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摘　 要:针对传统同步定位与地图构建(SLAM)算法建图过程复杂、调参难度大和泛化能力差等问题,提出了一种基于空间多

尺度连续性特征提取的轮式机器人经验地图构建方法。 首先,在 ResNet18 网络模型中添加金字塔切分注意力模块( PSA)和空

洞空间卷积池化金字塔(ASPP)模块,PSA 对中间层的特征进行分组处理,通过计算不同通道的注意力权重捕获多尺度信息,提
高特征的表达能力,ASPP 利用不同扩张率的空洞卷积和全局平均池化整合全局上下文信息,进一步强化空间多尺度连续性特

征的表征;其次,利用改进的 ResNet-PSA-ASPP 网络,在 donkey_sim 仿真模拟器和机器人实际运行跑道上对采集的数据集进行

深度学习训练,获取优化后的机器人转向角度预测模型;最后,利用 donkey_sim 仿真模拟器和机器人操作系统( ROS)分别在仿

真环境和实际场景下进行模型性能测试实验。 实验结果表明,提出的模型对转向角度预测的误差分别减少了 38. 47%、
44. 34%、35. 51%,相比经典的 ResNet18、ResNet50、VGGNet 等网络模型在特征提取能力、计算效率和建图准确度上均获得显著

提升。
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Abstract:
 

To
 

address
 

the
 

issues
 

of
 

complex
 

mapping
 

processes,
 

difficult
 

parameter
 

tuning,
 

and
 

poor
 

generalization
 

in
 

traditional
 

simultaneous
 

localization
 

and
 

mapping
 

( SLAM)
 

algorithms,
 

this
 

paper
 

proposes
 

a
 

wheeled
 

robot
 

experience
 

map
 

construction
 

method
 

based
 

on
 

spatial
 

multi-scale
 

continuity
 

feature
 

extraction.
 

First,
 

PSA
 

and
 

ASPP
 

modules
 

are
 

integrated
 

into
 

the
 

ResNet18
 

architecture.
 

PSA
 

groups
 

intermediate
 

features
 

and
 

calculates
 

attention
 

weights
 

across
 

channels
 

to
 

capture
 

multi-scale
 

information,
 

thereby
 

enhancing
 

feature
 

representation.
 

ASPP
 

incorporates
 

dilated
 

convolutions
 

with
 

varying
 

dilation
 

rates
 

and
 

global
 

average
 

pooling
 

to
 

aggregate
 

global
 

contextual
 

information,
 

further
 

strengthening
 

the
 

representation
 

of
 

spatial
 

multi-scale
 

continuity
 

features.
 

Then,
 

the
 

improved
 

ResNet-
PSA-ASPP

 

model
 

is
 

trained
 

on
 

datasets
 

collected
 

in
 

both
 

the
 

donkey_sim
 

simulator
 

and
 

real-world
 

robot
 

racetrack
 

scenarios.
 

Finally,
 

model
 

performance
 

is
 

evaluated
 

in
 

both
 

simulated
 

and
 

real-world
 

environments
 

using
 

the
 

donkey_sim
 

simulator
 

and
 

the
 

robot
 

operating
 

system
 

(ROS).
 

Experimental
 

results
 

show
 

that
 

the
 

proposed
 

model
 

reduces
 

steering
 

angle
 

prediction
 

errors
 

by
 

38. 47%,
 

44. 34%,
 

and
 

35. 51%,
 

respectively,
 

and
 

significantly
 

outperforms
 

classical
 

networks
 

such
 

as
 

ResNet18,
 

ResNet50,
 

and
 

VGGNet
 

in
 

feature
 

extraction
 

capability,
 

computational
 

efficiency,
 

and
 

mapping
 

accuracy.
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0　 引　 言

　 　 随着人工智能技术的飞速发展,轮式机器人在军民

领域的应用日趋广泛。 轮式机器人在自主导航过程中,
需要依赖高精度的环境地图实现路径规划与避障。 目

前,主流的经验地图构建方法主要依赖同步定位与地图

构建(simultaneous
 

localization
 

and
 

mapping,SLAM)技术,
结合里程计和多种传感器数据进行环境感知与地图生

成。 然而,传统方法通常需要大量的时间和精力,过程复

杂冗余,耗时较长,泛化能力不足,且受环境因素干扰

较强。
深度学习算法是人工智能技术的重要组成部分,近

年来在理论知识和应用实践上都发展迅速,尤其在图像

识别和分类领域表现优异。 姬晓飞等[1] 提出一种姿势引

导和特征融合的行人重识别算法,DukeMTMC-ReID 数据

集的 Rank-1、mAP 各达到了 91. 2%、81. 8%,具有较佳的

实用性,模型虽融合了全局和局部特征,但对极端相似外

观或细微差异的区分能力有限。 肖湘等[2] 提出了一种多

分支融合的卷积神经网络( convolutional
 

neural
 

network,
CNN),基于多分支的特征提取模块在特征空间对道路上

下文、道路空间细节和道路边界建模,模型具有较好的特

征提取能力,但多分支结构计算量大,难以部署到低功耗

设备。 张勃兴等[3] 针对因行人图像背景差异大、人体外

观相似导致的行人再识别准确率低的问题,提出了一种

利用特征融合与多尺度信息的行人重识别方法, 在

Market-1501 上,mAP 和 Rank-1 分别达到了 86. 77% 和

94. 83%。 吕宜生等[4] 提出一种新的时空信息融合模型,
在双流卷积网络的基础上引入门控循环单元 ( gated

 

