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基于 SOP 芯片三维点云图像的引脚缺陷检测方法∗
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摘　 要:针对目前小外形封装(SOP)芯片引脚的三维缺陷检测任务,现有的点云深度学习方法难以有效检测常见的引脚缺陷。
为解决这一问题,定义了一种有缺陷的芯片引脚点云( DCPP) 图像,并创建了相应的 DCPP 数据集。 同时提出了一种面向

DCPP 图像的 DCPP-PointNet 缺陷检测算法。 该算法新增加的局部-空间特征提取(LSFE)网络,可有效提高模型的旋转鲁棒性,
使得模型在面对旋转的芯片点云数据时仍能保持良好的检测性能;其次设计全新的倒残差多尺度卷积网络( iRMSC-Net)替换

PointNet++中的特征编码器,通过加强对点云边缘局部信息的学习能力,从而实现对 SOP 芯片引脚常见缺陷的精确分类和定

位;最后采用 Focal 损失函数解决了正负样本不平衡的问题,使得模型能够更加关注难以区分的缺陷样本,提高检测精度。 在

自建的 DCPP 数据集上进行的实验结果表明,DCPP-PointNet 网络在总体准确率(OA)和平均交并比( mIoU)等评估指标上均优

于现有的 PointNet、PointNet++、DGCNN 等经典点云分割模型,展现了高达 98. 9%的 OA 和 93. 7%的 mIoU。 消融实验进一步验

证了 DCPP-PointNet 中各个改进模块的有效性,LSFE 网络、iRMSC-Net 特征编码器和 Focal 损失函数三者共同作用,对提高模型

的检测精度和鲁棒性具有重要意义。
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Abstract:
 

For
 

the
 

three-dimensional
 

defect
 

detection
 

task
 

of
 

SOP
 

chip
 

pins,
 

existing
 

point
 

cloud
 

deep
 

learning
 

methods
 

struggle
 

to
 

effectively
 

detect
 

common
 

pin
 

defects.
 

To
 

address
 

this
 

issue,
 

a
 

DCPP
 

image
 

is
 

defined
 

and
 

a
 

corresponding
 

DCPP
 

dataset
 

is
 

created.
 

A
 

DCPP-PointNet
 

defect
 

detection
 

algorithm
 

is
 

also
 

proposed,
 

specifically
 

designed
 

for
 

DCPP
 

images.
 

This
 

algorithm
 

incorporates
 

a
 

LSEF
 

network,
 

which
 

enhances
 

the
 

model’s
 

rotational
 

robustness
 

and
 

ensures
 

good
 

detection
 

performance
 

even
 

with
 

rotated
 

point
 

cloud
 

data.
 

Additionally,
 

a
 

new
 

iRMSC-Net
 

network
 

is
 

designed
 

to
 

replace
 

the
 

feature
 

encoder
 

in
 

PointNet++,
 

improving
 

the
 

model’s
 

ability
 

to
 

learn
 

local
 

edge
 

features
 

of
 

point
 

clouds
 

and
 

enabling
 

precise
 

classification
 

and
 

location
 

of
 

common
 

SOP
 

chip
 

pin
 

defects.
 

Focal
 

loss
 

function
 

is
 

employed
 

to
 

tackle
 

the
 

imbalance
 

between
 

positive
 

and
 

negative
 

samples,
 

allowing
 

the
 

model
 

to
 

focus
 

more
 

on
 

hard-to-distinguish
 

defect
 

samples
 

and
 

thus
 

improving
 

detection
 

accuracy.
 

Experimental
 

results
 

on
 

the
 

self-built
 

DCPP
 

dataset
 

show
 

that
 

the
 

DCPP-PointNet
 

network
 

surpasses
 

existing
 

point
 

cloud
 

segmentation
 

models
 

such
 

as
 

PointNet,
 

PointNet++,
 

and
 

DGCNN
 

in
 

terms
 

of
 

OA
 

and
 

mIoU.
 

It
 

achieved
 

an
 

OA
 

of
 

98. 9%
 

and
 

an
 

mIoU
 

of
 

93. 7%.
 

Ablation
 

studies
 

further
 

confirm
 

the
 

effectiveness
 

of
 

the
 

improvements
 

in
 

DCPP-
PointNet,

 

