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摘　 要:城轨轨道线路状态监测是确保铁路运输系统安全的关键任务之一。 城轨轨道线路包括钢轨、扣件、螺栓和垫板等关键

部件。 针对实时精细化检测的需求,在前期工作的基础上,进一步研究并提出了一种基于实例分割的创新智能方法,用于快速

精细化识别城市轨道交通线路的多关键部件,并分析量化常见缺陷的检测结果。 在已有的 RTLSeg 模型基础上,融合感受野增

强和图像后处理技术,提出了一种改进的轨道线路图像分割评估模型( ABI-RTLSeg)。 首先,为了增强模型对高级语义信息的

学习,在深层骨干网络中引入了空洞空间金字塔池化模块(ASPP);其次,在 Coord-Protonet 中引入了基于卷积的双线性插值结

构,以获得更高质量的原型掩模和语义信息感知;最后,根据缺陷分割掩模的视觉特征,构建了分割结果分析模块,综合运用椭

圆拟合和形态学分析方法,分析常见缺陷的安全状态。 实验结果表明,该方法在快速精细化检测、分割以及分析铁路轨道线路

的多目标关键部件和常见缺陷方面是可行的,并且其性能优于比较的基线模型。 ABI-RTLSeg 在所构建的数据集上能够达到

90. 91%的边界框平均精度(bbox
 

mAP)和 91. 67%的掩码平均精度(mask
 

mAP)。 同时,平均推理速度达到 25. 62
 

fps,平均检测

准确率和召回率分别为 100%和 99. 85%。 此外,通过多个实例研究,探讨了所提方法在评估扣件损坏严重程度和估算轨道波磨

关键参数方面的可行性,为城市轨道交通线路的安全状态监测提供了一种有效方案,为城市轨道交通的智能化发展提供了重要

技术支撑。
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Abstract:
 

Urban
 

rail
 

transit
 

track
 

condition
 

monitoring
 

is
 

one
 

of
 

the
 

critical
 

tasks
 

for
 

ensuring
 

the
 

safety
 

of
 

railway
 

transportation
 

systems.
 

The
 

urban
 

rail
 

transit
 

track
 

includes
 

key
 

components
 

such
 

as
 

rails,
 

fasteners,
 

bolts,
 

and
 

sleepers.
 

In
 

response
 

to
 

the
 

demand
 

for
 

real-time
 

and
 

refined
 

detection,
 

this
 

study,
 

building
 

on
 

previous
 

work,
 

further
 

investigates
 

and
 

proposes
 

an
 

innovative
 

intelligent
 

method
 

based
 

on
 

instance
 

segmentation
 

for
 

the
 

rapid
 

and
 

refined
 

identification
 

of
 

multiple
 

key
 

components
 

of
 

urban
 

rail
 

transit
 

tracks,
 

analyzes,
 

and
 

quantifies
 

the
 

detection
 

results
 

of
 

common
 

defects.
 

Specifically,
 

this
 

research,
 

based
 

on
 

the
 

existing
 

RTLSeg
 

model,
 

integrates
 

field-of-view
 

enhancement
 

and
 

image
 

post-processing
 

techniques,
 

proposing
 

an
 

improved
 

track
 

image
 

segmentation
 

and
 

evaluation
 

model
 

(ABI-RTLSeg).
 

Firstly,
 

to
 

enhance
 

the
 

model’ s
 

learning
 

of
 

high-level
 

semantic
 

information,
 

this
 

study
 

introduces
 

a
 

dilated
 

spatial
 

pyramid
 

pooling
 

( ASPP)
 

module
 

into
 

the
 

deep
 

backbone
 

network.
 

Secondly,
 

a
 

convolution-based
 

bilinear
 

interpolation
 

structure
 

is
 

incorporated
 

into
 

the
 

Coord-Protonet
 

to
 

obtain
 

higher-quality
 

prototype
 

masks
 

and
 

semantic
 

information
 

awareness.
 

Lastly,
 

based
 

on
 

the
 

visual
 

features
 

of
 

defect
 

segmentation
 

masks,
 

a
 

segmentation
 

result
 

analysis
 

module
 

is
 

constructed,
 

employing
 

ellipse
 

fitting
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and
 

morphological
 

analysis
 

methods
 

to
 

analyze
 

the
 

safety
 

status
 

of
 

common
 

defects.
 

Experimental
 

results
 

demonstrate
 

that
 

this
 

method
 

is
 

feasible
 

for
 

rapid
 

and
 

refined
 

detection,
 

segmentation,
 

and
 

analysis
 

of
 

multiple
 

target
 

key
 

components
 

and
 

common
 

defects
 

of
 

railway
 

track
 

lines,
 

and
 

its
 

performance
 

surpasses
 

that
 

of
 

the
 

comparative
 

baseline
 

models.
 

In
 

particular,
 

ABI-RTLSeg
 

is
 

able
 

to
 

achieve
 

90. 91%
 

bbox
 

mAP
 

and
 

91. 67%
 

mask
 

mAP
 

with
 

the
 

customized
 

dataset.
 

Meanwhile,
 

the
 

average
 

inference
 

speed
 

reaches
 

25. 62
 

fps.
 

The
 

average
 

detection
 

accuracy
 

and
 

recall
 

are
 

100%
 

and
 

99. 85%,
 

respectively.
 

Furthermore,
 

the
 

feasibility
 

of
 

the
 

proposed
 

methods
 

for
 

assessing
 

the
 

severity
 

of
 

fastener
 

damage
 

and
 

estimating
 

key
 

parameters
 

of
 

rail
 

corrugation
 

has
 

been
 

explored
 

through
 

multiple
 

case
 

studies.
 

In
 

summary,
 

this
 

study
 

provides
 

a
 

new
 

technical
 

approach
 

for
 

the
 

intelligent
 

monitoring
 

of
 

rail
 

transit
 

track
 

lines,
 

which
 

is
 

of
 

great
 

significance
 

for
 

improving
 

the
 

safety
 

and
 

reliability
 

of
 

the
 

railway
 

transportation
 

system.
Keywords:multi-component
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analysis;
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analysis;
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0　 引　 言