recurrent
 

unit,GRU)网络来实现端到端自动驾驶车辆转

向角预测,提出的时空模型在驾驶转向角预测的准确度

和平稳性方面效果显著,但 CNN+GRU 的计算开销大,难
以满足高帧率实时控制需求。

深度学习算法结合多尺度特征提取、定位和建图模

块同时也推动了地图构建向高精度、语义化、自适应方向

发展。 侯远韶[5] 提出了基于深度学习的多源信息融合巡

检机器人 SLAM 技术,在深度神经网络框架下将多个传

感器信息进行融合,同时结合深度神经网络对局部特征

的提取能力,估算巡检机器人的运动路径实现地图重建,
但该模型中注意力机制仅处理空间维度,忽视了对传感

器时序异步性的建模。 房立金等[6] 提出了一种利用深度

学习提高动态环境下视觉语义即时定位与地图构建的方

法,消除了动态物体对建图的影响,提高了建图精度,但
该方法存在对语义分割精度依赖高、实时性不强及场景

适应性有限等问题。
尽管现有工作在多尺度空间特征提取和语义化建图

上取得了显著进展,但仍存在以下不足:1)多分支融合、
双流 CNN+GRU 等结构往往参数量和计算量大,难以满

足实时性和低功耗设备的要求;2)对语义分割精度、预训

练模型依赖度高,面对新场景时泛化能力不足;3)多为分

步处理,缺少能够同时兼顾高精度、低延迟、自适应性的

统一连续特征提取方法。
针对上述现有研究中存在的问题,以轮式机器人的

转向角预测控制为研究目标,提出了一种基于融合空间

多尺度连续性特征提取的改进 ResNet18 神经网络模型

的经验地图构建方法。 该方法使用 ResNet18 网络模型

作为基础架构,通过将金字塔切分注意力模块( pyramid
 

split
 

attention, PSA ) 和空洞空间卷积池化金字塔模

块(atrous
 

spatial
 

pyramid
 

pooling,ASPP)与残差模块相结

合提升网络对空间多尺度连续性特征的关注度。 相较于

其他的特征提取网络,该模型结构设计上融合了轻量化

残差学习、多尺度注意力机制与上下文建模能力,在准确

率与模型复杂度之间取得了更优平衡。

1　 机器人转向角识别模型构建

　 　 利用 ResNet18 网络模型作为基础架构,并结合 PSA
注意力机制和 ASPP 模块,针对机器人转向角特征进行

识别预测训练。
1. 1　 ResNet18 基础架构

　 　 网络层数越深,卷积神经网络获取更深层次特征的

能力越强,然而往往会伴随出现梯度消失或爆炸、性能下

降等问题,ResNet 利用加入残差模块的方法有效缓解了

此类问题[7] 。 ResNet 利用恒等映射引入了快速连接通

道,使得某一层所产生的输出越过一个或多个层级,将输

入数据直接传导至输出部分,借助快速连接通道,堆叠层

的输出可以拟合所必需的底层映射,以此推动这些层经

拟合操作构建相应的残差映射[8] ,残差映射定义为:
H(x l,W l) = F(x l,W l) + x l (1)

式中: x l 为第 l 个残差单元的输入值,即上一层输出的特

征映射; W l 为第 l 个残差单元的权重; H(x l,W l) 为底层

映射; F(x l,W l) 为残差函数。
残差模块结构如图 1 所示,通过快速连接通道,模型

的参数量和计算量大幅降低,使得训练时的效率和收敛

速度得到提升,同时克服了深度神经网络因样本量不足

而导致的过拟合问题。 底层的特征信息通过快速连接通

道可以直接传输给高层,从而帮助网络更有效地学习到

多尺度的特征表示。 残差单元可表示为:
y l = h(x l) + F(x l,W l) (2)
x l +1 = f(y l) (3)

式中: x l +1、y l
 分别为第 l + 1、l 个残差单元的输出; h(x l)

为第 l 个残差单元的底层映射; f 为 ReLU 激活函数。
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图 1　 残差模块结构

Fig. 1　 Residual
 

block

忽略激活函数,令 x l +1 = f(y l) = y l ,则浅层 l到深层 L
的学习特征可表示为:

x l +1 = x l + F(x l,W l) (4)

xL = x l + ∑
L-1

i = 1
F(x l,W i) = x0 + ∑

L-1

i = 0
F(x i,W i) (5)

∂ε

∂xl

=
∂ε

∂xL

∂xL

∂xl

=
∂ε

∂xL

[1 + ∂
∂xl

∑
L-1

i = 1
F(x i,W i)] (6)

