些放大的

特征图[29] ,因此在保持特征图的空间分辨率和细节信息

的同时,显著降低了计算复杂度,提高了运算效率。

图 7　 EMBSFPN
 

网络结构

Fig. 7　 Architecture
 

of
 

EMBSFPN
 

network

3　 实验设计与数据分析

3. 1　 实验环境及参数设置

　 　 本实验环境使用
 

Windows
 

11 操作系统,16
 

G 内存,
CPU

 

采用 13thGenIntel(R)Core(TM)i5-13600KF,显卡采

用
 

NVIDIAGeForceRTX4060ti, 具 有 8
 

GB 显 存,
PyTorch2. 0. 1 作为深度学习框架,Python 版本为 3. 8. 18,
CUDA 版本为 11. 7,cuDNN 版本为 11. 7。 实验参数设置

如表 1 所示。
3. 2　 实验数据集

　 　 研究采用由东北大学( NEU) 发布的表面缺陷数据

集 NEU-DET 和真实工业中收集的表面缺陷数据集

GC10-DET。

表 1　 实验参数配置
Table

 

1　 Experimental
 

parameter
 

settings
实验参数 参数量

Epochs 150
Input

 

image
 

size 640×640
Batch

 

size 8
Initial

 

learning
 

rate 0. 01
Optimizer SGD

　 　 NEU-DET 收集了热轧钢带的 6 种典型表面缺陷,即
轧制氧化皮(RS)、斑块、开裂、点蚀表面、内含物和划痕。
该数据库包括 1

 

800 个灰度图像,6 种不同类型的典型表

面缺陷,每一类缺陷包含 300 个样本,如图 8 所示。 数据

集图像大小为 200 × 200,总共 1
 

800 张图像被随机分成

8 ∶ 1 ∶ 1 的比例,以创建
 

NEU-DET
 

训练、测试和验证集,
即 1

 

440 个训练样本、 180 个测试样本和 180 个验证

样本。
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图 8　 6 种缺陷样本的示意图

Fig. 8　 Schematic
 

diagram
 

of
 

six
 

defect
 

samples

　 　 GC10-DET 包含 10 种类型的表面缺陷,即冲孔、熔接

线、月牙间隙、水斑、油斑、丝斑、夹杂物、轧坑、折痕、腰部

折叠。 收集的缺陷位于钢板表面。 该数据集包括 3
 

570
张灰度图像。 数据集详细的标注了缺陷的位置信息和类

型信息。 实验按照 7 ∶ 2 ∶ 1 对 3
 

570 张数据图像划分训

练集、测试集和验证集。 数据集的部分数据图像如图 9
所示。

图 9　 GC10-DET 部分数据集图片

Fig. 9　 GC10-DET
 

selected
 

dataset
 

images

3. 3　 评价指标

　 　 评价钢带表面缺陷检测模型的检测精度的常用评价

指标是精度( precision)、召回率( recall) 和平均精度均

值(mean
 

average
 

precision, mAP )。 具 体 计 算 如

式(9) ~ (11)所示。

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

mAP = 1
n ∑

n

k = 1
AP i (11)