where
 

the
 

combined
 

action
 

of
 

the
 

LSFE
 

network,
 

iRMSC-Net
 

feature
 

encoder,
 

and
 

Focal
 

loss
 

function
 

significantly
 

enhances
 

the
 

model’s
 

detection
 

accuracy
 

and
 

robustness.
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0　 引　 言

　 　 小外形封装( small
 

out-line
 

package,SOP) [1] 是一种

很常见的元器件封装形式,表面贴装型封装之一,引脚从

封装体两侧引出呈海鸥翼状(L 字形)。 为了更好地存储

芯片引脚,需要使用保护层,并在芯片安装前通过镀锡工

艺进行镀锡。 在这个过程中,芯片的引脚很容易因为高

温而发生轻微的变形。 表面贴装技术的成功率不仅由贴

装工艺决定,贴片芯片引脚的质量也起着决定性的作

用[2] 。 所以在芯片封装出厂前和贴装到印制电路

板(printed
 

circuit
 

board,PCB)前对其引脚进行检测是十

分必要的。
SOP 芯片引脚的检测主要分为二维和三维两种方

式。 二维检测技术已比较成熟,方法大致有机器学习和

深度学习算法两种。 其中,Han 等[3] 使用最小二乘法计

算芯片引脚的中心坐标和角度来进行缺陷检测。 Ou
等[4] 提出了基于动态阈值的快速分割算法来获取芯片特

征图像,并设计了一种基于灰度跳变检测的芯片引脚缺

陷检测方法。 Qiao 等[5] 利用自动视觉对芯片引脚进行特

征提取,提高了芯片引脚缺失、弯曲和粘连引脚缺陷检测

的效率。 Chen 等[6] 设计了一种基于 YOLOv4-tiny 算法的

轻量级检测算法,用于检测不同尺寸芯片中的漏针缺陷。
张恒等[7] 提出基于 YOLOv5 改进的缺陷检测方法,提出

新增小目标特征检测器,提升模型对小目标缺陷的学习

能力。 但基于二维图像的缺陷检测对环境的要求较为严

格,如果光照条件太暗或太亮,基于二维图像就难以识别

缺陷。 同时,由于 SOP 芯片引脚本身过于细小,其缺陷

的特征往往需要从三维空间中进行检测,用以判断缺陷

是否符合标准。 例如,Lu 等[8] 采用双目视觉检测系统对

芯片引脚三维重构,结合角点检测算法和梯度相关矩阵

预处理算法,对传送带上的芯片进行自动识别。 Du 等[9]

针对现有目标检测算法在检测引脚微小变形时的不足,
提出了一种基于深度直方图和目标导向多模态自注意机

制的实时检测方法。 但其本质上还是基于像素的方法,
测量的效果很大程度上依赖于测量的环境。 线激光传感

器作为主动视觉技术之一,可以提供高密度点云数据,完
美反映了 SOP 芯片精细的三维引脚表面。 例如,宋丽梅

等[10]利用高精度轮廓线激光采集 SOP 芯片点云数据,通
过点云处理技术对引脚共面度进行检测。 梁天为等[11]

利用点云处理对 QFP 芯片引脚平面度进行评估。 然而,
现有研究主要集中于芯片引脚的平面度测量,对芯片引

脚缺陷进行精确分类的研究相对较少。 例如,引脚间相

互粘连、弯斜或残缺等常见缺陷的三维检测。 如果能将

上述芯片引脚缺陷精准分类,就能很大程度上避免由芯

片质量问题造成的 PCB 板装贴成品质量下降的问题。

综上所述,为了解决对芯片引脚高密度点云数据的

分类和定位问题,需要高效的处理算法支持。 最近几年

随着深度学习在点云领域的发展,其分割与分类方法也

越来越多,如 PointNet++[12] 、PointGMM[13] 、PointCNN[14] 、
PointConv[15] 、DGCNN[16] 等,已经有越来越多学者将其应

用于工业缺陷检测领域。 Park 等[17] 引入了双级点云缺

陷检测网络,通过点云分割来检测 PCB 板中的锡膏缺

陷。 张臣等[18] 针对铝合金薄板激光焊接经常会出现咬

边、凹陷这两种尺寸小、特征相似的表面缺陷,开发了一

种基于深度学习缺陷分类—点云测量的在线监测系统,
利用高密度的点云数据对缺陷进行识别、分类与测量。
Wang 等[19] 提出了一种新的改进的 PointNet++,用于对排