式中:
∂ε

∂xl

为第 l 个残差单元不通过权重层传递的损失函

数; ∂
∂xl

∑
L-1

i = 1
F(x i,W i) 为第 l 个残差单元通过权重层传递

的损失函数; x i 为第 i 个残差单元的输入; W i 为第 i 个残

差单元的系列权重。
由式(2) ~ (4)可知,模型在前向传播时通过引入短

路机制能更快速地获取浅层信息,同时反向传播的梯度

消失问题也得到了有效避免,进而大幅度提升了网络模

型的模型性能。
ResNet 系列模型主要包括多种网络层数各异的残差

网络,常见的有 ResNet18、ResNet34、ResNet50、ResNet101
和 ResNet152。

考虑到模型实时推理计算的要求和难度,本文使用

ResNet18 网络模型为基础网络架构,其网络结构如图 2
所示。 模型包含 1 个 7×7 卷积层、16 个 3×3 卷积层(构

成 8 个残差块,每个块包含 2 个卷积层)以及一个全连接

层。 考虑到模型泛化能力和多尺度特征提取的要求,在
ResNet18 基础架构基础上引入了 PSA 注意力模块和

ASPP 空洞空间卷积池化金字塔。

Conv
 

为卷积;s
 

为步长;k 为卷积核大小;p 为填充;Maxpool
 

为最大值池化;avgpool
 

为平均池化

图 2　 ResNet18 网络架构

Fig. 2　 ResNet-18
 

architecture

1. 2　 金字塔切分注意力模块

　 　 注意力模块的嵌入可以实现 CNN 识别性能的显著

提升,常见的注意力模块有[9] 挤压-激励网络
 

( SENet)、
瓶颈注意力模块

 

( BAM)、卷积块注意力模块( CBAM)、

高效 通 道 注 意 力 网 络 ( ECANet )、 全 局 上 下 文 网

络
 

(GCNet)、频率通道注意力网络
 

( FcaNet)等。 但目前

这些模块在以下两个方面的表现仍有不足:多尺度的空

间特征信息不能高效获取,特征空间的表达不够丰富;通
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道注意力或者空间注意力无法形成持久的的依赖关系,
只能有效提取局部特征。 基于此,将轻量且高效的金字

塔切分注意力 PSA 模块插入到 ResNet18 基础网络模

型中。
PSA 通常由 3 部分组成:多尺度特征提取,这一部分

通过不同尺度的卷积或池化操作进行特征提取。 例如,
可能会使用不同的卷积核大小或者池化窗口来捕获局部

和全局信息;挤压-激励
 

( squeeze
 

and
 

excitation, SE) 模

块,SE 模块在 PSA 中的作用通常是作为通道注意力机制

来提升特征图中各通道的权重,它通过压缩全局信息并

激活通道特征的方式,增强模型对通道信息的敏感性;挤
压-拼接

 

(squeeze
 

and
 

concat,SPC)
 

模块,SPC 模块通过

对特征图进行全局池化得到全局描述,并将这个全局描

述与原始特征图拼接在一起,从而结合了局部空间信息

和全局信息。 这一操作为 PSA 模块带来了更丰富的特

征表达能力,帮助模型同时关注空间和通道特征。
大多数注意力机制仅关注局部区域,忽略了全局空

间注意力的变化。 而金字塔切分注意力 PSA 模块能够

同时关注通道注意力和空间注意力,捕获全局信息,并有

效建立不同尺度通道注意力之间的持久依赖关系。 将

PSA 模块替代 ResNet
 

Bottleneck[10] 中的 3×3 卷积核,其
他部分保持不变,从而形成了新的高效金字塔切分注意

力(efficient
 

pyramid
 

split
 

attention,EPSA) 模块。 基于此

模块,构建了新的骨干网络 EPSANet,它具备强大的多尺

度特征表示能力。 与此同时,EPSANet 在图像识别任务

中的评估分类模型性能指标 Top-1
 

准确率大幅度优于现

有技术,效果如图 3 所示,且在计算参数量上更加高效,
在 ResNet18 中引入该模块可以在降低计算量的同时提

升网络性能。

图 3　 不同注意力模块准确率对比

Fig. 3　 Accuracy
 

comparison
 

of
 

different
 

attention
 

modules

1)SPC 模块

SPC 模块的主要作用是进行多尺度特征提取,通过

多分支合作的方式提取输入信息的空间特征信息,SPC
的结构如图 4 所示。 各分支互不干扰,学习不同尺度的

空间特征信息,通过局部化方式构建跨通道信息交互。
该设计能够并行处理不同尺度空间信息,有利于丰富空

间信息的捕捉。 多尺度卷积因金字塔结构能更好的捕捉

多维度空间特征,同时利用减少通道维数,提高空间特征

的提取效率[11] 。 假设输入为 X ,SPC 模块首先将其分为

S 部分,依次为 X0,X1,…,XS-1,且每个部分的通道数均

为 C′ = C
S

,对不同部分提取不同尺度特征,最后将提取

的多尺度特征通过 Concat[12] 进行合并。 随着内核尺寸

的加大,SPC 模块能够在不增加计算量的前提下,通过分

组卷积策略应对具有不同卷积核尺寸的输入向量,同时

可以灵活修改群组大小而不添加额外的参数。 卷积核 K
的大小和群组 G 关系如下:

G = 2
K- 1

2 (7)
用于生成多尺度特征图的函数可表示为:
F i = Conv(k i × k i,G i)(X)　 i = 0,1,2,…,S - 1

(8)
式中:第 i 个卷积核尺寸 k i = 2 × ( i + 1) + 1,第 i 个分组

大小为 G i = 2
ki- 1

2 ,F i ∈ RC′×H×W 。
据此融合后的完整多尺度特征图可表示为:
F = Cat([F0,F1,…,Fs-1]) (9)

式中: F∈RC×H×W 。 多尺度特征图得到后,需要重新标定

各尺度特征图 F i 的通道注意力权重,公式如下:
Z i = SEWeight(F i)　 i = 0,1,2,…,S - 1 (10)

式中: Z i ∈ RC′×1 ×1,整个多尺度通道注意力权重向量为:
 

Z = Z0 􀱇 Z1 􀱇 … 􀱇 ZS-1 (11)
为构建持久通道注意力的依赖关系,促进不同尺度

通道注意力信息的相互作用,采用 Softmax 函数重新调整

通道注意力信息权重,计算公式如下:

att i = Softmax(Z i) =
exp(Z i)

∑ S-1

i = 0
exp(Z i)

(12)

式中: Z i ∈ RC′×1×1。 将相匹配尺度的特征图 F i 与重新调

整后的注意力向量在通道级别进行逐元素相乘,即:
Y i = F i☉att i 　 i = 1,2,3,…,S - 1 (13)
对赋予权重后的不同尺度通道注意力特征图实施维

度融合,生成更具信息量的特征图,计算公式如下:
Out = Cat([Y0,Y1,…,YS-1]) (14)
2)SE

 

Weight 模块

SE 模块[13] 聚焦于通道注意力机制,通过对每个通

道的重要性进行权重调整,提升通道维度上的特征表达,
结构如图 5 所示。 包含 Squeeze 压缩和 Excitation 激励两

部分,各应用于提取全局特征和通道关系的动态调整。
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图 4　 SPC 模块结构

Fig. 4　 SPC
 

module
 

structure

通过全局平均池化( global
 

average
 

pooling,GAP) 获得通

道数据,进而把全局特征信息融入到通道表示中。

图 5　 SE
 

Weight 模块结构

Fig. 5　 SE
 

weight
 

module
 

structure

第 c 个通道的输入特征映射为 X ,全局池化计算公

式为:

　 　 gc =
1
HW∑

H

i = 1
∑

w

j = 1
XC( i,j) (15)

式中: X ∈ RC×H×W,C、H、W 分别表示特征图像的通道数、
高度和宽度。

输入的特征信息首先进入全局池化层处理,然后依

次进入全连接层、 ReLU 函数层、 第 2 个全连接层和

Sigmoid 激活函数层,最终计算出第 i 个通道特征的注意

力权重,具体计算公式如下:
w i = σ(W1δ(W0(g i))) (16)

式中: δ 表示 ReLU 激活函数; σ 表示 Sigmoid 激励函数;