　 　 随着城市轨道交通的迅猛发展和运营里程的快速延

伸,对运输安全和运维质量的要求日益严格。 铁路轨道

线路基础设施关键部件的定期检查对于保障列车的高效

运行至关重要[1] 。 城轨轨道线路主要由钢轨、扣件、螺栓

和垫板等部件组成,这些部件在列车车轮与钢轨的接触

摩擦、振动以及现场运行环境的影响下,可能会出现波

磨、扣件断裂和缺失等缺陷,影响车辆运行安全和乘客舒

适度,甚至可能引发重大安全事故。 此外,随着线路缺陷

的发生、演变乃至恶化,运维成本和难度也会随之增加。
目前,城轨轨道线路的检查主要依赖人工巡检或轨检车,
这些方法劳动强度大、耗时长,且自动化和智能化水平有

限。 轨道检测车虽能提供一定程度的自动化检测,但其

制造成本高,检测过程中还需占用运营线路,无法实现对

关键部件的精细化检测。 因此,开发利用人工智能、深度

学习等先进技术的轨道线路检测系统,对于提升轨道交

通的安全性和稳定性、缩短检测时间、降低检测成本具有

重要意义[2] 。 不仅可以自动、智能识别轨道线路关键部

件,同时还可以检测和分析轨道线路的常见缺陷。
近年来,众多研究者及机构致力于开发自动化铁路

安全状态检测方法与系统,旨在提升铁路运输的安全性

与可靠性[3] 。 这些研究主要集中在钢轨扣件和钢轨表面

的缺陷检测上,涉及图像处理技术和深度学习技术[4] 。
本文综述了基于深度学习的若干代表性研究成果。 在钢

轨扣件缺陷检测方面,Wei 等[5] 、Bai 等[6] 、Hu 等[7] 以及

Liu 等[8] 研 究 者 分 别 利 用 Faster
 

R-CNN、 YOLOX 和

YOLOv4 网络构建了具有良好检测性能的扣件缺陷检测

框架。 Gao 等[9] 提出了一种基于多传感器融合和自驱动

损失权重调整的铁路扣件异常检测方法,实现了较高的

识别精度和检测速度。 Qiu 等[10] 针对铁路扣件异常检测

中的样本不平衡问题,提出了一种基于深度度量学习损

失函数-中心三元损失(center-triplet
 

loss)。 Ye 等[11] 开发

了一种名为 YOLO-Fastener 的智能算法,用于检测无砟轨

道系统中的扣件缺陷,并通过热图可视化技术增强了模

型的可解释性。 在钢轨表面缺陷检测领域,通常将缺陷

分为钢轨波磨和表面离散缺陷两类[12] 。 Wu 等[13] 开发

了一种创新的轨道边界引导网络( rail
 

boundary
 

guidance
 

network,RBGNet),实现了良好的钢轨表面分割性能。
Yang 等[14] 介绍了一种结合深度信息的轮廓和语义特征

对齐融合网络 ( contour
 

and
 

semantic
 

feature
 

alignment
 

fusion
 

network,CSANet),提升了检测精度。 Luo 等[15] 提

出了一种基于改进 YOLOv5s[16] 算法的铁路表面缺陷检

测方法,通过融合 Swin
 

Transformer 提升了全局信息和上

下文信息感知。 Guo 等[17] 提出了一种基于像素级语义

分割模型 Deeplabv3-plus 的自动铁路表面缺陷检测方法,
提高了特定铁路应用中的准确性。 Zhou 等[18] 研究并提

出了一种轻量级特征层次探索网络( feature
 

hierarchical
 

exploration
 

network,FHENet),通过改进的特征提取和层

次探索策略,提高了缺陷检测的准确性和效率。
已有研究在铁路安全状态检测技术方面取得了显著

进展,然而在全面性和精细度等方面仍有改进空间。 鉴

于此,在先前的工作中,基于改进的端到端实例分割模型

并结合先验知识,提出了一种城轨轨道线路图像分割模

型 ( railway
 

track
 

line
 

image
 

segmentation
 

model,
RTLSeg) [19] ,实现了对城轨轨道线路部件和常见缺陷在

像素级的自动精准检测。 具体而言,借鉴 YOLACT 类网

络的精巧设计方法,将实例分割分为两个并行的任务,即
原型掩码生成(由 Coord-Protonet 完成)以及对象定位、分
类和掩码系数生成(由增强优化预测头完成)。 依据实

验结果,所提出的 RTLSeg 模型虽然在分割精度上超越了

基准模型,实现了自动且准确地在像素级检测城轨轨道

线路关键部件和常见缺陷,但是检测和分割速度未能满

足现场对实时性的要求,仍有较大提升的潜力。 此外,对
于扣件损坏、钢轨表面波磨等常见缺陷尚未能实现安全

状态评估,其精细化程度有待进一步提高。 因此,为实现

城轨轨道线路关键部件的实时像素级分割以及常见缺陷

的安全状态分析,本文在 RTLSeg 模型研究的基础上,进
一步设计了基于空洞空间金字塔池化的感受野增强模

块、基于卷积的双线性插值结构以及基于椭圆拟合和形

态学分析的分割结果分析模块,提出了改进的城轨轨道

线路图像分割模型( ABI-RTLSeg),实现了城轨轨道线路

多关键部件及常见缺陷的实时精细化检测与分析。 最
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后,通过多次实验分析证明了所提出的 ABI-RTLSeg 模型

的有效性,该模型是实际应用中的良好替代方案。

1　 轨道线路图像分割评估模型

　 　 为了实现对轨道交通线路多关键部件的实时高效识

别以及对常见缺陷的检测与分析,本文在前期研究提出

的城轨轨道线路图像分割模型的基础上,进一步构建

了(ABI-RTLSeg)模型,并对其进行了深入的实验分析。

所提出的 ABI-RTLSeg 模型的主要框架如图 1 所示。 该

模型主要由 5 个核心部分组成,分别为具有感受野增强

功能的骨干网络(特征提取器)、路径聚合特征金字塔网

络(PaFPN)、增强优化的预测头(用于生成锚点)、Coord-
BI-Protonet(用于预测 k 个原型掩模)以及分割结果分析

模块。 其中,感受野增强的骨干网络和 Coord-BI-Protonet
是在原有网络结构基础上进行的进一步改进,分割结果

分析模块为本次研究新增的结构,其余部分与 RTLSeg 模

型保持一致。

图 1　 ABI-RTLSeg 模型的主要结构框架

Fig. 1　 The
 

main
 

structure
 

of
 

the
 

proposed
 

ABI-RTLSeg
 

model

1. 1　 感受野增强的骨干网络

　 　 在计算机视觉任务中,骨干网络扮演着至关重要的

角色, 主要负责从输入图像中提取特征并生成特征

图[20] 。 骨干网络的性能直接决定了特征图的质量。 在

实际应用中,可以根据对模型精度和效率的不同需求,对
骨干网络进行相应的修改或调整,以开发出适合特定任

务的网络结构。 例如,为了实现高精度的特征感知,可以

选用深度密集连接的网络结构,如 ResNet 和 DenseNet。
特别是 ResNet-101,因其出色的性能,已被广泛应用于多

种视觉任务[21] ,并在 He 等[22] 的研究中得到了验证。 为

了降低推理计算的复杂度,ResNet-101 采用了瓶颈结构,
如图 2 所示。 该结构使得网络在经过 5 个阶段(stage)处
理后,将输入图像的尺寸依次缩小至原图的 1 / 2、1 / 4、
1 / 8、1 / 16 和 1 / 32。

在 ABI-RTLSeg 模型的设计中,遵循了 Bolya 等[23] 提

出的骨干网络设计原则, 采用了结合可变形卷积的

ResNet-101(ResNet-101-DCN) 作为基础骨干网络,以实

现对图像特征的更准确、更丰富的提取。 具体地,可变形

卷积被配置在 ResNet-101 的最后 3 个阶段,间隔为 3,共
包含 11 个可变形卷积层。 可变形卷积能够提供更灵活

的特征采样,增强模型处理不同尺度、长宽比和旋转变化

的能力[24-25] 。 此外,为了进一步增强网络对语义信息的

感知,并提升轨道线路关键部件的检测和分割精度,本文

在 ResNet-101-DCN 的基础上引入了空洞空间金字塔池

化模块( atrous
 

spatial
 

pyramid
 

pooling,ASPP ) [26] 。 ASPP
模块由 4 个并行的空洞卷积子模块组成,它们共同作用

图 2　 瓶颈结构示意图

Fig. 2　 Structure
 

of
 

bottleneck
 

design

于扩大感受野,捕获更多的上下文信息,结构如图 3
所示。
1. 2　 语义感知增强的原型生成分支

　 　 在 YOLACT 类型的模型架构中,引入了原型生成分

支,用于预测整个图像的 k 个原型掩码,这一过程无需进

行损失计算。 这些原型掩码是通过 Protonet 利用全卷积

网络(fully
 

convolutional
 

network,FCN)机制生成的,其中

最后一层是核为 k 的 1×1 卷积层。 值得注意的是,原型

的数量 k 与目标类别的数量无关,这为生成的原型提供

了分布式表示,即每个实例是通过跨类别共享的原型组

合来实现分割的。 近年来,基于 FCN 的语义分割取得了

显著成功并被广泛应用。 然而,FCN 的平移不变性使其
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图 3　 ASPP 结构示意图