水管道中不同形状和大小的缺陷进行分类和分割。
Wang 等[20] 提出基于多个视点之间的关系学习区分形状

描述符和多视点 GCN,用于对飞机机身上综合生成的点

云数据集中的缺陷(划痕、凹痕、突出)进行分类。
目前,尚未发现利用点云深度学习技术进行 SOP 芯

片引脚缺陷检测的相关公开文献报道。 而且现有的方法

在处理 SOP 芯片引脚缺陷检测时仍存在旋转鲁棒性不

足、边缘特征提取能力有限和样本不平衡等问题。 因此,
本文提出了一种专门针对 SOP 芯片引脚的点云缺陷检

测算法。 首先,定义了有缺陷的芯片引脚点云( defective
 

chip
 

pin
 

point,DCPP)图像并构建相应的数据集。 然后,
设计了 DCPP-PointNet 缺陷检测模型,该模型新增了局

部-空间特征提取(local-spatial
 

feature
 

extraction,LSFE)网

络以解决点云数据的旋转不变性问题,并采用倒残差多

尺度卷积网络( inverted
 

residual
 

multi-scale
 

convolutional
 

net,iRMSC-Net)编码器提升特征鲁棒性,同时使用 Focal
损失函数[21] 解决了正负样本不平衡的问题。

综上所述,本文的研究不仅填补了 SOP 芯片引脚三

维缺陷检测领域的空白,还为工业检测提供了一种高效、
准确的解决方案,具有重要的理论意义和实际应用价值。

1　 DCPP 图像的获取

　 　 通过线激光轮廓传感器采集到的芯片点云图像通常

数据量庞大,直接输入网络模型会消耗大量的时间和计

算资源。 而且,由于受到设备采集精度和芯片引脚表面

特性影响,点云表面容易出现离目标点云较远以及相互

混杂的点云噪声。 因此,需要通过点云图像预处理,得到

含有高度信息的芯片引脚及封装体表面的点云图像,本
文称之为 DCPP 图像。

DCPP 图像获取示意图如图 1 所示。 其中检测设备

主要由线激光轮廓传感器、计算机和传送带组成。 线激

光轮廓传感器通过内置激光发生器发射线激光,照射到

待测芯片表面。 传感器内置的相机从一个角度获得芯片
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表面上反射回来的激光。 由于芯片不同位置到传感器的

距离不同,反射回来的激光会落在相机成像区域的不同

位置上。 传感器的激光发射器、相机和待测芯片形成一

个三角形,通过预先标定的传感器参数,可以计算出激光

照射在芯片表面所形成激光轮廓上各点的高度,通过传

送带移动使传感器可以采集到完整的芯片表面轮廓后输

出原始的芯片点云图像。 原始的芯片点云图像拥有很多

杂乱的干扰点以及庞大的载物平台点云数据,这对后期

的缺陷检测精度有着或多或少的影响。 因此,本文首先

对芯片点云图像进行预处理,得到 DCPP 图像后再对其

进行缺陷检测。

图 1　 DCPP 图像获取示意图

Fig. 1　 Schematic
 

diagram
 

of
 

DCPP
 

image
 

acquisition

　 　 芯片点云图像预处理如图 2 所示。 首先,利用基于

统计学方法的离群点算法和基于法线的双边滤波算

法[22-23] ,去除由于激光扫描产生的不均匀点云噪声并且

对点云表面进行平滑处理。 然后,将降噪处理后的芯片

点云图像根据高度信息进行颜色渲染,得到渲染处理芯

片点云图像。 最后,经过基于颜色的区域生长分割后,芯
片引脚点云图像、芯片封装体点云图像和载物平台表面

点云图像可以快速分离,并且通过设置合理的阈值范围

就可以得到仅保留芯片引脚和封装体表面的点云图像,
即 DCPP 图像。

2　 DCPP-PointNet 缺陷检测模型

　 　 PointNet++算法是目前点云深度学习领域的典型算

法,近几年其改进模型在缺陷检测领域取得了不错的成

图 2　 芯片点云预处理流程

Fig. 2　 Chip
 

point
 

cloud
 

preprocessing
 

flowchart

果。 本文提出的 DCPP-PointNet 改进了 PointNet++中的
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点云特征编码器并重新设计了点云空间变换环节,以

DCPP 图像 I ∈ RN 为输入, 输出每点分割检测结果

Mseg ∈ RN×C 。 这里, N 相当于 DCPP 图像中的点云点

数, C = m + 1 是引脚类别与封装体的数量,其中, m 表示

缺陷类别的数量。 其整体网络结构如图 3 所示,首先提

取 DCPP 图像的局部特征与空间特征进行点云空间变换

以实现旋转鲁棒性。 其次, 提出适用于点云分割的

iRMSC-Net 提取 DCPP 图像的层次特征,并不断重复 4 次

用以实现对局部特征不断的提取,加强对点云的特征学

习。 而后通过残差跳连接进行特征链接,将分层特征反

馈给分割解码器,最终生成 Mseg 。

图 3　 DCPP-PointNet 整体网络结构

Fig. 3　 The
 

overall
 

network
 

structure
 

of
 

DCPP-PointNet

2. 1　 点云空间变换网络

　 　 在实际的生产过程中,位于传送带上的 SOP 芯片发

生任意旋转是时常发生的,而任意倾斜的芯片点云数据

直接输入一般的分割网络中,其性能将会出现大幅下降。
针对此类问题,需要改变输入的特征,即不直接输入绝对

坐标到网络中,并且使网络学习到的特征不论如何旋转

都是一致的。 虽然原有的 PointNet++使用了 T-Net 用于

生成一个仿射变换矩阵来对点云的旋转、平移等变化进

行规范化处理,但是其对于分割任务几乎没有帮助。 所

以本文提出了 LSFE 网络,来构建 DCPP 图像的相对几何

特征。
1)局部特征提取

由于 DCPP 图像特性,其局部特征的提取对于最终

的检测精度尤为关键。 考虑到旋转不变性,本文参考了

先前的一些经验,使用相对距离和角度作为基本的边缘

描述符。 同时,为了拥有更丰富的局部形状描述集合,参
考内核关联层( kernel

 

correlation,KC) [24] ,通过如下描述

旋转不变几何属性(距离和角度)间的高阶关系。
如图 4 所示,对于查询点 uq = d × nq ,通过 K 近邻域

点(k-nearest
 

neighbor,KNN) 采样算法生成局部图,并且

假设邻域点 PK 是 KNN 生成的局部点之一。 uq = d × nq 和

PK 之间的相对位置被描述为 uq = d × nq 。 然而, PK 的位

置没有考虑方向。 因此,通过计算以 uq = d × nq 和 PK 为

中心的局部坐标之间的高阶关系来估计 PK 的方向。 查

询点坐标 uq = d × nq 被生成为:
uq = d × nq (1)
vq = uq × nq (2)