W0 和 W1 代表两个全连接层,W0 ∈ R
C× C

r ,W1 ∈ R
C
r ×C

,前
一个降维,后一个维度恢复。 不同通道的线性特征信息

能够被两个全连接层高效融合,促进高维和低维信息之

间的相互影响与协同作用。 随后各通道权重信息由激励

函数重新调整分配,以便更高效地提取特征信息。
3)PSA 模块

PSA 模块[14] 同时对通道和空间维度进行注意力建

模,结合了 SPC 模块的多尺度上下文特性和 SE 模块的

通道加权能力。 如图 6 所示, PSA 的工作原理为使用

SPC 模块切分各通道,对各通道特征信息进行多尺度空

间信息提取,并使用 SE
 

Weight 模块提取各通道注意力,
生成各通道注意力向量;采用 Softmax 函数标定通道注意

力向量特征,输出多尺度空间特征信息注意力加权特征

图,生成的特征图含有更具多样性的空间特征信息[15] 。

图 6　 PSA 模块结构

Fig. 6　 PSA
 

module
 

structure

　 　 PSA
 

模块通过金字塔式的分割策略,将空间特征分

成多个尺度,能够提取不同感受野下的特征信息,使模型

具备多尺度感知能力,这样可以更好地捕捉图像中的不

同大小、不同空间位置的信息。 在多尺度特征上应用注

意力机制,通过加权融合不同尺度的特征,使网络能够聚

焦于更重要的空间位置和通道,进而提升模型的表示能

力[16] 。 由于
 

PSA
 

模块能够自适应地学习到多尺度特征

的权重,在不同的任务中能有效提升网络性能。
1. 3　 ASPP 模块

　 　 ASPP 空洞空间卷积池化金字塔,它是空洞卷积和金

字塔池化( spatial
 

pyramid
 

pooling,SPP)的结合。 在面对

特定输入时,ASPP 通过并行应用不同扩张率的空洞卷积

来进行多尺度采样[17] 。 如图 7 所示,ASPP 本质上由一

个 1×1 的卷积层,多个具有不同扩张率的 3×3 卷积层和

一个池化层组成。 根据需要自行调节不同层的膨胀因

子,可以更加灵活的提取不同尺度下的特征信息[18-21] 。

2　 改进的 ResNet18 网络

　 　 构建的机器人转角识别图像数据集中的图片由于具

备较高相似度,环境复杂多变等因素,不易于提取特征,
为实现神经网络能提取到更具影响力和深层次的机器人

转向过程的场景空间连续性变化特征信息,在 ResNet18
网络中引入了 PSA 注意力机制模块和 ASPP 模块,改进

后的 ResNet18 网络结构如图 8 所示,layer1 ~ layer4 代表
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图 7　 ASPP 模块结构

Fig. 7　 ASPP
 

module
 

structure

　 　 　

4 个卷积层组,每个组包含两个残差块。
ResNet18 的初始卷积和池化层保持不变,包括第一

个卷积层、批归一化( BN)、ReLU 激活函数和最大池化

层。 layer1 和 layer2 保持不变,继续作为浅层模块提取特

征。 在 layer3 之后,将 PSA 注意力模块插入,PSA 接收

layer3 提取的特征,进行多尺度特征划分和注意力加权,
输出跳跃连接相加前,特征图将先通过

 

PSA
 

模块进行多

尺度注意力处理。 PSA 模块主要通过通道注意力机制对

特征进行再加权,使网络对不同位置和通道的信息具有

自适应性。 PSA 增强后的特征再输入到下一个卷积层组

layer4,layer4 完成高层特征提取后,将 ASPP 模块插入。
ASPP 模块利用多尺度扩张卷积对 layer4 的输出特征进

行多尺度融合,进一步捕捉更大的上下文信息,ASPP 增

强后的特征将送往分类器。
与传统的 ResNet18 相比,引入 PSA 注意力机制,可

以为 ResNet18 提供更丰富的多尺度信息,在处理包含不

　 　 　

