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Experience map construction for wheeled robots based on
spatial multi-scale continuity feature extraction
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(1. School of Mechanical, Electrical and Automotive Engineering, Tianshui Normal University, Tianshui 741001, China;
2. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China)

Abstract: To address the issues of complex mapping processes, difficult parameter tuning, and poor generalization in traditional
simultaneous localization and mapping ( SLAM) algorithms, this paper proposes a wheeled robot experience map construction method
based on spatial multi-scale continuity feature extraction. First, PSA and ASPP modules are integrated into the ResNet18 architecture.
PSA groups intermediate features and calculates attention weights across channels to capture multi-scale information, thereby enhancing
feature representation. ASPP incorporates dilated convolutions with varying dilation rates and global average pooling to aggregate global
contextual information, further strengthening the representation of spatial multi-scale continuity features. Then, the improved ResNet-
PSA-ASPP model is trained on datasets collected in both the donkey_sim simulator and real-world robot racetrack scenarios. Finally,
model performance is evaluated in both simulated and real-world environments using the donkey_sim simulator and the robot operating
system ( ROS). Experimental results show that the proposed model reduces steering angle prediction errors by 38.47% , 44.34% , and
35.51%, respectively, and significantly outperforms classical networks such as ResNet18, ResNet50, and VGGNet in feature extraction
capability, computational efficiency, and mapping accuracy.
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Table 2 Model performance comparison before

and after improvement
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Table 4 Performance comparison between the

improved ResNet18 and other models
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Fig. 16  Comparison of the training set and real path
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