图 4　 局部特征的提取

Fig. 4　 Extraction
 

of
 

local
 

features

式中:×表示叉积。 [d, (nq,uq,vq), (nk,uk,vk)] 用作表

征高阶相对关系的结构; (nk,uk,vk) 表示邻域点坐标。

PK 的方位由 7 维矢量 Fa = MLP a(F)(∈ RNf) 计算,其中

每个 θ 分别表示一对特征描述符 (d,nq)、(d,nk)、(nq,
nk)、 (uq,nk)、 (vq,vk)、 (uq,vk)、 (vq,uk) 之间的角度。
此外,每个角度描述符由两个低阶特征描述符之间的

cosθ 1 =
d·nq

‖d‖‖nq‖
相似度来定义,以 θ1 为例,如式(3)

所示。 而 θ6 和 θ7 是为了解决因局部曲面方向而引起的

歧义。

cosθ1 =
d·nq

‖d‖‖nq‖
(3)

2)空间特征提取

由于缺乏独特的空间属性,仅使用局部特征描述是

不够的。 考虑到位于平面上的点,局部几何属性往往是

相似的,并且不可避免地造成混淆。 因此,一般利用旋转

不变的空间属性解决这个问题。
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提取空间属性的直观解决方案是使用球坐标系中的

点位置。 然而,原始位置对旋转很敏感。 为了获得旋转

不变的空间属性,本文使用了奇异值分解( singular
 

value
 

decomposition,SVD),其能够寻找正交旋转变换方向。 因

此,本文对原始点云 PD 进行奇异值分解,如式(4)所示。
PD = UΣVT (4)

式中: U 是一个 m × m 的矩阵; Σ 是一个 m × n 的矩阵,
除了主对角线上的元素以外全为 0,主对角线上的每个

元素都称为奇异值; V 是一个 n × n 的矩阵, U 和 V 包含

3 个与旋转等变的正交轴。 为了实现旋转不变性,将点

从原始模型变换到新建立的全局坐标系,如式(5)所示。

P̂ = PD·V (5)

式中: P̂ 描述所需的空间旋转不变属性。 此外,由于原始

奇异值分解技术容易受到符号翻转的影响,本文通过估

计每个正交轴和距离质心最远的点之间的角度来确定 3
个正交轴的最终方向。 如图 5 所示,如果对应的角度大

于 90°,则正交轴将发生翻转。

图 5　 确定位置提取中正交轴的最终方向

Fig. 5　 Determining
 

the
 

final
 

pattern
 

of
 

the
orthogonal

 

axis
 

in
 

position
 

extraction

2. 2　 点云特征编码器

　 　 由于 DCPP 图像中引脚都位于图像边缘,且相较于

整体点数较少,如果直接应用 PointNet++中的特征提取

模块,难以提取有效的引脚特征,为了加强对小目标特征

信息的利用,需要增强对点云边缘局部信息的学习能力。

　 　 因此本文采用新设计的 iRMSC-Net 作为点云特征编

码器, 如 图 6 所 示, 输 入 点 云 通 过 最 远 点 采 样 算

法(farthest
 

point
 

sampling,FPS)来实现从 N 个点中采样

N f 个点,再通过 KNN 进行降采样将 DCPP 图像分组为局

部区域。 受倒移动残差块(inverted
 

residual
 

mobile
 

block,
iRMB) [25] 和 SegNext[26] 的启发,将 iRMB 和多尺度卷积

注意力( multi-scale
 

convolutional
 

attention,MSCA)操作相

融合引入特征提取部分,提出了 iRMSC-Net,在不增加模

型复杂度的同时提升芯片引脚缺陷识别精度。 加入

iRMSC-Net 模块后模型更加注重引脚及封装体边缘特征

的提取。 最后,通过最大池化操作对提取特征进行融合。
本文提出的 iRMSC-Net 主要由 3 个部分组成:首先,

输入特征通过多层感知器进行升维操作:

Fa = MLP a(F)(∈ RNf) (6)
然后,利用中间算子对点云特征 Fa 进行增强:

Fm = M(Fa )(∈ RNf) (7)
本文选用多尺度卷积注意力作为中间算子 M ,多尺

度卷积注意力主要由用于聚集局部信息的深度卷积,用
来提取芯片引脚特征的多分支深度条状卷积,以及用于

对不同通道之间的关系进行建模的 1×1 卷积组成,其公

式如下:

M = conv1 ×1(∑ 3

i = 0
Scale i(DW - Conv(Fa ))) 􀱋 Fa

(8)
式中:􀱋是逐个元素的矩阵乘法运算;DW-Conv 表示深度

卷积;Scale i,i∈{1,2,3}表示第 i 个分支。
最后,通过多层感知器进行降维操作,减小通道数:

Fr = MLP r(Fm)(∈ RNf) (9)
并且通过残差连接初始点云特征 F 和降维点云特征

Fr 得到最终结果 E :

E = F 􀱇 Fr(∈ RNf) (10)

图 6　 iRMSC-Net 整体网络结构

Fig. 6　 The
 

overall
 

network
 

structure
 

of
 

iRMSC-Net

2. 3　 分割解码器

　 　 如图 7 所示,分割解码器由特征传播层堆叠而成,其
中特征传播层由 Interpolate 和 Unitpointnet(1 × 1 卷积网

络)组成。 当点云特征被输送到插值层,它们就从 N l ×
C l 传播到 N l -1 × C l -1。 这里,新创建的点云特征是通过

KNN 选择的周围点的反距离加权平均来计算的。 然后,
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通过残差跳连接将大小为 N l -1 × C l 的插值特征与

iRMSC-Net 层 l - 1 中的点云特征连接起来。 然后,将大

小为 N l-1 × (C l + C l -1) 的特征输入 Unitpointnet,对其中

每个点应用 1×1 卷积网络,更新每个点的特征向量。 重

复该特征传播过程,得到的点集中的点数变为原始输入

点集的点数。

图 7　 分割解码器结构

Fig. 7　 Structure
 

of
 

the
 

segmentation
 

decoder

2. 4　 Focal 损失函数

　 　 损失函数的设计是影响模型性能的重要原因之一,
PointNet++使用的是 NLL

 

Loss,但是由于 DCPP 图像缺陷

样本远小于正常样本,DCPP 数据集中不同类别引脚分

布情况如图 8 所示,大量冗余的正常样本不仅无法显著

提升模型的泛化能力,反而可能因样本分布失衡而掩盖

少量关键缺陷样本的特征信息(正样本表示正常样本,负
样本表示缺陷样本),从而削弱模型对异常模式的识别精

度。 所以为了解决正负样本不平衡的问题,本文使用了

Focal
 

loss 替换掉原来的 NLL
 

Loss。 Focal
 

loss 是在交叉

熵(cross
 

entropy,CE)损失的基础上进行改进的一种损失

函数。 它是一个动态缩放的交叉熵损失,通过一个动态

缩放因子,可以动态降低训练过程中易区分样本的权重,
从而将重心快速聚焦在那些难区分的样本。 Focal

 

loss 的

公式如下:
FL(p t ) = - α t(1 - p t )

γ log(p t ) (11)
为解决正负样本不平衡问题,引入一个权重因子

α t 。 同时,为了区分样本的难易程度,引入了一个调制

因子 γ ,用来聚焦难分样本。 即通过 α t 可以抑制正负样

本的数量失衡,通过 γ 可以控制难易区分样本数量失衡。
在本文中,根据 DCPP 图像样本难易分类样本和正负样

本数量,取 α t = 0. 25、γ = 2。

3　 实验结果与分析

3. 1　 DCPP 数据集

　 　 SOP 芯片引脚缺陷样品主要来源于封装生产线,均
为 SOP-8 芯片,芯片尺寸为 4. 9

 

mm × 6. 0
 

mm,厚度为

1. 5
 

mm,采用 8 引脚封装,单个引脚宽度为 0. 51
 

mm。 引

脚缺陷包括常见的引脚上翘或下折、引脚弯斜和引脚缺

损,共 715 个样品。 收集到的样品通过线激光轮廓传感

器采集到高密度点云,再通过预处理操作得到 DCPP 图

像。 每张 DCPP 图像由一个封装体图像和 8 个引脚组

图 8　 DCPP 数据集中不同类别引脚分布情况

Fig. 8　 Distribution
 

of
 

pins
 

of
 

different
categories

 

in
 

the
 

DCPP
 

dataset

成,因此共采集了 715 组封装体数据,1
 

980 组正常引脚

数据,1
 

040 组上翘引脚数据,966 组下折引脚数据,772
组弯斜引脚数据和 962 组缺损引脚数据。

根据实际情况对 DCPP 图像根据缺陷种类标注标

签,标签包括:封装体、正常引脚、上翘引脚、下折引脚、弯
斜引脚与缺损引脚。 DCPP 标注示例如图 9 所示。

图 9　 DCPP 标注示例

Fig. 9　 DCPP
 

annotation
 

examples

同时为了使模型更容易收敛到正确的最优解,对标

签图像采用点云归一化操作,将所有点的坐标和尺寸归

一化到相同的坐标系下,从而避免了不同坐标系下的误

差。 归一化后的图像随机选取 492 张作为训练数据集。
为了提高模型鲁棒性,增加数据多样性,在训练数据集上



· 48　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

采用随机旋转的数据增强操作。 其余 DCPP 图像作为测

试集。 SOP 芯片所需检测的缺陷类别、点云组数及对应

的训练集和测试集的数量如表 1 所示。
表 1　 SOP 芯片所需检测的缺陷类别、点云组数及

对应的训练集和测试集的数量

Table
 

1　 The
 

type
 

of
 

defect,
 

number
 

of
 

point
 

cloud
 

groups
and

 

the
 

corresponding
 

number
 

of
 

training
 

sets
 

and
 

test
 

sets
 

that
 

SOP
 

chips
 

need
 

to
 

detect

类别
点云

组数

训练集中

点云组数

测试集中

点云组数

封装体 715 572 143
正常引脚 1

 