图 8　 改进后模型的结构

Fig. 8　 Improved
 

models
 

structure

同尺度目标的图像时表现更佳。 能够有效提升模型在细

节和整体结构上的平衡,能够更好处理跑道上的转角信

息。 通过 PSA 模块的通道注意力和空间注意力机制,
ResNet18 可以自适应地选择更有用的特征,使得网络更

具表达力。 在图像分类、语义分割等任务中,这种增强的

特征选择能力可以显著提高转向角度识别性能,通过对

不同尺度的特征加权融合,增加了 ResNet18 在不同场景

下的鲁棒性,这对于复杂的户外场景或多样化数据集,尤
其是自动驾驶等任务中的场景分类、物体识别等任务非

常有用。
ASPP 模块利用不同的扩张率进行卷积操作,能够捕

捉不同尺度的信息。 对于场景理解和角度检测等任务,
ASPP 可以提取从局部到全局的特征,提高模型对物体不

同尺度的感知能力。 通过空洞卷积,ASPP 可以在不增加

计算量的情况下扩大卷积核的感受野,使模型能够聚合

更多空间上下文信息。 通过多尺度的信息融合,可以增

加特征表达的丰富性,这对于捕捉场景中的细微差别和

特殊模式有很大帮助。 尤其是结合 ResNet18 的残差结

构,ASPP 可以有效补充特征提取的不足之处,提升模型

的泛化能力[22] 。
PSA 注意力机制和 ASPP 模块的插入位置不会影响

ResNet18 的原有残差连接,它们只是作为附加模块,不改



　 第 9 期 基于空间多尺度连续性特征提取的轮式机器人经验地图构建 · 93　　　 ·

变核心残差路径。 PSA 模块增强的特征进入 layer4,
ASPP 模块增强的特征直接送入全局池化和分类层,因此

残差结构的跳跃连接和加法操作依然有效,保持了残差

网络的梯度流动优势。

3　 试验与分析

3. 1　 数据与环境

　 　 本文图像数据在学校西操场采集。 操控轮式机器人

通过奥比中光 Gemini
 

Pro 双目深度相机采集以跑道、天
空为背景的机器人转向图像,轮式机器人的硬件架构如

图 9 所示。 该轮式机器人由共轴摆式悬挂系统小车底

盘、底层主控、一个 M10P 激光雷达和一个 Gemini
 

Pro 双

目深度相机等组成。 相机视场角为水平 71. 5°、垂直

56. 7°,景深范围 0. 25
 

m 至无穷远,最大帧率 30
 

fps 以及

分辨率为 1
 

920
 

pixel×1
 

080
 

pixel。 移动机器人最大速度

为 0. 63
 

m / s。

图 9　 机器人结构

Fig. 9　 Robot
 

structure

图像数据集包含了不同光照条件下机器人在操场跑

道上运行的空间场景图像,共计 16
 

435 张。 图 10(a) ~ (i)
所示分别为机器人在晴天、阴天和下雨天时左转、右转、
直行情况下所采集的图像。

1)数据集预处理

为增强卷积神经网络模型的泛化能力和准确性,避
免过拟合,因此将采集后的图片通过锐度调整、亮度调

整、翻转、色度调整、对比度调整等方法进行数据集增强

扩充,如图 11(a) ~ (f)所示。 按照 8 ∶ 2 的比例划分训练

集和测试集,用于网络预训练以获得新权重,具体信息如

表 1 所示。 图像标签在采集时命名为转向角度大小。 为

实现改进后的网络模型训练效率更高和收敛速度更快,
训练前将图片尺寸调整为

 

224
 

pixel×224
 

pixel。
2)实验环境与参数设置

实验在 Windows
 

10 操作系统下进行,配备了 13 代

Intel
 

Core
 

i5-13600F 处理器( 主频 3. 50
 

GHz),并搭载

图 10　 训练集图像示例

Fig. 10　 Examples
 

of
 

images
 

from
 

the
 

training
 

set

图 11　 数据增强样本

Fig. 11　 Augmented
 

samples

NVIDIA
 

GeForce
 

RTX
 

4060
 

Ti 显卡,16
 

GB 显存。 深度学

习框架采用 PyTorch
 

1. 12. 1,编程语言为 Python,代码开

发和运行环境使用 PyCharm。 超参数的大小对网络模型

　 　 　 　
表 1　 转向角图像数量分布

Table
 

1　 Distribution
 

of
 

the
 

number
 

of
images

 

per
 

steering
 

angle
类别 数据总量 训练集数量 测试集数量

左转 4
 

680 3
 

744 936
右转 6

 

491 5
 

193 1
 

298
直行 5

 

264 4
 

211 1
 

053
总计 16

 

435 13
 

148 3
 

287
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训练的效率和收敛速度影响显著,经过多次调参,最优参

数为将学习率调整为 1×10-4,批量大小设置为 32,训练

迭代次数为 100,采用 Adam 优化器。
3. 2　 性能评价指标

　 　 采用均方误差( mean
 

squared
 

error,MSE)、平均绝对

误差(mean
 

absolute
 

error,MAE)和均方根误差( root
 

mean
 

squared
 

error,RMSE) [23] 3 个评价指标来评估改进后模型

的转向角预测性能。
MSE 是计算预测值与真实值之间误差的平方的平

均值,其公式为:

MSE = 1
n ∑ n

i = 1
(y i -

 

y i

(

) 2 (17)

式中: y i 是第 i 个样本的真实值;
 

y i

(

是第 i 个样本的预测

值;n 是样本的数量。
MAE 是计算预测值与真实值之间误差的绝对值的

平均值,其公式为:

MAE = 1
n ∑ n

i = 1
y i -

 

y i

(

(18)

式中: y i 是第 i 个样本的真实值;
 

y i

(

是第 i 个样本的预测

值; n 是样本的数量。
RMSE 是均方误差的平方根,其计算公式为:

RMSE = 1
n ∑

n

i = 1
(y i -

 

y i

(

) 2 (19)

式中: y i 是第 i 个样本的真实值;
 

y i

(

是第 i 个样本的预测

值;n 是样本的数量。
3. 3　 改进网络的性能测试

　 　 1)ResNet18 网络改进前后的模型性能对比

通过测试集中的样本对改进后的网络模型进行性能

评估,改进前与改进后的模型性能由图 12、13 和表 2 所

示,与 ResNet18 模型相比,改进后的模型 MAE 减少了

38. 47%,为 0. 147
 

8;MSE 降低了 44. 34%,仅为 0. 048
 

7;
RMSE 减小了 35. 51%,为 0. 237

 

5,模型性能提升的同

时,迭代 100 次所用时长减少了 0. 199
 

h,仅为 1. 907
 

h,
测试结果表明,本文针对 ResNet18 网络模型的改进能有

效提高转向角预测的准确率,增强模型的识别性能,减少

模型的迭代时长。

图 12　 模型改进前的误差曲线

Fig. 12　 Error
 

curve
 

prior
 

to
 

model
 

improvement

图 13　 模型改进后的误差曲线

Fig. 13　 Error
 

curve
 

following
 

model
 

improvement
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表 2　 改进前后的模型性能对比

Table
 

2　 Model
 

performance
 

comparison
 

before
and

 

after
 

improvement
模型 MAE MSE RMSE 迭代 100 次用时 / h

ResNet18 0. 240
 

2 0. 087
 

5 0. 368
 

3 2. 106
改进

 