式中:TP 代表真实案例;FN 代表假阴性情况;FP 代表假

阳性案例;n 代表案例总数。
此外,评价指标还包括模型计算复杂性( GFLOPs)和

模型参数。 模型计算复杂性和模型参数计数分别是评估

模型效率和容量的关键指标。
3. 4　 消融实验

　 　 本文提出了一种基于
 

YOLOv8 的
 

ESE-YOLO 模型,
通过 3 个改进对网络模型进行了优化,为验证 3 个改进

对,并进行了消融实验,实验数据如表 2 所示。 改进 1 是

引入 EIEStem 模式作为高效的特征提取前端,改进 2 则

是采用 C2f_SWC 结构替换主干网络中的 C2f 结构,改进

3 采用 EMBSFPN 特征金字塔网络。 “√”表示加入,“ ×”
表示不加入。 这些改进旨在提升模型的整体性能。

由表 2 可以看出,每次改进加入模型后,mAP @ 0. 5
均有所提升,从而改善了模型的检测性能。 与原模型相

比,改进后的模型在参数量上下降了 26. 8%,计算量下降

了 64%,mAP@ 0. 5 提高了 4. 1%。 其中,改进方案 1 通

过引入 EIEStem 高效前端模块,有效提升了对目标的检

测性能,使 mAP@ 0. 5 提高了 3. 2%。 当改进方案 1 与方

案 2 组合时,参数量和计算量略有增加,但帧率提升了

3. 4%。 虽然改进方案 3 提升的平均精度不高,但参数量

下降了 32. 6%,并使计算量下降了 20. 2%。 在 3 个改进

方案组合时, mAP @ 0. 5 提高了 4. 1%, 参数量下降

26. 8%,浮点运算量减少 64%。 改进后的模型通过增强

特征提取能力,以及提升模型对目标物体的表达和感知

能力,实现了对钢带表面缺陷的更精确检测,整体提升了

模型的检测性能。

表 2　 消融实验

Table
 

2　 Ablation
 

experiment
改进 1 改进 2 改进 3 mAP@ 0. 5 参数量 浮点数 / GFLOPs

× × × 0. 722 3
 

157
 

200 8. 9
√ × × 0. 754 3

 

007
 

634 2. 6
× √ × 0. 756 3

 

183
 

074 10. 9
× × √ 0. 734 2

 

128
 

947 7. 1
√ √ × 0. 762 3

 

179
 

042 11
√ × √ 0. 756 2

 

139
 

011 2. 4
× √ √ 0. 759 2

 

300
 

355 9. 9
√ √ √ 0. 763 2

 

310
 

419 3. 2

3. 5　 模型检测效果对比实验

　 　 为了更直观地展示本文所提出模型在钢材表面缺陷
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检测方面的能力,对改进前后的模型进行了测试,部分测

试如图 10 所示。

图 10　 模型检测效果对比实验

Fig. 10　 Comparison
 

experiment
 

of
 

model
 

detection
 

effect

从图 10 可以看出,YOLOv8 模型在检测轧制氧化皮

缺陷时,出现了检测框重合重复现象,并且检测框的置信

分数普遍低于本文提出的模型,置信分数多为 0. 3,而本

文模型的置信分数能达到 0. 5,明显高于原模型。 轧制

氧化皮作为钢材缺陷中较难检测的类型,本文模型在这

一任务上表现优异。 实验表明,改进后的模型有效减少

了漏检率并提高了置信度,优于原 YOLOv8 模型的性能。
3. 6　 泛化实验

　 　 为了验证模型的泛化能力,在 GC10-DET 钢材表面

缺陷数据集上进行了进一步的实验,实验数据如表 3 所

示。 在 GC10-DET 数据集的检测结果中,mAP@ 0. 5 值达

到 67. 4%,相比于 YOLOv8 分别提高了 9. 9%,参数量和

计算量相比于 YOLOv8 分别降低了 23. 2%和 60. 5%。 综

上所述,本文模型不仅在 NEU-DET 数据集上表现出色,
在其他数据集上同样具备良好的通用性,证明了改进后

模型在工业钢材表面缺陷检测任务中的重要参考价值。
表 3　 泛化实验

Table
 

3　 Generalization
 

experiment
模型 mAP@ 0. 5 参数量 浮点数 / GFLOPs

YOLOv8 0. 575 3
 

007
 

598 8. 1
ESE-YOLO 0. 674 2

 