980 1
 

584 396
上翘引脚 1

 

040 832 208
下折引脚 966 773 193
弯斜引脚 772 618 154
缺损引脚 962 769 193

3. 2　 实验结果与讨论

　 　 本文数据采集所使用的操作系统为 Windows,实验

所使用的芯片缺陷检测实验平台如图 10 所示,其中线激

光轮廓传感器采用的是 PMS-PL-08,具体参数如表 2
所示。

图 10　 芯片缺陷检测实验平台

Fig. 10　 Chip
 

defect
 

detection
 

experiment
 

platform

模型训练所使用的操作系统为 Ubuntu,本文网络使

用 Python
 

3. 9 和 PyTorch
 

1. 10. 1 实现。 模型训练使用

NVIDIA
 

RTX
 

3090Ti(24
 

GB 内存)系统和 CUDA
 

11. 3 进

行。 采用 Adam 优化器用于训练;批处理大小为 8;动量

优化算法为 0. 9;采用指数衰减方法控制学习率变化,衰
减率为 0. 000

 

1,初始学习率设定为 0. 001,每次训练 50
　 　 　 　

个 epoch。
表 2　 线激光轮廓传感器的具体参数

Table
 

2　 Specific
 

parameters
 

of
 

line
 

laser
 

profile
 

sensor
指标 参数

激光线轮廓点的数目 1
 

920
视场 / mm 26~ 32

分辨率 X / mm 0. 014~ 0. 017
分辨率 Y / mm 0. 002 ~ 0. 003

 

5
z 方向可重复性 / μm 0. 8

测量范围 / mm 20
激光类 2

 

M
扫描速度 200

 

Hz

3. 3　 评估指标

　 　 为了评估芯片引脚分割性能,本文按照点云分割领

域的常规设置测量了总体准确率( overall
 

accuracy,OA)
和平均交互比( mean

 

intersection
 

over
 

union,mIoU)。 同

时,为了评估不同芯片缺陷引脚分割精度,本文还对每一

类引脚测量了其交互比(intersection
 

over
 

union,IoU)。 其

计算公式如下:

OA = n
N

(12)

IoU = TP
TP + FP + FN

(13)

mIoU = 1
C ∑

C

i = 1

TP i

TP i + FP i + FN i
,i ∈ C (14)

式中:C 表示数据集中芯片点云的分割类别(包含封装

体、正常引脚与缺陷引脚);TP 表示预测正确,真正例,模
型预测为正例,实际是正例;FP 表示预测错误,假正例,
模型预测为正例,实际是反例;FN 表示预测错误,假反

例,模型预测为反例,实际是正例;n 表示所有正确预测

点的数量;N 表示点云模型所有点数;mIoU 值与 OA 值越

接近 1,则缺陷分割效果越好,且有 mIoU≤OA。
3. 4　 检测精度分析

　 　 使用 DCPP 数据集训练 DCPP-PointNet 模型,模型在

测试数据集上的典型检测结果如表 3 所示,本文将所提

出的缺陷分割模型与常见的点云语义分割模型进行了比

较,包括 PointNet、PointNet + +、DGCNN 等经典点云分割

模型。

表 3　 使用 DCPP 数据集的模型缺陷分割结果
Table

 

3　 The
 

test
 

results
 

of
 

DCPP
 

dataset
 

for
 

model
 

defect
 

segmentation (%)

模型
IoU

封装体 正常引脚 上翘引脚 下折引脚 弯斜引脚 缺损引脚
mIoU OA

PointNet 62. 1 8. 3 0 0 0 0 11. 7 59. 9
PointNet++ 70. 4 10. 9 1. 8 1. 5 0. 9 1. 1 14. 1 69. 4

DGCNN 88. 5 49. 0 35. 1 30. 6 25. 4 27. 8 42. 7 88. 5
DCPP-PointNet 99. 9 95. 1 93. 9 90. 0 88. 9 91. 2 93. 7 98. 9
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　 　 由表 3 的实验数据可以看出,相比于 PointNet 系列,
本文所提出的网络模型在整体精度上最大提升了 39%,
同时 DCPP-PointNet 可以达到 99. 9%的封装体识别准确