ResNet18 0. 147
 

8 0. 048
 

7 0. 237
 

5 1. 907

　 　 2)消融实验结果分析

为了检验不同优化策略对模型识别误差的影响,开
展了若干消融实验,结果如表 3 所示。 在 ResNet18 模型

架构的基础上,分别引入了两项优化策略
 

(只引入 PSA
注意力模块、同时引入 PSA 注意力模块和 ASPP 模块),
模型的均方误差、平均绝对误差、均方根误差都有效降

低,尤以同时引入 PSA 注意力模块和 ASPP 模块的模型

性能 最 好, 较 原 模 型 误 差 分 别 减 少 了 38. 47%、
44. 34%、35. 51%。

表 3　 消融实验结果

Table
 

3　 Ablation
 

study
 

results
引入 PSA

注意力机制

引入 ASPP
模块

MAE MSE RMSE

× × 0. 240
 

2 0. 087
 

5 0. 368
 

3
√ × 0. 236

 

2 0. 071
 

1 0. 325
 

8
√ √ 0. 147

 

8 0. 048
 

7 0. 237
 

5

　 　 注:“ ×”表示未进行此项改进;“√”表示进行了此项改进

　 　 3)改进 ResNet18
 

模型与其他优秀网络模型的性能

对比

为深入测试所提出的改进模型性能,将其与其他优

秀 的 神 经 网 络 模 型 ResNet18、 ResNet34、 ResNet50、
VGGNet、GoogLeNet 进行对比实验,实验结果如表 4 所

示。 由表 4 可知,超参数设定和其他实验条件相同的情

况下,由于参数量较少、数据集规模不大,ResNet18 模型

在 3 种不同深度
 

ResNet
 

模型中迭代 100 次所用时长最

短,均方误差、 平均绝对误差和均方根误差均低于

ResNet34 和 ResNet50。 所改进的网络模型迭代完成所用

时长 低 于 上 述 3 种 ResNet 模 型 以 及
 

VGGNet 和

GoogLeNet 模型,均方误差、平均绝对误差和均方根误差

分别降低显著。 实验结果表明,提出的模型在识别误差

上显著降低,提高了空间多尺度连续性特征识别的准确

性和精度,为模型在机器人系统中的实际应用和部署奠

定了基础,此外也证明了该优化方法的有效性。
3. 4　 公开数据集验证

　 　 为了验证所提出 ResNet-PSA-ASPP 网络模型的先进

性,在 TUM 公开数据集上进行试验,TUM 数据集是由慕

尼黑工业大学计算机视觉组提供的标准 RGB-D 数据

集,主要用于视觉 SLAM 和机器人导航算法的开发

与评估。

表 4　 改进 ResNet18 与其他模型性能对比

Table
 

4　 Performance
 

comparison
 

between
 

the
improved

 

ResNet18
 

and
 

other
 

models

模型 MAE MSE RMSE 迭代 100 次用时 / h
ResNet18 0. 240

 

2 0. 087
 

5 0. 368
 

3 2. 106
ResNet34 0. 266

 

7 0. 089
 

3 0. 396
 

2 2. 357
ResNet50 0. 271

 

2 0. 089
 

9 0. 397
 

8 2. 395
VGGNet 0. 938

 

4 0. 156
 

2 0. 778
 

3 3. 987
GoogLeNet 0. 536

 

9 0. 113
 

5 0. 657
 

9 2. 489
改进

 

ResNet18 0. 147
 

8 0. 048
 

7 0. 237
 

5 1. 907

　 　 表 5 为本文模型与其他对比模型利用 TUM 数据集

预测转向角度的 MSE、模型运行速度及模型参数量大小。
只对不同模型 MSE 误差最低情形下的运行速率及模型

参数量大小进行对比,运行速度不包括数据处理时间。
由表 5 可知,虽然 ResNet18 模型均方误差为 0. 093

 

1,没
有达到最高, 但模型参数量为 11. 69 × 106, 运行速度

530
 

f / s,是所有模型中运行速度最快、参数量最小的,对
边缘部署任务友好。 所提出的改进 ResNet18 模型均方

误差为 0. 053
 

8,在对比模型中均方误差最低,模型参数

量为 14. 84×106,运行速度为 490
 

f / s,在精度与性能之间

取得了良好的平衡。
表 5　 各模型运行速度及大小对比

Table
 

5　 Comparison
 

of
 

inference
 

speed
 

and
model

 

size
 

for
 

each
 

model

模型 MSE 速率 / fps 参数量 / ( ×106 )
ResNet18 0. 093

 

1 530 11. 69
ResNet34 0. 093

 

3 380 21. 80
ResNet50 0. 093

 

8 320 25. 56
改进 ResNet18 0. 053

 