Fig. 3　 Structure
 

of
 

ASPP

不能直接应用于实例分割任务,因为位置感知在实例分

割任务中扮演者至关重要的角色。 为此,模型如 Mask
 

R-
CNN[27] 和 SOLO[28-29] 尝试通过明确地向网络添加位置感

知来 解 决 这 一 问 题, 并 取 得 了 良 好 的 结 果。 尽 管

YOLACT 类型的模型利用了 ResNet 的平移变化特性,但
在使用 FCN 生成针对本文特定任务的原型方面,仍存在

改进空间。
因此,为了获得鲁棒性更高的分割掩码,在 ABI-

RTLSeg 模型的原型生成分支中融合了“ CoordConv” 算

子[30] ,将归一化的像素坐标直接嵌入到 Protonet 的初始

阶段,并命名为 Coord-Protonet。 具体地,首先构建一个与

空间维度相匹配的张量,该张量内含归一化至[ -1,1]区

间内的像素坐标。 然后,将该张量与输入特征图进行拼

接,并传递给网络的后续层级。 通过这种方式,卷积操作

得以获取其自身的输入坐标信息,从而为传统的 FCN 模

型增添位置感知能力。 Coord-Protonet 结构的有效性已

在 RTLSeg 模型的实验中得到充分验证。 为了进一步提

升掩码质量及模型性能,将 Coord-Protonet 与 PaFPN 中

N2 层相连, 并通过基于卷积的双线性插值 ( bilinear
 

interpolation,BI)结构将生成的原型掩模上采样至输入图

像的尺寸,以此获得更强的语义感知能力,该结构被命名

为 Coord-BI-Protonet,如图 4 所示。 通过这种结构设计,
Coord-BI-Protonet 不仅继承了 Coord-Protonet 的位置感知

优势,而且通过双线性插值上采样进一步增强了模型对

输入图像语义信息的捕捉能力。
1. 3　 分割结果分析模块

　 　 1)扣件损坏程度评估

本文扣件的丢失状态可以通过分割识别结果直接判

定,而扣件的损坏程度则需要基于分割掩模结果进行进

一步的分析评估。 在深入探究分割掩模的视觉特性时,
发现无论是完好还是破损的扣件,在图像中均以黑色背

图 4　 Coord-BI-Prototype 网络结构

Fig. 4　 Coord-BI-Prototype
 

architecture

景上的白色闭合区域呈现(图 5)。 基于此特征,本文采

用形态学联通域分析( morphological
 

connected
 

component
 

analysis,MCCA) [31] 方法,通过比较损坏扣件与标准正常

扣件的分割掩模面积,来评估扣件的损坏程度。 在形态

学联通域分析中,联通域(也称为连通分量或联通组件)
是指图像中彼此相连的、具有相同像素值的像素点的集

合。 此外,考虑到图像采集过程中关键部件如扣件的尺

度会受到采集设备的高度和角度变化的影响,且人工手

持采集设备的方式无法保证设备始终保持在同一水平线

上,可能导致图像尺度的变化。 为了消除这种尺度变化

对分析结果的影响,本研究引入了放缩因子 ω ,先对

MCCA 的计算结果进行标准化处理,确保所有数据在同

一量纲下进行比较和分析。

图 5　 扣件分割掩模结果

Fig. 5　 Fastener
 

segmentation
 

mask
 

result

在获得标准化处理的分割掩模面积结果后,本文基

于模糊理论对扣件的损坏程度进行评估。 模糊理论是处

理不确定信息的有效工具[32] 。 因此,它适合解决具有模

糊性的扣件损坏严重程度评估问题。 本文综合考虑分割

掩摸面积和损坏状态的关系,计算损坏扣件相对于标准

正常扣件的分割掩模面积比,即闭合区域像素点个数的

比值,以量化扣件的损伤程度。 本文将这一量化指标定

义为损伤度(damage
 

degree,DD),其计算公式如下:

DD = 1 - 损伤扣件的分割掩模面积
标准正常扣件的分割掩模面积

(1)

根据定义,损伤度越接近 0,表示扣件基本完好无损

坏;相对应地,损伤度越接近 1,表示扣件损坏较严重。
本文将扣件损坏分为 3 个损坏程度等级,分别为 1 级(轻
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微损坏)、2 级(中度损坏)和 3 级(严重损坏)。 为此,设
计了三级隶属函数,如图 6 所示。 最终,利用最大隶属度

原则确定扣件的损坏严重程度等级,定义为:

max(μslight,μmedium,μsevere) =
μslight,level1
μmedium,level2
μsevere,level3

ì

î

í

ïï

ïï

(2)

图 6　 三级隶属函数图

Fig. 6　 Three-level
 

membership
 

function
 

diagram

2)波磨关键参数估计

本文钢轨表面是否存在波磨可以通过分割识别结果

直接判定。 若波磨存在,则需基于分割结果进一步计算

其关键参数。 一般而言,波磨的严重程度与波磨的深度、
波长、波峰波谷等关键参数正相关[32] 。 由于现场采集的

轨道线路图像通常为缺失深度信息的单目视觉图像,本
文借鉴了检修人员在日常巡检中仅依靠视觉观察来评估

波磨严重程度的方法。 因此,通过对分割掩模结果的分

析,计算波长和波峰波谷等关键参数的参考值,对于利用

单目图像进行波磨严重程度的评估具有重要的辅助

作用。
钢轨波磨在轨道线路图像中的视觉特征表现为周期

性的、类似椭圆的纹理图案[32] 。 基于此特征,本文采用

基于最小二乘法的椭圆拟合方法[33] ,对波磨分割掩模结

果进行深入分析,并据此推算波磨的波长等关键参数。
首先,将钢轨表面图像范围内分割识别的每个波磨区域

作为目标进行细化。 假设目标区域内的点均匀分布,质
心坐标的计算公式定义为:

x-,y-( ) = 1
n(n + 1) / 2∑

n

i = 1
x i,

1
n(n + 1) / 2∑

n

i = 1
y i( ) (3)

式中: (x i,y i) 为点 i坐标; n表示区域内点的总数量。 其

次,掩模内的波磨边缘点作为椭圆拟合所需的测量点。
椭圆曲线方程构造为:

x2
i + λ1x iy i + λ2y

2
i + λ3x i + λ4y i + λ5 = 0 (4)

式中: λ1 ~ λ5 为拟合系数。 接着,根据最小二乘原理,构
造椭圆拟合的目标函数为[34] :

Φ(λ) = ∑
N

i = 1
(x2

i + λ1x iy i + λ2y
2
i + λ3x i + λ4y i + λ5) 2

(5)
式中: N为测量点的个数; Φ(λ) 是目标函数。 目标函数

最优情况为 Φ(λ) = 0;即 Φ(λ) 越小越好。 由此可得

方程:
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(6)