率,而且对正常引脚的检测精度达到了 95. 1%,对缺陷引

脚的平均检测精度也达到了 93. 7%,其中对缺损引脚和

上翘引脚的识别精度略好于下折引脚和弯斜引脚。
为了进一步对缺陷分割后的结果进行说明, 将

DCPP 图像、真实语义标签、PointNet 系列、DCPP-PointNet
分割出的部分结果进行可视化操作并进行比较,如图 11
所示。 图 11(a)为 DCPP 原始图像。 图 11( b)为真实的

语义标签信息。 图 11( c)为 PointNet++检测的结果,可
以明显观察到 PointNet 系列无法实现对芯片的有效分

割,这主要是因为该系列算法未能充分学习局部特征。
由图 11(d)可知,除了一些边缘细节存在个别点的误检

外,整体上与真实标签结果较为接近。 因此,本文提出的

DCPP-PointNet 新增 LSFE 网络用以提高缺陷检测鲁棒

性,同时采用新设计的 iRMSC-Net 作为点云特征编码器,
利用倒残差多尺度卷积聚合芯片边缘点云特征,提升模

型对芯片引脚缺陷检测精度。 最后更换 Focal 损失函数

用以平衡正负样本不均的问题。 总之,DCPP-PointNet 相
比现有技术,展现了更高的缺陷检测精度。
3. 5　 消融实验

　 　 为验证改进部分对模型检测效果提升的有效性,本
文进行了消融测试来对比改进模块后的检测效果。 将新

增 LSFE 网络、替换 MSC-Net 特征编码器、替换 iRMSC-
Net 特征编码器与更换 Focal 损失函数分别添加到

PointNet++模型中,并将 PointNet++作为基线模型用作对

比,先后输入用于测试的 DCPP 图像,并给出多个改进模

块组合的实验结果。
消融实验结果如表 4 所示。 观察可知,单独添加

LSFE 网络后,由于 LSFE 对模型进行了预训练,OA 与

mIoU 分别从 69. 4%和 14. 1%上升到 74. 5%和 22. 3%,但
对引脚缺陷的检测没有明显帮助,同时参数量和计算量

增加到 3. 47×106 和 2. 43
 

GFLOPs。 将特征编码器替换

为 iR-Net 后,新的特征提取模块使网络具备了对芯片引

脚的检测能力,OA 与 mIoU 分别从 69. 4%和 14. 1%提升

到 86. 1%和 76. 3%,同时倒残差模块使模型在轻量化方

面得到了提升,参数量从 3. 47×106 降低到 2. 40×106,计
算量从 2. 43

 

GFLOPs 降低到 0. 98
 

GFLOPs,但多头注意

力对相似的引脚特征提取能力有限。 因此本文最终使用

了 iRMSC-Net 作为特征编码器,iRMSC 模块不仅使 OA
从 69. 4%提升到 98. 1%,对于业界最为关心的 mIoU 从

14. 1%提升到了 85. 5%,参数量增加到 2. 53×106,计算量

增加到 1. 45
 

GFLOPs,但对引脚的检测能力却有较大

提升。
将 PointNet++中的 NLL

 

Loss 替换为 Focal
 

loss,由于

图 11　 模型预测结果可视化图

Fig. 11　 Visualization
 

of
 

model
 

prediction
 

results

Focal
 

loss 主要是为了解决正负样本不平衡的问题,因此

单独添加对网络检测精度并没有提升,OA 和 mIoU 与对

比基线模型提升并不明显,仅为 8. 4%和 12. 5%。 在使用

iRMSC-Net 的基础上替换 Focal
 

loss 后, 对比使用了

iRMSC-Net 作为特征编码器的网络发现虽然 OA 从

98. 1% 提升到 98. 8%, 并没有明显增长, 但 mIoU 从

85. 5%提高到 90. 8%,提升了 2. 9%。 最后,再添加上

LSFE 后,在不提升模型参数量和计算量的前提下,mIoU
分别从 69. 4%和 14. 1%提升到 98. 9%和 93. 7%。

为了进一步验证 LSFE 网络的有效性,输入任意倾

斜的 DCPP 图像。 表 5 为关于删除 LSFE 网络后对倾斜

数据的影响,删除 LSFE 网络后,模型对所有类别引脚的

判别能力均显著下降。 对于正常引脚、上翘引脚、下折引

脚、弯斜引脚和缺损引脚的判别准确率分别从 96. 2%、
89. 3%、85. 5%、84. 4%和 87. 2%下降至 39. 3%、14. 2%、
8. 1%、8. 5%和 8. 2%。
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表 4　 消融实验结果

Table
 

4　 The
 

test
 

results
 

of
 

Ablation
 

experiment
组别 LSFE iR-Net iRMSC-Net Focal

 

loss OA / % mIoU / % 参数量 / ( ×106 ) 计算量 / GFLOPs
0 69. 4 14. 1 2. 88 1. 32
1 √ 74. 5 22. 3 3. 47 2. 43
2 √ 86. 1 76. 3 2. 40 0. 98
3 √ 98. 1 85. 5 2. 53 1. 45
4 √ 77. 8 26. 6 3. 12 1. 58
5 √ √ 98. 8 90. 8 2. 94 1. 72
6 √ √ √ 98. 9 93. 7 2. 89 1. 80

