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Research on surface defect detection of steel strip based on ESE-YOLO

Shen Bingxing Huang Honggiong

(School of Information Engineering, Shanghai Maritime University, Shanghai 200120, China)

Abstract: To address the limitations of traditional steel strip surface defect detection methods, such as insufficient feature extraction
capability, restricted detection accuracy, and high computational resource consumption, this study proposes ESE-YOLO, a model based
on YOLOv8, designed to effectively detect surface defects on steel strips. Firstly, to enhance the model’ s ability to extract edge
features, an EIEStem efficient front-end module is introduced. This module utilizes a SobelConv branch to extract edge information from
images, combined with a pooling branch to capture essential spatial information, thereby improving the model’ s perception of defect
regions. Secondly, within the backbone network, shift-wise convolution is integrated with the C2f module to construct the C2f_SWC
module. This integration expands the model’ s field of view through shift operations, enhancing its ability to capture contextual
information and further improving the accuracy of spatial feature extraction. Additionally, to optimize the structure of the feature pyramid
network, the EMBSFPN module is employed. This module adaptively selects multi-scale convolutional kernels based on different feature
layers, enabling progressive acquisition of multi-scale perceptual information. By weighted fusion of the importance of features across
different scales, the detection accuracy is enhanced while significantly reducing the model’ s parameter count and computational cost.
Experimental results indicate that, compared to the original YOLOv8n, ESE-YOLO achieves a 4. 1% improvement in mAP on the NEU-
DET dataset, with a 26. 8% reduction in parameters and a 64% decrease in floating-point operations. On the GC10-DET dataset, ESE-
YOLO demonstrates a 9.9% improvement in mAP. Thus, ESE-YOLO significantly enhances detection accuracy while drastically
reducing computational resource requirements, better meeting the deployment needs of resource-constrained devices in industrial
scenarios.
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Table 1 Experimental parameter settings
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Fig. 8 Schematic diagram of six defect samples
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Fig. 9 GC10-DET selected dataset images
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vV vV x 0.762 3179 042 11
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X Vv Vv 0.759 2300 355 9.9
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Fig. 10 Comparison experiment of model detection effect
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Table 3 Generalization experiment

s mAP@0. 5 SR 77 KL/ GFLOPs
YOLOv8 0.575 3 007 598 8.1
ESE-YOLO 0. 674 2311 199 3.2
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Table 4 Performance comparison of different

algorithms on NEU-DET dataset

=R/ mAP@O0.5 SR/ (x10°) TEAE/GFLOPs
YOLOV3 0. 655 63 65.9
YOLOv5n 0.72 1.9 4.5
YOLOv5s 0.707 7.2 16.5
YOLOv5m 0.711 21.2 49
YOLOv6s 0.71 18.5 45.3
YOLOv7 0.709 37.2 104.7
YOLOvXs 0.713 9 26.8
YOLOv8n 0.722 3.2 8.9
YOLOv8s 0.715 11.2 28.6
YOLOV9-c 0.721 2.6 10.7
YOLOv10n 0.724 2.7 8.2
YOLOv11n 0.732 2.6 6.3
Hk[30] 0.741 23.9 /
SCHK[31] 0.733 17.4 /
ESE-YOLO 0.763 2.3 3.2
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