通过求解目标函数的最小值,可得拟合系数矩阵。
进而依据式(7) 和(8) 求解得出拟合椭圆的长半轴长 a
和短半轴长 b ,并依据定义计算出椭圆的倾斜角度。 最

终,根据这些参数推算出波磨的波长等关键参数的参

考值。

a =
2(λ1λ3λ4 - λ2λ

2
3 - λ2

4 + 4λ2λ5 - λ2
1λ5)

(λ2
1 - 4λ2) λ2 + 1 - λ2

1 + (1 - λ2) 2[ ]

(7)

b =
2(λ1λ3λ4 - λ2λ

2
3 - λ2

4 + 4λ2λ5 - λ2
1λ5)

(λ2
1 - 4λ2) λ2 + 1 + λ2

1 + (1 - λ2) 2[ ]

(8)

2　 实验与结果分析

2. 1　 实验环境及数据集介绍

　 　 1)实验环境

提出的 ABI-RTLSeg 模型采用 Python 编程语言实

现,并利用 Facebook 开发的 PyTorch 框架以及 NVIDIA 开

发的 CUDA
 

11. 8 和 Cudnn
 

8. 6. 0 软件包进行加速。 所有

的训练和测试均在一台实验室服务器上执行。 该服务器

运行 Ubuntu
 

20. 04 操作系统,配备了 Inter
 

i7
 

CPU 和

RTX
 

4070
 

Ti
 

GPU[35] , 以 及 相 应 的 驱 动 程 序 版

本 535. 183。
在深度学习领域,训练过程的核心目标是通过调整

模型参数以最小化模型的整体损失,从而提升模型性
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能[36] 。 损失越低,通常意味着模型性能越佳。 本文采用

了自适应矩估计(adaptive
 

moment
 

estimation,Adam)算法

来优化 ABI-RTLSeg 模型的权重。 在参数配置中,“权重

衰减”被设定为 5×10-4,一阶矩和二阶矩的指数衰减率

分别设定为 0. 9 和 0. 999。 初始学习率设置为 1×10-4,并
随着训练的进行,通过余弦退火调度方法,结合“预热”
策略[37] 进行动态调整。 除了这些关键参数外,其他参数

均采用默认设置。 此外,研究中应用了迁移学习的思想,
在模型的初始化阶段使用了在 MS

 

COCO 数据集[38] 上预

训练的 ABI-RTLSeg 模型的主干网络权重,以期实现快速

收敛。 在训练的后期,对这些预训练权重进行了微调,以
进一步提升模型在特定任务上的表现。

2)铁路轨道线路图像(RTL-I)数据集

RTL-I 数据集由北京地铁 6 号线南锣鼓巷站与东四

站之间轨道沿线采集的图像构成。 图像采集采用手持单

反相机(digital
 

single
 

lens
 

reflex
 

camera,DSLR),模拟实际

运营环境下拍摄。 采集时相机角度垂直于轨道线路,且
在一定程度上保持相机与轨道线路钢轨表面之间的距离

恒定不变。 最终,经过筛选,共获得
 

322
 

张高质量的可用

图像,每张图像均为高分辨率 RGB 格式。 依据对铁路轨

道线路的主要零部件及现场缺陷特征分析,RTL-I 数据

集主要包括螺母(nut)、螺钉(screw)、螺栓(bolt)、正常弹

条( normal _ clip )、 断裂弹条 ( fractured _ clip )、 正常钢

轨(rail)、钢轨波磨 ( rail _ corrugation )、 垫板 ( backing _
plate)、绝缘轨距块(gauge_block)等 9 大类别,其中每个

组件或每种缺陷类别的数量如表 1 所示。 此外,根据线

路巡检要求和现场调研结果,借助开源工具 LabelMe[39]

对数据集中每张图像进行标注。 RTL-I 数据集的标注示

例如图 7 所示。

表 1　 原始数据集中不同类别的数量

Table
 

1　 The
 

number
 

of
 

different
 

categories
 

in
 

the
 

original
 

dataset
Image nut screw bolt normal_clip fractured_clip rail rail_corrugation backing_plate gauge_block

num 322 31 31 638 544 30 329 336 539 619

图 7　 具有 7 个类别的原始图像和标记结果的示例

Fig. 7　 Example
 

of
 

original
 

image
 

and
labeling

 

results
 

with
 

7
 

categories

　 　 为增强图像数据的多样性和模型的泛化能力,采用

了旋 转、 镜 像、 对 比 度 受 限 的 自 适 应 直 方 图 均 衡

　 　 　 　 　

化 ( contrast
 

limited
 

adaptive
 

histogram
 

equalization,
CLAHE) [40] 、添加噪声、颜色扰动等图像增强方法。 更确

切地说,在噪声添加过程中,使用了椒盐噪声和具有均值

为
 

0、方差为
 

0. 05
 

的高斯噪声。 颜色扰动则通过随机调

整图像的亮度、对比度和清晰度实现。 经过上述图像增

强处理,最终得到了 1
 

251 张铁路轨道线路图像,其中每

个组件或每种缺陷类别的数量如表 2 所示。 根据交叉验

证原则和先前研究的一般比例设置经验[19] ,RTL-I 数据

集划分为训练集和测试集,比例设置为
 

8 ∶ 2。 在模型训

练阶段,考虑到模型性能、训练效率和图像尺度等多方面

因素,输入图像的大小调整为沿短边 400 个像素、沿长边

600 个像素。

表 2　 数据增强后数据集中不同类别的数量

Table
 

2　 The
 

number
 

of
 

different
 

categories
 

in
 

the
 

dataset
 

after
 

data
 

augmentation
Image nut screw bolt normal_clip fractured_clip rail rail_corrugation backing_plate gauge_block

num 1
 

251 119 119 2
 

481 2
 

246 73 1
 

264 1
 

328 2
 

109 2
 

432

2. 2　 损失函数

　 　 ABI-RTLSeg 网络损失函数定义如式(9)所示,主要

由 4 个子损失函数组成,包括类别置信度损失、边界框回

归损失、掩模损失和语义分割损失。
Loss = αclsLcls + αboxLbox + αmaskLmask + αsegmLsegm (9)

式中: α 代表计算总损失值时各子损失值的权重,其预设

值分别设置为 αcls = 1,αbox = 1. 5,αmask = 6. 125,αsegm = 1。
此外,类别置信度损失和边界框回归损失的计算方式与

文献[41]相同。
类别置信度损失 Lcls 为多类别的 softmax 损失,其计

算公式定义如下:

Lcls(x,c) = - ∑
N

i∈Pos
xp
ij log( ĉpi ) - ∑

i∈Neg
log( ĉ0

i )

where ĉpi =
exp( ĉpi )

∑ p
exp( ĉpi )

(10)
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式中: i 和 j 分别代表预测框和真实目标框的序号; p 表

示类别序号,其中背景的序号为 0; xp
ij 是一个指示参数,

取值为 0 或 1,当取值为 1 时表示预测框与类别号为 p 的

真实目标框匹配; ĉ 是通过 softmax 计算得到的类别置

信度。
边界框回归损失 Lbox 采用的是 SmoothL1 损失,计算

公式定义如下:

Lbox(x,l,g) = ∑
N

i∈Pos
∑

m∈cx,cy,w,h
xk
ijSmoothL1( l

m
i -ĝm

j ) (11)

SmoothL1(x) = 0. 5x2, | x | < 1
| x | - 0. 5, | x | ≥ 1{ (12)

式中: l 和 ĝ 分别代表目标边界框的预测值和真实值; xk
ij

的含义和类别置信度相同,因此边界框回归损失的计算

仅针对正样本进行。
掩模损失 Lmask 为二元交叉熵( binary

 

cross-entropy,
BCE)损失,其计算公式定义如下:

Lmask = BCE(M,Mgt) (13)
式中: M 表示组合而成的预测掩模; Mgt 代表掩模的真

实值。
至于语义分割损失 Lsegm ,同样采用二元交叉熵损

失,能够在保持处理速度的同时提升特征的多样性。 需

要指出的是, Lsegm 的计算仅限于训练阶段。
2. 3　 评估指标

　 　 在评估不同模型的检测与分割性能时,本文实验采

用平均精度均值( mean
 

average
 

precision,mAP)作为评价

指标。 其中,平均精度( AP) 值的计算基于精确率-召回

率(P-R)曲线。 根据定义,在 P-R 曲线中,“精确率”作为

纵坐标,“召回率”作为横坐标,AP 值是 P-R 曲线下的面

积。 精确率是用来评估预测结果的准确性,召回率则用

来衡量正确预测的完整性。 精确率和召回率的定义

如下:

P = TP
TP + FP

(14)

R = TP
TP + FN

(15)

式中: TP 和 FP 分别为正确和错误识别的正样本数量;
FN 表示错误识别的负样本数量。 基于这些定义,AP 值

的计算公式定义如下:

AP = ∫1

0
P(R)dR (16)

式中: P 和 R 分别指精确率和召回率; P(R) 代表 PR
曲线。

本文采用了 MS
 

COCO 数据集的评估方法。 并为提

高准确性,在 P-R 曲线上采样了 100 个点进行计算。 此

外,对交并比( intersection
 

over
 

union,
 

IoU)的判定阈值进

行动态调整,从 0. 5 开始,以 0. 05 为步长,直至 0. 95,对

每个阈值下的 AP 值进行计算,并取这些计算结果的平

均值作为最终的评估结果。 通常,AP 是针对单一类别

的,而 mAP 则是综合所有类别的 AP 值后得出的平均值,
则 mAP 定义如下:

mAP = 1
nc

∫1

0
P(R)dR (17)

2. 4　 ABI-RTLSeg 模型性能评估

　 　 1)定量和定性实验结果

实验 中, 将 所 提 出 的 模 型 与 Mask
 

R-CNN[27] 、
YOLACT[42] 、YOLACT++[23] 及 RTLSeg[19] 进行了比较,以
验证 ABI-RTLSeg 模型的有效性和可行性。 为确保比较

结果的公正性, 所有对比的基线方法均采用相同的

ResNet-01-FPN 作为基础骨干网络,并在相同的 RTL-I 训

练集上进行训练。 其他参数严格按照默认设置,并在训

练过程中进行优化。 图 8 所示为 ABI-RTLSeg 模型在训

练过程中总损失和各个损失的变化情况。 此外,图 9
所示为所提出的 ABI-RTLSeg 模型在训练过程中验证

精度的变化。 根据总损失和验证精度的数值,可以观

察到,在经过 72
 

000 次迭代后,ABI-RTLSeg 模型呈现

收敛的趋势。

图 8　 ABI-RTLSeg 模型的损失曲线

Fig. 8　 Loss
 

curves
 

of
 

the
 

ABI-RTLSeg
 

model

图 9　 ABI-RTLSeg
 

模型的验证准确度

Fig. 9　 Validation
 

accuracy
 

of
 

the
 

ABI-RTLSeg
 

model

在 RTL-I 测试集上的检测和分割结果如表 3 所示,
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以粗体突出显示了最佳结果。 由表 3 数据可知,本文提

出的 ABI-RTLSeg 模型在绝大多数的评估指标上都实现

了最优性能,表明 ABI-RTLSeg 在边界框检测、掩模分割

以及推理速度方面均展现出了不错的竞争力。 在边界框

检测方面,本文模型的 AP 值相较于原始 YOLACT 模型

和 YOLACT++模型分别提升了 6. 29%和 4. 66%,略低于

RTLseg 模型 0. 44%。 尽管 Mask
 

R-CNN 达到了最高的

mAP 值 93. 59%,但在固定 IoU_box = 0. 5 和 IoU _box =
0. 75 的条件下,ABI-RTLSeg 在 AP @ 0. 5 _box 和 AP @
0. 75_ mask 指标上至少分别高出其他模型 0. 07% 和

0. 16%。 在分割性能方面,尽管 ABI-RTLSeg 模型在 AP
@ 0. 5_mask 和 AP@ 0. 75_mask 指标上相较于 RTLSeg 模

型略有下降,但在 mAP 值上却实现了提升。 在 AP 值上,

本文模型相较于 Mask
 

R-CNN、YOLACT 和 YOLACT++分
别提升了 2. 35%、5. 76%和 4. 62%,并且相较于 RTLSeg
高出 0. 07%

 

AP。 在固定 IoU_mask = 0. 5 和 IoU_mask =
0. 75 的条件下,ABI-RTLSeg 在 AP @ 0. 5_mask 和 AP @
0. 75_mask 指标上至少比其他模型(除 RTLSeg 外)提升

了 0. 25% 和 0. 62%, 相 较 于 RTLSeg 模 型 仅 下 降 了

0. 17%和 0. 1%。 在模型推理速度方面,由表 3 可见,由
于其检测策略,Mask

 

R-CNN 的推理速度远低于其他模

型,实验中平均为 6. 94
 

fps。 而本文研究提出的 ABI-
RTLSeg 模型的平均推理速度达到了 25. 62

 

fps,不仅超过

了 YOLACT + + 模型的 16. 33
 

fps 和 YOLACT 模型的

21. 46
 

fps,而且几乎是 RTLSeg 模型的 2 倍,显示出在实

时处理方面的显著优势。
表 3　 ABI-RTLSeg 模型与基线模型之间检测和分割性能的比较

Table
 

3　 The
 

comparison
 

of
 

detection
 

and
 

segmentation
 

performance
 

between
 

the
 

proposed
 

model
 

and
 

the
 

baselines

方法 Backbone
bbox / % mask / %

AP AP@ 0. 5 AP@ 0. 75 AP AP@ 0. 5 AP@ 0. 75
推理速度 / fps

Mask
 

R-CNN[27] R-101-FPN 93. 59 98. 19 97. 78 89. 32 98. 28 97. 42 6. 94
YOLACT[42] R-101-FPN 84. 62 97. 88 94. 98 85. 91 98. 09 95. 34 21. 46

YOLACT++[23] R-101-FPN 86. 25 98. 66 97. 52 87. 05 98. 72 97. 32 16. 33
RTLSeg[19] R-101-PaFPN 91. 35 98. 90 98. 02 91. 60 99. 14 98. 14 13. 07
ABI-RTLSeg R-101-ASPP-PaFPN 90. 91 98. 97 98. 18 91. 67 98. 97 98. 04 25. 62