8 490 14. 84

3. 5　 轮式机器人虚拟平台仿真实验

　 　 为进一步验证文中提出的改进 ResNet18 网络的整

体性能,在 Unity 开发的 donkey_sim 模拟器上对该网络

进行了测试。
采集的图片命名标签为转向角度,将采集的数据集

拆分为训练集和测试集,使用改进的 ResNet18 网络对训

练集进行训练, 在训练过程中使用数据可视化工具

tensorboard 进行损失函数变化监控。 在该模拟器中,控
制小车的主要是油门和转向角度两个参数。 训练结束后

将模拟器中小车转向值设置为 0,油门值设置为 0. 1 匀速

行驶,通过代码将改进的神经网络训练出的模型导入到

模拟器中,运动过程中根据获取的图像自动推理输出转

向角度,控制小车运动,构建出的经验地图部分场景如图

14 所示。
从图 14( a) ~ ( l) 可以看出,无论在何种场景地图

下,模型推理出的转向角度均能够很好地引导小车行驶,
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图 14　 虚拟平台经验地图构建

Fig. 14　 Construction
 

of
 

the
 

virtual
 

platform
 

experience
 

map

使其保持在车道线的中间位置。 这表明模型具有较高的

泛化能力和鲁棒性,能够在不同的环境下精准识别小车

行驶轨迹,输出合理的转向角度,并进行合理的路径规划

与控制。 通过这一特性,模型在复杂场景中不仅能够保

持小车稳定行驶,还可以构建出适应环境变化的经验地

图。 这种能力使得模型在面对复杂多变的场景时,能够

根据实时推理结果调整驾驶策略,从而为小车提供更加

智能和高效的导航支持,进一步验证了模型在端到端自

动驾驶任务中的适用性和可靠性。
3. 6　 实景实验

　 　 为验证所提模型的有效性,并更精确地分析该模型

在轮式机器人上构建经验地图的性能与精度,本实验将

改进的
 

ResNet18
 

神经网络训练得到的模型部署到采集

图像的轮式机器人操作系统 ( robot
 

operating
 

system,
ROS)中,在真实操场环境下开展经验地图构建实验,如
图 15 所示。 任选其中一条跑道,起点任意设置,将机器

人放置在两条跑道线中间。
导入小车的运动库和其他相关的库函数,同时打开

相机指令,定义小车初始油门为 0. 1
 

m / s,初始转向角为

0°,设置改进网络模型路径和推理环境。 小车在运动过

程中通过获取图像和信息预处理,自动计算输出转向角

图 15　 实验场景图片

Fig. 15　 Images
 

of
 

the
 

experimental
 

setup

度并执行相应的动作。 通过惯性测量单元 ( inertial
 

measurement
 

unit,IMU)中的加速度计和陀螺仪测量加速

度和角速度并结合里程计数据,对这些数据进行积分来

获得相对运动轨迹,不同模型的相对运动轨迹对比如图

16 所示,各模型的转向角偏差均值如表 6 所示。

图 16　 训练集与真实路径对比

Fig. 16　 Comparison
 

of
 

the
 

training
 

set
 

and
 

real
 

path

表 6　 不同模型转向角偏差均值

Table
 

6　 Mean
 

steering
 

angle
 

deviation
 

of
 

different
 

models

模型 ResNet18
ResNet

34
ResNet

50
改进

ResNet18
转向角偏差均值 / ( °) 0. 59 1. 23 1. 52 0. 15

　 　 从图 16 和表 6 可知,ResNet34 和 ResNet50 神经网

络模型推理出的路径相差不大,均偏离训练集路径较多,
转向角偏差均值都大于 1°,ResNet18 推理出的路径优于

ResNet34 和 ResNet50,转向角偏差均值为 0. 59°,改进的

模型推理出的转向角度与训练集路径大致相同且优于其

他模型,转向角偏差均值仅为 0. 15°。 这充分验证了文章

提出模型的有效性。 模型不仅在推理速度和稳定性方面

表现出色,同时在角度预测的精度上也达到了实际应用

的要求,完全能够满足轮式机器人构建经验地图的需求。
这一结果表明,该模型在复杂场景中表现出较强的适应

性和鲁棒性,为自主导航任务提供了有力的技术支持。
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4　 结　 论

　 　 本文基于 ResNet18 进行改进,提出了一种空间多尺

度连续性特征提取的网络模型—ResNet-PSA-ASPP。 核

心思路在于借助高效的特征提取和多尺度融合,在不增

加计算量的基础上全面提升模型在经验地图构建中的表

现力。 ResNet-PSA-ASPP 采用 ResNet18 作为主干网络,
引入 PSA 注意力模块和 ASPP 模块,改进的网络模型不

仅显著提升了空间多尺度连续性特征提取效率,还进一

步捕捉更大的上下文信息,扩大了卷积核的感受野,在转

向角预测准确率与模型复杂度之间取得了更优平衡。 在

实验测试中,较 ResNet18、ResNet50、VGGNet 等优秀网络

模型,提出模型具有更高的预测精度,预测的误差分别减

少了 38. 47%、44. 34%、35. 51%,在真实场景的构建经验

地图实验中也验证了模型的有效性。 未来进一步探索不

同尺度的卷积核或池化方式,以适配具体任务。 比如,对
于自动驾驶的场景识别,可能需要更大尺度的感受野来

捕捉道路环境,未来将进一步优化模型结构和增强数据

多样性,以提高模型的鲁棒性。
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