311
 

199 3. 2

3. 7　 对比实验

　 　 在对钢材表面缺陷检测的对比实验中,ESE-YOLO
模型在检测钢材表面缺陷方面展现了显著的性能优势。

研究选取了主流目标检测算法作为对照组, 涵盖了

YOLOv3、YOLOv5 的 s、n 和 m 版本、YOLOv6、YOLOv7、
YOLOX 以及一些由其他研究者改进的算法。 所有实验

均在统一的 NEU-DET 数据集和一致的实验条件下进行。
对比实验的数据如表 4 所示。

表 4　 NEU-DET 数据集上不同算法的性能比较

Table
 

4　 Performance
 

comparison
 

of
 

different
algorithms

 

on
 

NEU-DET
 

dataset
算法 mAP@ 0. 5 参数量 / ( ×106 ) 浮点数 / GFLOPs

YOLOv3 0. 655 63 65. 9
YOLOv5n 0. 72 1. 9 4. 5
YOLOv5s 0. 707 7. 2 16. 5
YOLOv5m 0. 711 21. 2 49
YOLOv6s 0. 71 18. 5 45. 3
YOLOv7 0. 709 37. 2 104. 7

YOLOvXs 0. 713 9 26. 8
YOLOv8n 0. 722 3. 2 8. 9
YOLOv8s 0. 715 11. 2 28. 6
YOLOv9-c 0. 721 2. 6 10. 7
YOLOv10n 0. 724 2. 7 8. 2
YOLOv11n 0. 732 2. 6 6. 3
文献[30] 0. 741 23. 9 /
文献[31] 0. 733 17. 4 /
ESE-YOLO 0. 763 2. 3 3. 2

　 　 从表 4 可以看出, 本文提出的改进算法实现了

76. 3%的 mAP 值,尽管参数量和计算量相比于 YOLOv5n
有所增加,但精度提高了 4. 3%。 与检测精度最高的算

法[30]相比,参数量降低了 90. 4%,准确率提升了 2. 2%。
在与 YOLOv6 和 YOLOv7 的比较中,参数量和计算量均

降低,精度分别提升了 5. 3%和 5. 4%。 与 YOLOX 相比

参数量降低 74. 5%, 精度提升了 5%, 计算量减少了

88. 1%。 与 YOLOv8s 相比,参数量下降 79. 5%,精度提

升了 4. 8%, 计算量减少了 88. 8%。 与 YOLOv9-c 和

YOLOv10n 相比精度分别提高了 4. 2%和 3. 9%,参数量

和计算量均降低。 在与 YOLOv11n 的比较中,精度提升

了 3. 1%,计算量减少了 49. 2%。

4　 结　 论

　 　 为解决当前带钢表面缺陷检测算法在实际应用中检

测精度低,计算成本高等问题,本文在
 

YOLOv8
 

的基础上

提出了一种有效的钢带表面缺陷检测模型
 

ESE-YOLO。
提出 EIEStem 模块,通过融合 Sobel 边缘特征与池化空间

信息,增强细节提取能力,浮点运算量降低 70. 8%;设计

C2f_SWC 模块,结合位移卷积扩大感受野,提升上下文

信息捕捉精度;采用 EMBSFPN 特征金字塔,实现多尺度

自适应融合,参数量减少 32. 6%;在 NEU-DET 与 GC10-
DET 数据集上,mAP 分别达 76. 3%与 67. 4%,计算效率
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优于主流模型,具备工业部署潜力。 后续研究将着重提

升钢带表面缺陷的检测速度,有效满足实时检测需求,进
一步提升模型检测性能。

参考文献

[ 1 ]　 DUSPARA
 

M,
 

SAVKOVIC'
 

B,
 

DUDIC
 

B,
 

et
 

al.
 

Effective
 

detection
 

of
 

the
 

machinability
 

of
 

stainless
 

steel
 

from
 

the
 

aspect
 

of
 

the
 

roughness
 

of
 

the
 

machined
 

surface
 

[ J ].
 

Coatings,
 

2023,
 

13:
 

447.
[ 2 ]　 LYU

 

X,
 

DUAN
 

F,
 

JIANG
 

J
 

J,
 

et
 

al.
 

Deep
 

metallic
 

surface
 

defect
 

detection:
 

The
 

new
 

benchmark
 

and
 

detection
 

network
 

[J].
 