　 　 图 10 所示为模型之间的视觉比较结果( GT 代表

Grounding
 

truth ), 这些示例从定性角度验证了 ABI-
RTLSeg 模型在多种环境条件下(包括光照变化、相机拍

摄角度等因素)的有效性和鲁棒性。 通过直观的图像对

比,可以看出 ABI-RTLSeg 在处理复杂场景时的优越

性能。
2)检测混淆矩阵

表 4 为基于本文研究所提出的 ABI-RTLSeg 模型的

轨道线路多目标关键部件及常见缺陷检测的混淆矩阵,
其中置信度阈值被设定为 0. 5。 分析结果表明,在该阈

值下,ABI-RTLSeg 模型仅漏检了 2 处钢轨波磨和 2 处绝

缘轨距块,其余组件和缺陷均未出现误分类和漏检现象。
钢轨波磨的精确度达到了 100%,召回率为 99. 08%;绝缘

轨距块 的 精 确 度 和 召 回 率 也 分 别 达 到 了 100% 和

99. 58%。 这些未被检测到的案例可能受到了现场复杂

环境因素的影响。 此外,通过分析组件间的附着关系,并
结合混淆矩阵的结果,当某一侧钢轨上未检测到正常扣

件或断裂扣件时,则判定图像中对应位置的扣件丢失。
总体而言,ABI-RTLSeg 模型在检测铁路轨道线路的关键

部件和常见缺陷方面表现出了高效的准确性和可靠性。
表 4　 ABI-RTLSeg 模型与基线模型之间检测和分割性能的比较

Table
 

4　 The
 

comparison
 

of
 

detection
 

and
 

segmentation
 

performance
 

between
 

the
 

proposed
 

model
 

and
 

the
 

baselines

Actual
 

class
Predicted

 

class

nut screw bolt
normal
_clip

fractured
_clip

rail
rail

_corrugation
backing
_plate

gauge
_block

N
 

D 召回率 / %

nut 15 100
screw 15 100
bolt 502 100

normal_clip 446 100
fractured_clip 14 100

rail 251 100
rail_corrugation 216 2 99. 08
backing_plate 420 100
gauge_block 477 2 99. 58
精确率 / % 100 100 100 100 100 100 100 100 100

注:1.
 

‘N
 

D’
 

represents
 

‘Not
 

detected’
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图 10　 ABI-RTLSeg 与基线模型之间分割结果的定性比较

Fig. 10　 Qualitative
 

comparison
 

of
 

segmentation
 

results
 

between
 

baseline
 

models
 

and
 

ABI-RTLSeg

2. 5　 缺陷分析实例分析

　 　 通过实例研究的形式,详细展示了所提出的扣件损

坏严重评估方法和钢轨波磨关键参数估计方法的可视化

过程及其实际应用的可行性。 研究中所使用的图像,包
括表现为中度损坏的扣件和存在波磨的钢轨,收集或模

拟自北京地铁 6 号线南锣鼓巷站与东四站之间的小半径

曲线路段。
对于扣件的安全状态检测,首先利用 ABI-RTLSeg 模

　 　 　

型对扣件进行检测识别,并获取分割掩模结果。 随后,将
分割结果输入至分割结果分析模块中。 结合 MCCA 方法

和放缩因子(scale
 

factor,SF),对分割掩模面积进行标准

化处理。 依据式(1) 计算得到损坏扣件的损伤度 DD。
最终,根据式(2)中定义的隶属度函数( level

 

membership
 

function,LMF) 和最大隶属原则( maximum
 

subordination
 

principle,MSP),确定扣件损坏的严重程度等级。 详细的

可视化过程和结果如图 11 所示。

图 11　 扣件损坏严重程度评估可视化过程和结果

Fig. 11　 Visualization
 

process
 

and
 

results
 

of
 

fastener
 

damage
 

severity
 

assessment
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　 　 针对钢轨波磨的检测,同样在应用 ABI-RTLSeg 模型

获取分割掩模结果后,将其输入至分割结果分析模块中。
进一步采用基于最小二乘法( least

 

squares
 

method,LSM)
的椭圆拟合(ellipse

 

fitting,EF)算法,对每个子波磨区域

的分割掩模结果进行拟合,从而计算得到每个子波磨区

域的质心坐标、长轴长 2a、短轴长 2b 以及倾斜角度。 基

于这些参数,最终程和结果如图 12 所示。

图 12　 波磨关键参数估计可视化过程和结果

Fig. 12　 Visualization
 

process
 

and
 

results
 

of
 

corrugation
 

key
 

parameter
 

estimation

　 　 根据现场实际和模拟情况,本实例的可视化处理过

程与分析结果表明,所提出的方法为评估扣件损伤严重

程度和钢轨波磨关键参数提供了一个可行的途径。

3　 结　 论

　 　 本文针对像素级别的轨道线路多目标关键部件快速

精细化识别及常见缺陷检测与分析问题进行了系统性探

讨。 为此,构建了 RTL-I 数据集, 并提出了一种 ABI-
RTLSeg 模型。 该模型首先引入空洞空间金字塔池化模

块至深层骨干网络中,以增强对高级语义信息的学习。
其次,在 Coord-Protonet 中引入基于卷积的双线性插值结

构,旨在获取更高质量的原型掩模和增强的语义信息感

知。 最后,通过构建分割结果分析模块,综合运用椭圆拟

合和形态学分析方法,对常见缺陷的安全状态进行可视

化分析。 实验结果表明,ABI-RTLSeg 模型在快速精细化

检测、分割及分析轨道线路的多目标关键部件和常见缺

陷方面具有有效性和可行性,且性能优于对比的基线模

型。 相比原始的 RTLSeg 模型,掩码平均精度和平均推理

速度分别提升 0. 07%和 12. 55
 

fps。 本文方法为轨道线路

的智能化监测提供了创新的技术途径,对提升铁路运输

系统的安全性和可靠性具有重要的实际意义。
在未来的工作中,将对 RTL-I 数据集进行扩展,强化

数据集的全面性,提升检测的普适性和鲁棒性,同时以实

现现场轻量化部署为目标,进一步提升模型的推理速度。
其次,本文提出的分割评估模型将通过现场测试进行验

证与优化,探究开发更可靠的缺陷严重程度评估方法,并
构建检测与评估的一体化体系,以实现轨道线路关键部

件的高效精准管理,为后续的维护决策提供科学依据。
此外,随着检测领域的发展,研究者也将探索将研究成果

扩展至 3D 工程应用,以进一步提高铁路轨道线路缺陷检

测的自动化和智能化水平。

参考文献

[ 1 ]　 GUO
 

F,
 

QIAN
 

Y,
 

SHI
 

Y
 

F.
 

Real-time
 

railroad
 

track
 

components
 

inspection
 

based
 

on
 

the
 

improved
 

YOLOv4
 

framework [ J ].
 

Automation
 

in
 

Construction,
 

2021,
 

125:
 

103596.
[ 2 ]　 POPOV

 

K,
 

DE
 

BOLD
 

R,
 

CHAI
 

H
 

K,
 

et
 

al.
 

Big-data
 

driven
 

assessment
 

of
 

railway
 

track
 

and
 

maintenance
 

efficiency
 

using
 

artificial
 

neural
 

networks [ J ].
 

Construction
 

and
 

Building
 

Materials,
 

2022,
 

349:
 

128786.
[ 3 ]　 TANG

 

R
 

F,
 

DE
 

DONATO
 

L,
 

BESINOVI ′C
 

N,
 

et
 

al.
 

