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Pin defect detection method based on 3D point cloud image of SOP chip

Lin Dongmei  Fan Yujie  Chen Xiaolei ~ Yang Fulong Li Ce

(School of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Abstract: For the three-dimensional defect detection task of SOP chip pins, existing point cloud deep learning methods struggle to
effectively detect common pin defects. To address this issue, a DCPP image is defined and a corresponding DCPP dataset is created. A
DCPP-PointNet defect detection algorithm is also proposed, specifically designed for DCPP images. This algorithm incorporates a LSEF
network, which enhances the model’ s rotational robustness and ensures good detection performance even with rotated point cloud data.
Additionally, a new iRMSC-Net network is designed to replace the feature encoder in PointNet++, improving the model’ s ability to learn
local edge features of point clouds and enabling precise classification and location of common SOP chip pin defects. Focal loss function is
employed to tackle the imbalance between positive and negative samples, allowing the model to focus more on hard-to-distinguish defect
samples and thus improving detection accuracy. Experimental results on the self-built DCPP dataset show that the DCPP-PointNet
network surpasses existing point cloud segmentation models such as PointNet, PointNet++, and DGCNN in terms of OA and mloU. It
achieved an OA of 98.9% and an mloU of 93.7%. Ablation studies further confirm the effectiveness of the improvements in DCPP-
PointNet, where the combined action of the LSFE network, iRMSC-Net feature encoder, and Focal loss function significantly enhances
the model’ s detection accuracy and robustness.
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Table 3 The test results of DCPP dataset for model defect segmentation (%)
ToU
o R L L Ll oA
PointNet 62.1 8.3 0 0 0 0 11.7 59.9
PointNet++ 70. 4 10.9 1.8 1.5 0.9 1.1 14.1 69. 4
DGCNN 88.5 49.0 35.1 30.6 25.4 27.8 42.7 88.5
DCPP-PointNet 99.9 95.1 93.9 90.0 88.9 91.2 93.7 98.9
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Visualization of model prediction results
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Table 4 The test results of Ablation experiment

2415 LSFE iR-Net iRMSC-Net Focal loss OA/ % mloU/% %/ (x10°) & HE/GFLOPs
0 69. 4 14.1 2.88 1.32
1 vV 74.5 22.3 3.47 2.43
2 VvV 86. 1 76.3 2.40 0.98
3 v 98.1 85.5 2.53 1.45
4 Vv 77.8 26.6 3.12 1.58
5 2 Vv 98.8 90. 8 2.94 1.72
6 VvV VvV VvV 98.9 93.7 2.89 1.80

%5 LSFE M&MREMPmMER
Table 5 The impact of LSFE network on model results
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R pE A AY DCPP-PointNet Delete LSFE
EH S 96.2 39.3
G 89.3 14.2
THHIA 85.5 8.1
il 84. 4 8.5
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Fig. 12 The influence of LSFE point cloud

spatial transformation network
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Table 6 The Intersection over Union of

main modules in each defect (%)

_— Point RNt RMSCNl iRMSC-Net+ DCPP-

Net++ Focal loss  PointNet
FREIH 1.8 74.9 88.5 91.4 93.9
THHIM 1.5 67.6 81.4 87.8 90.0
ZRBIE 0.9 63.3 72.6 86. 5 88.9
BB 1.1 76.2 83.6 89.2 91.2
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Fig. 13 The impact of some new modules

on the detection results
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