表 5　 LSFE 网络对模型的影响结果

Table
 

5　 The
 

impact
 

of
 

LSFE
 

network
 

on
 

model
 

results
(%)

缺陷类型 DCPP-PointNet Delete
 

LSFE
正常引脚 96. 2 39. 3
上翘引脚 89. 3 14. 2
下折引脚 85. 5 8. 1
弯斜引脚 84. 4 8. 5
缺损引脚 87. 2 8. 2

　 　 图 12 所示为 LSEF 网络对倾斜图 像 的 影 响,
图 12(a) 为 使 用 LSEF 网 络 的 倾 斜 图 像 检 测 结 果,
图 12(b)为删除此网络后的结果。 对比图 12 可知,当不

添加 LSFE 网络时, 面对倾斜图像即使模型使用了

iRMSC-Net 和 Focal
 

loss,模型依然无法准确判别各类引

脚是否存在缺陷。

图 12　 LSFE 网络的影响结果

Fig. 12　 The
 

influence
 

of
 

LSFE
 

point
 

cloud
spatial

 

transformation
 

network

表 6 为新增模块对上翘、下折、弯斜和缺损引脚的影

响情况。 图 13 所示为部分新增模块对检测结果的影响。
由于每种缺陷拥有的特征不一致,对于不同的缺陷,各个

模块效果也不同。 图 13( a)为使用基线模型 PointNet++
检测结果,对比图 13 可知,当将特征编码器替换为 iR-
Net 后,网络对正常引脚以及所有类型的缺陷引脚的检

测精度都有较大提升,但是从图 13( b)也可以明显看到,
模型对于封装体边缘特征以及引脚特征判别都有明显错

误。 随后,在特征编码器替换为 iRMSC-Net 后,网络对边

缘和引脚特征识别更为准确,对于上翘、下折、弯斜和缺

损引脚的 IoU 分别提升到了 88. 5%、81. 4%、72. 6% 和

83. 6%,但从图 13(c)还可以发现,对于弯斜引脚的检测

仍有不准确的地方,分析数据后认为弯斜引脚的点云特

征与其他引脚特征存在一定的相似性,同时弯斜引脚数

据也少于其他缺陷。 因此图 13( d) 替换 Focal
 

loss 使网

络对不易分类样本和易分类样本进行了区别对待,把损

失的焦点放在了不易分类样本上,降低对易分类样本的

权重,从而平衡了不同缺陷间的检测精度。 图 13( e) 是

加入 LSEF 网络后的完整 DCPP-PointNet 模型,可以看

出,经过预处理后,模型的精度得到了进一步提升。
表 6　 主要模块在各缺陷上的交互比

Table
 

6　 The
 

Intersection
 

over
 

Union
 

of
main

 

modules
 

in
 

each
 

defect (%)

缺陷类型
Point
Net++

iR-Net iRMSC-Net
iRMSC-Net+

Focal
 

loss
DCPP-

PointNet
上翘引脚 1. 8 74. 9 88. 5 91. 4 93. 9
下折引脚 1. 5 67. 6 81. 4 87. 8 90. 0
弯斜引脚 0. 9 63. 3 72. 6 86. 5 88. 9
缺损引脚 1. 1 76. 2 83. 6 89. 2 91. 2

　 　 综上所述,为了保证 SOP 芯片引脚缺陷检测精度,
本文提出的 LSFE 网络和 iRMSC-Net 点云特征编码器以

及用以平衡正负样本的 Focal 损失函数三者缺一不可。

4　 结　 论

　 　 本文针对 SOP 芯片引脚的缺陷检测需求,提出了一

种基于深度学习的三维点云缺陷检测方法。 通过构建专

门的 DCPP 图像数据集和创新性地设计 DCPP-PointNet
网络,实现了对 SOP 芯片引脚常见缺陷的精确分类和定



　 第 8 期 基于 SOP 芯片三维点云图像的引脚缺陷检测方法 · 51　　　 ·

图 13　 部分新增模块对检测结果的影响

Fig. 13　 The
 

impact
 

of
 

some
 

new
 

modules
on

 

the
 

detection
 

results

位。 DCPP 图像数据集涵盖了多种常见引脚缺陷类型,
经过处理去除了干扰信息,保留了关键形状与深度信息,
为缺陷检测研究提供了高质量的数据支持。 DCPP-
PointNet 网络通过添加 LSFE 网络、替换特征编码器和损

失函数等创新设计,加强了点云局部特征的提取能力,解
决了正负样本不平衡的问题,提高了模型对缺陷的识别

精度和检测的鲁棒性。 综上所述,本文的研究为 SOP 芯

片引脚的三维缺陷检测提供了一种高效、准确的解决方

案,具有在实际工业检测流程中应用的潜力,有望提高检

测效率和产品质量。 未来的工作将进一步优化和扩展该

模型,以适应更广泛的芯片检测场景。
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