A
 

literature
 

review
 

of
 

Artificial
 

Intelligence
 

applications
 

in
 

railway
 

systems [ J].
 

Transportation
 

Research
 

Part
 

C:
 

Emerging
 

Technologies,
 

2022,
 

140:
 

103679.
[ 4 ]　 DI

 

SUMMA
 

M,
 

GRISETA
 

M
 

E,
 

MOSCA
 

N,
 

et
 

al.
 

A
 

review
 

on
 

deep
 

learning
 

techniques
 

for
 

railway
 

infrastructure
 

monitoring[ J].
 

IEEE
 

Access,
 

2023,
 

11:
 

114638-114661.
[ 5 ]　 WEI

 

X
 

K,
 

YANG
 

Z
 

M,
 

LIU
 

Y
 

X,
 

et
 

al.
 

Railway
 

track
 

fastener
 

defect
 

detection
 

based
 

on
 

image
 

processing
 

and
 

deep
 

learning
 

techniques:
 

A
 

comparative
 

study [ J ].
 

Engineering
 

Applications
 

of
 

Artificial
 

Intelligence,
 

2019,
 

80:
 

66-81.
[ 6 ]　 BAI

 

T
 

B,
 

YANG
 

J
 

W,
 

XU
 

G
 

Y,
 

et
 

al.
 

An
 

optimized
 

railway
 

fastener
 

detection
 

method
 

based
 

on
 

modified
 

Faster
 

R-CNN[J].
 

Measurement,
 

2021,
 

182:
 

109742.
[ 7 ]　 HU

 

J,
 

QIAO
 

P,
 

LV
 

H
 

H,
 

et
 

al.
 

High
 

speed
 

railway
 

fastener
 

defect
 

detection
 

by
 

using
 

improved
 

YOLOX-nano
 

model[J].
 

Sensors,
 

2022,
 

22(21):
 

8399.



　 第 8 期 基于 ABI-RTLSeg 的轨道线路多关键部件精细化检测及缺陷分析 · 89　　　 ·

[ 8 ]　 LIU
 

J
 

W,
 

QIU
 

Y,
 

NI
 

X
 

F,
 

et
 

al.
 

Fast
 

detection
 

of
 

railway
 

fastener
 

using
 

a
 

new
 

lightweight
 

network
 

OP-
YOLOv4-Tiny [ J ].

 

IEEE
 

Transactions
 

on
 

Intelligent
 

Transportation
 

Systems,
 

2024,
 

25(1):
 

133-143.
[ 9 ]　 GAO

 

Y,
 

CAO
 

Z
 

W,
 

QIN
 

Y,
 

et
 

al.
 

Railway
 

fastener
 

anomaly
 

detection
 

via
 

multi-sensor
 

fusion
 

and
 

self-driven
 

loss
 

reweighting [ J ].
 

IEEE
 

Sensors
 

Journal,
 

2024,
 

24(2):
 

1812-1825.
[10]　 QIU

 

Y,
 

LIU
 

H
 

L,
 

LIU
 

J
 

W,
 

et
 

al.
 

Center-triplet
 

loss
 

for
 

railway
 

defective
 

fastener
 

detection [ J].
 

IEEE
 

Sensors
 

Journal,
 

2024,
 

24(3):
 

3180-3190.
[11]　 YE

 

W
 

L,
 

REN
 

J
 

J,
 

LU
 

C
 

F,
 

et
 

al.
 

Intelligent
 

detection
 

of
 

fastener
 

defects
 

in
 

ballastless
 

tracks
 

based
 

on
 

deep
 

learning [ J ].
 

Automation
 

in
 

Construction,
 

2024,
 

159:
 

105280.
[12]　 WEI

 

X
 

K,
 

WEI
 

D
 

H,
 

SUO
 

D,
 

et
 

al.
 

Multi-target
 

defect
 

identification
 

for
 

railway
 

track
 

line
 

based
 

on
 

image
 

processing
 

and
 

improved
 

YOLOv3
 

model [ J ].
 

IEEE
 

Access,
 

2020,
 

8:
 

61973-61988.
[13]　 WU

 

Y
 

P,
 

QIN
 

Y,
 

QIAN
 

Y,
 

et
 

al.
 

Hybrid
 

deep
 

learning
 

architecture
 

for
 

rail
 

surface
 

segmentation
 

and
 

surface
 

defect
 

detection [ J ].
 

Computer-Aided
 

Civil
 

and
 

Infrastructure
 

Engineering,
 

2022,
 

37(2):
 

227-244.
[14]　 YANG

 

J
 

X,
 

ZHOU
 

W
 

J,
 

WU
 

R
 

M,
 

et
 

al.
 

CSANet:
 

Contour
 

and
 

semantic
 

feature
 

alignment
 

fusion
 

network
 

for
 

rail
 

surface
 

defect
 

detection[J].
 

IEEE
 

Signal
 

Processing
 

Letters,
 

2023,
 

30:
 

972-976.
[15]　 LUO

 

H,
 

CAI
 

L
 

M,
 

LI
 

C
 

B.
 

Rail
 

surface
 

defect
 

detection
 

based
 

on
 

an
 

improved
 

YOLOv5s[ J].
 

Applied
 

Sciences,
 

2023,
 

13(12):
 

7330.
[16]　 张银胜,

 

杨宇龙,
 

吉茹,
 

等.
 

改进 YOLOv5s 的风力涡

轮机表面缺陷检测[J].
 

电子测量与仪器学报,
 

2023,
 

37(1):40-49.
ZHANG

 

Y
 

SH,
 

YANG
 

Y
 

L,
 

JI
 

R,
 

et
 

al.
 

Surface
 

defect
 

detection
 

of
 

wind
 

turbine
 

based
 

on
 

YOLOv5s[J].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2023,
 

37(1):40-49.
[17]　 GUO

 

F,
 

QIAN
 

Y,
 

YU
 

H
 

Y.
 

Automatic
 

rail
 

surface
 

defect
 

inspection
 

using
 

the
 

pixelwise
 

semantic
 

segmentation
 

model [ J].
 

IEEE
 

Sensors
 

Journal,
 

2023,
 

23(13):
 

15010-15018.
[18]　 ZHOU

 

W
 

J,
 

HONG
 

J
 

K.
 

FHENet:
 

Lightweight
 

feature
 

hierarchical
 

exploration
 

network
 

for
 

real-time
 

rail
 

surface
 

defect
 

inspection
 

in
 

RGB-D
 

images [ J ].
 

IEEE
 

Transactions
 

on
 

Instrumentation
 

and
 

Measurement,
 

2023,
 

72:
 

1-8.
[19]　 WEI

 

D
 

H,
 

WEI
 

X
 

K,
 

TANG
 

Q
 

F,
 

et
 

al.
 

RTLSeg:
 

A
 

novel
 

multi-component
 

inspection
 

network
 

for
 

railway
 

track
 

line
 

based
 

on
 

instance
 

segmentation [ J ].
 

Engineering
 

Applications
 

of
 

Artificial
 

Intelligence,
 

2023,
 

119:
 

105822.
[20]　 ZOU

 

Z
 

X,
 

CHEN
 

K
 

Y,
 

SHI
 

Z
 

W,
 

et
 

al.
 

Object
 

detection
 

in
 

20
 

years:
 

A
 

survey [ J].
 

Proceedings
 

of
 

the
 

IEEE,
 

2023,
 

111(3):
 

257-276.
[21]　 赵恩玄,

 

何云勇,
 

沈宽,
 

等.
 