Sensors,
 

2020,
 

20:
 

1562.
[ 3 ]　 AMIN

 

D,
 

AKHTER
 

S.
 

Deep
 

learning-based
 

defect
 

detection
 

system
 

in
 

steel
 

sheet
 

surfaces
 

[ C ].
 

Proceedings
 

of
 

the
 

2020
 

IEEE
 

Region
 

10
 

Symposium
 

(TENSYMP),
 

2020:
 

444-448.
[ 4 ]　 DORAFSHAN

 

S,
 

MAGUIRE
 

M,
 

COLLINS
 

W.
 

Infrared
 

thermography
 

for
 

weld
 

inspection:
 

Feasibility
 

and
 

application[J].
 

Infrastructures
 

2018;
 

3(4):45.
[ 5 ]　 WANG

 

G,
 

XIAO
 

Q,
 

GAO
 

Z,
 

et
 

al.
 

Multifrequency
 

AC
 

magnetic
 

flux
 

leakage
 

testing
 

for
 

the
 

detection
 

of
 

surface
 

and
 

backside
 

defects
 

in
 

thick
 

steel
 

plates
 

[ J].
 

IEEE
  

Magnetics
 

Letters,
 

2022,
 

13:
 

1-5.
[ 6 ]　 ZOU

 

Z,
 

CHEN
 

K,
 

SHI
 

Z,
 

et
 

al.
 

Object
 

detection
 

in
 

20
 

years:
 

A
 

survey
 

[ J].
 

Proceedings
 

of
 

the
 

IEEE,
 

2023,
 

111(3):
 

257-276.
[ 7 ]　 GIRSHICK

 

R,
 

DONAHUE
 

J,
 

DARRELL
 

T,
 

et
 

al.
 

Rich
 

feature
 

hierarchies
 

for
 

accurate
 

object
 

detection
 

and
 

semantic
 

segmentation
 

[ C].
 

Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2014:
 

580-587.
[ 8 ]　 GIRSHICK

 

R.
 

Fast
 

R-CNN
 

[ C].
 

Proceedings
 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2015:
 

1440-1448.
[ 9 ]　 REN

 

S,
 

HE
 

K,
 

GIRSHICK
 

R,
 

et
 

al.
 

Faster
 

R-CNN:
 

Towards
 

real-time
 

object
 

detection
 

with
 

region
 

proposal
 

networks
 

[ J].
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2015,
 

39(6):
 

1137-1149.
[10]　 HE

 

K,
 

GKOIARI
 

G,
 

DOLLÁR
 

P,
 

et
 

al.
 

Mask
 

R-CNN
 

[C].
 

Proceedings
 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2017:
 

2961-2969.
[11]　 LIU

 

W,
 

ANGUELOV
 

D,
 

ERHAN
 

D,
 

et
 

al.
 

SSD:
 

Single
 

shot
 

multibox
 

detector
 

[C].
 

Proceedings
 

of
 

the
 

Computer
 

Vision-ECCV
 

2016:
 

14th
 

European
 

Conference,
 

2016.
[13]　 REDMON

 

J,
 

DIVVALA
 

S,
 

GIRSHICK
 

R,
 

et
 

al.
 

You
 

only
 

look
 

once:
 

Unified,
 

real-time
 

object
 

detection
 

[C].
 

Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2016:
 

779-788.

[13]　 CARION
 

N,
 

MASSA
 

F,
 

SYNNAEVE
 

G,
 

et
 

al.
 

End-to-
end

 

object
 

detection
 

with
 

transformers
 

[ C].
 

Proceedings
 

of
 

the
 

European
 

Conference
 

on
 

Computer
 

Vision,
 

2020:
 

213-229.
[14]　 ZAIDI

 

S
 

S
 

A,
 

ANSARI
 

M
 

S,
 

ASLAM
 

A,
 

et
 

al.
 

A
 

survey
 

of
 

modern
 

deep
 

learning
 

based
 

object
 

detection
 

models
 

[J].
 

Digital
 

Signal
 

Processing,
 

2022,
 

126:
 

103514.
[15]　 ZHAO

 

W,
 

CHEN
 

F,
 

HUANG
 

H,
 

et
 

al.
 

A
 

new
 

steel
 

defect
 

detection
 

algorithm
 

based
 

on
 

deep
 

learning
 

[ J ].
 

Computational
 

Intelligence
 

and
 

Neuroscience,
 

2021 ( 10):
1-13.

[16]　 吴健生,王健全,付美霞,等.
 

基于改进 Faster-RCNN
算法的带钢缺陷检测[ J].

 

鞍钢技术,2022
 

( 6):
 

23-
28,32.
WU

 

J
 

SH,
 

WANG
 

J
 

J,
 

FU
 

M
 

X,
 

et
 

al.
 

Strip
 

defect
 

detection
 

based
 

on
 

improved
 

Faster
 

RCNN
 

algorithm
 

[J].
 

Angang
 

Technology,
 

2022
 

(6):
 

23-28,32.
[17]　 REDMON

 

J,
 

FARHADI
 

A.
 

YOLO9000:
 

Better,
 

faster,
 

stronger
 

[ C].
 

Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

&
 

Pattern
 

Recognition, 2016:
 

6517-6525.
[18]　 REDMON

 

J,
 

FARHADI
 

A.
 

YOLOv3:
 

An
 

incremental
 

improvement
 

[ J ].
 

ArXiv
 

preprint
 

arXiv: 1804.
02767,

 

2018.
[19]　 BOCHKOVSKiy

 

A,
 

WANG
 

C
 

Y,
 

LIAO
 

H.
 

YOLOv4:
 

Optimal
 

speed
 

and
 

accuracy
 

of
 

object
 

detection
 

[ J ].
 

ArXiv
 

preprint
 

arXiv:2004. 10934,
 

2020.
[20]　 LIN

 

T
 

Y,
 

DOLLÁR
 

P,
 

GIRSHICK
 

R,
 

et
 

al.
 

Feature
 

pyramid
 

networks
 

for
 

object
 

detection
 

[ C].
 

Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,2016:
 

2117-2125.
[21]　 LIU

 

S,
 

QI
 

L,
 

QIN
 

H,
 

et
 

al.
 

Path
 

aggregation
 

network
 

for
 

instance
 

segmentation
 

[ C ].
 

Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
2018:

 

8759-8768.
[22]　 REZATOFIGHI

 

H,
 

TSOI
 

N,
 

GWAK
 

J
 

Y,
 

et
 

al.
 

Generalized
 

intersection
 

over
 

union:
 

A
 

metric
 

and
 

a
 

loss
 

for
 

bounding
 

box
 

regression
 

[ C].
 

Proceedings
 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,2019:
 

658-666.
[23]　 ZHAO

 

C,
 

XIN
 

S,
 

XI
 

Y,
 

et
 

al.
 

RDD-YOLO:
 

A
 

modified
 

YOLO
 

for
 

detection
 

of
 

steel
 

surface
 

defects
 

[ J ].
 

Measurement,
 

2023,
 

214(2):112776.
[24]　 朱成杰,刘乐乐,朱洪波.

 

基于 YOLOv8-NFMC 的带钢

表面缺陷检测算法[ J].
 

国外电子测量技术,2024,
 

43(7):
 

97-104.
ZHU

 

CH
 

J,
 

LIU
 

L
 

L,
 

ZHU
 

H
 

B.
 

Surface
 

defect
 

detection
 

algorithm
 

for
 

strip
 

steel
 

based
 

on
 

YOLOv8-NFCM
 

[ J].
 



　 第 8 期 基于 ESE-YOLO 的钢带表面缺陷检测研究 ·135　　 ·

Foreign
 

Electronic
 

Measurement
 

Technology,
 

2024,
 

43(7):
 

97-104.
[25]　 李思思,葛华勇. 改进 YOLOv7 的钢材表面缺陷检测

模型[J]. 计算机技术与发展,2024,
 

34(8):
 

78-85.
LI

 

S
 

S,
 

GE
 

H
 

Y.
 

Improving
 

the
 

steel
 

surface
 

defect
 

detection
 

model
 

of
 

YOLOv7
 

[ J].
 

Computer
 

Technology
 

and
 

Development,
 

2024,
 

34(8):
 

78-85.
[26]　 ZHOU

 

R,
 

LIU
 

D.
 

Quantum
 

image
 

edge
 

extraction
 

based
 

on
 

improved
 

sobel
 

operator
 

[ J].
 

International
 

Journal
 

of
 

Theoretical
 

Physics,
 

2019,
 

58(9):
 

2969-2985.
[27]　 LI

 

D,
 

LI
 

L,
 

CHEN
 

Z,
 

et
 

al.
 

Shift-ConvNets:
 

Small
 

convolutional
 

kernel
 

with
 

large
 

kernel
 

effects[ J].
 

ArXiv
 

preprint
 

arXiv:2401. 12736,2024.
[28]　 YANG

 

Z,
 

GUAN
 

Q,
 

ZHAO
 

K,
 

et
 

al.
 

Multi-branch
 

auxiliary
 

fusion
 

YOLO
 

with
 

re-parameterization
 

heterogeneous
 

convolutional
 

for
 

accurate
 

object
 

detection [ J ].
 

ArXiv
 

preprint
 

arXiv:2401. 12736,2024.
[29]　 TAN

 

M,
 

PANG
 

R,
 

LE
 

Q
 

V.
 

EfficientDet:
 

Scalable
 

and
 

efficient
 

object
 

detection
 

[ C ].
 

2020
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition
 

(CVPR),
 

2020:
 

10778-10787.
[30]　 曹义亲,伍铭林,徐露.

 

基于改进 YOLOv5 算法的钢材

表面缺陷检测[J].
 

图学学报,
 

2023,44
 

(2):335-345.
CAO

 

Y
 

Q,
 

WU
 

M
 

L,
 

XU
 

L.
 

Steel
 

surface
 

defect
 

detection
 

based
 

on
 

improved
 

YOLOv5
 

algorithm
 

[ J ].
 

　 　 　 　

Journal
 

of
 

Graphic
 

Science,
 

2023,44
 

(2):335-345.
[31]　 王浩然.

 

基于 YOLOv5 的钢材表面缺陷检测研究[D].
 

桂林:广西师范大学,2022.
WANG

 

H
 

R.
 

Research
 

on
 

surface
 

defect
 

detection
 

of
 

steel
 

based
 

on
 

YOLOv5
 

[ D].
 

Guilin: Guangxi
 

Normal
 

University,
 

2022.
作者简介

　 　 沈冰星,现为上海海事大学硕士研究

生,主要研究方向为深度学习、缺陷检测。
E-mail:

 

16606262637@ 163. com
Shen

 

Bingxing
 

is
 

now
 

a
 

M. Sc.
 

candidate
 

at
 

Shanghai
 

Maritime
 

University.
 

His
 

main
 

research
 

interests
 

include
 

deep
 

learning
 

and
 

defect
 

detection.
黄洪琼(通信作者),2008 年于上海海

事大学获得博士学位,现为上海海事大学副

教授,主要研究方向为电子信息类、通信与

信息系统、信号与信息处理。
E-mail:

 

hqhuang@ shmtu. edu. cn
Huang

 

Hongqiong
 

( Corresponding
 

author)
 

received
 

her
 

Ph. D.
 

from
 

Shanghai
 

Maritime
 

University
 

in
 

2008.
 

She
 

is
 

now
 

an
 

associate
 

professor
 

at
 

Shanghai
 

Maritime
 

University.
 

Her
 

main
 

research
 

interests
 

include
 

electronic
 

information,
 

communication
 

and
 

information
 

systems,
 

as
 

well
 

as
 

signal
 

and
 

information
 

processing.