基于深度学习的铸件 CT
图像分割算法[ J].

 

仪器仪表学报,
 

2023,
 

44( 11):
176-184.
ZHAO

 

EN
 

X,
 

HE
 

Y
 

Y,
 

SHEN
 

K,
 

et
 

al.
 

Casting
 

CT
 

image
 

segmentation
 

algorithm
 

based
 

on
 

deep
 

learning[J].
 

Chinese
 

Journal
 

of
 

Scientific
 

Instrument,
 

2023,
 

44 ( 11 ):
176-184.

[22]　 HE
 

K
 

M,
 

ZHANG
 

X
 

Y,
 

REN
 

S
 

Q,
 

et
 

al.
 

Deep
 

residual
 

learning
 

for
 

image
 

recognition [ C]. Proceedings
 

of
 

the
 

IEEE
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2016:
 

770-778.
[23]　 BOLYA

 

D,
 

ZHOU
 

C,
 

XIAO
 

F
 

Y,
 

et
 

al.
 

YOLACT+ +:
 

Better
 

real-time
 

instance
 

segmentation [ J ].
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2022,
 

44
 

(2):
 

1108-1121.
[24]　 DAI

 

J
 

F,
 

QI
 

H
 

Z,
 

XIONG
 

Y
 

W,
 

et
 

al.
 

Deformable
 

convolutional
 

networks [ C ]. Proceedings
 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2017:
 

764-
773.

[25]　 ZHU
 

X
 

Z,
 

HU
 

H,
 

LIN
 

S,
 

et
 

al.
 

Deformable
 

convnets
 

v2:
 

More
 

deformable,
 

better
 

results[ C]. Proceedings
 

of
 

the
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2019:
 

9308-9316.
[26]　 CHEN

 

L
 

C,
 

PAPANDREOU
 

G,
 

KOKKINOS
 

I,
 

et
 

al.
 

DeepLab:
 

Semantic
 

image
 

segmentation
 

with
 

deep
 

convolutional
 

nets,
 

atrous
 

convolution,
 

and
 

fully
 

connected
 

CRFS [ J ].
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2017,
 

40 ( 4 ):
 

834-848.
[27]　 HE

 

K
 

M,
 

GKIOXARI
 

G,
 

DOLLÁR
 

P,
 

et
 

al.
 

Mask
 

r-cnn[C].
 

Proceedings
 

of
 

the
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2017:
 

2961-2969.
[28]　 WANG

 

X
 

L,
 

KONG
 

T,
 

SHEN
 

C
 

H,
 

et
 

al.
 

Solo:
 

Segmenting
 

objects
 

by
 

locations [ C]. Computer
 

Vision-
ECCV

 

2020:
 

16th
 

European
 

Conference,
 

2020:
 

649-665.
[29]　 WANG

 

X
 

L,
 

ZHANG
 

R
 

F,
 

KONG
 

T,
 

et
 

al.
 

Solov2:
 

Dynamic
 

and
 

fast
 

instance
 

segmentation[J].
 

Advances
 

in
 

Neural
 

Information
 

Processing
 

Systems,
 

2020,
 

33:
 

17721-17732.
[30]　 LIU

 

R,
 

LEHMAN
 

J,
 

MOLINO
 

P,
 

et
 

al.
 

An
 

intriguing
 

failing
 

of
 

convolutional
 

neural
 

networks
 

and
 

the
 



· 90　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

CoordConv
 

solution[ J].
 

Advances
 

in
 

Neural
 

Information
 

Processing
 

Systems,
 

2018,
 

31.
[31]　 ISLAM

 

D,
 

MAHMUD
 

T,
 

CHOWDHURY
 

T.
 

An
 

efficient
 

automated
 

vehicle
 

license
 

plate
 

recognition
 

system
 

under
 

image
 

processing [ J].
 

Indonesian
 

Journal
 

of
 

Electrical
 

Engineering
 

and
 

Computer
 

Science,
 

2023,
 

29(2):
 

1055-
1062.

[32]　 WEI
 

D
 

H,
 

WEI
 

X
 

K,
 

LIU
 

Y
 

X,
 

et
 

al.
 

The
 

identification
 

and
 

assessment
 

of
 

rail
 

corrugation
 

based
 

on
 

computer
 

vision[J].
 

Applied
 

Sciences,
 

2019,
 

9(18):
 

3913.
[33]　 PANAGIOTAKIS

 

C,
 

ARGYROS
 

A.
 

Region-based
 

fitting
 

of
 

overlapping
 

ellipses
 

and
 

its
 

application
 

to
 

cells
 

segmentation[ J].
 

Image
 

and
 

Vision
 

Computing,
 

2020,
 

93:
 

103810.
[34]　 ZHAO

 

L
 

F,
 

LI
 

G
 

Q,
 

WANG
 

J.
 

Tone
 

mapping
 

method
 

based
 

on
 

the
 

least
 

squares
 

method [ J ].
 

Electronics,
 

2022,
 

12(1):
 

31.
[35]　 VAITHIANATHAN

 

M,
 

PATIL
 

M,
 

NG
 

S
 

F,
 

et
 

al.
 

Comparative
 

study
 

of
 

FPGA
 

and
 

GPU
 

for
 

high-
performance

 

computing
 

and
 

AI [ J].
 

ESP
 

International
 

Journal
 

of
 

Advancements
 

in
 

Computational
 

Technology
 

(ESP-IJACT),
 

2023,
 

1(1):
 

37-46.
[36]　 LI

 

M
 

Z,
 

LI
 

M
 

C,
 

REN
 

Q
 

B,
 

et
 

al.
 

PipeTransUNet:
 

CNN
 

and
 

Transformer
 

fusion
 

network
 

for
 

semantic
 

segmentation
 

and
 

severity
 

quantification
 

of
 

multiple
 

sewer
 

pipe
 

defects [ J].
 

Applied
 

Soft
 

Computing,
 

2024,
 

159:
 

111673.
[37]　 ZHANG

 

H
 

R,
 

WU
 

C,
 

ZHANG
 

Z
 

Y,
 

et
 

al.
 

Resnest:
 

Split-attention
 

networks [ C]. Proceedings
 

of
 

the
 

IEEE /
CVF

 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2022:
 

2736-2746.
[38]　 CHEN

 

X,
 

FANG
 

H,
 

LIN
 

T
 

Y,
 

et
 

al.
 

Microsoft
 

coco
 

captions:
 

Data
 

collection
 

and
 

evaluation
 

server [ J ].
 

ArXiv
 

preprint
 

arXiv:1504. 00325,
 

2015.
[39]　 ULLAH

 

R,
 

JAAFAR
 

J,
 

ABAS
 

B.
 

Semantic
 

annotation
 

model
 

for
 

objects
 

classification [ C]. 2015
 

IEEE
 

Student
 

Conference
 

on
 

Research
 

and
 

Development
 

( SCOReD).
 

IEEE,
 

2015:
 

87-92.
[40]　 CHEN

 

R
 

C,
 

DEWI
 

C,
 

ZHUANG
 

Y
 

C,
 

et
 

al.
 

Contrast
 

limited
 

adaptive
 

histogram
 

equalization
 

for
 

recognizing
 

road
 

marking
 

at
 

night
 

based
 

on
 

YOLO
 

models[ J].
 

IEEE
 

Access,
 

2023,
 

11:92926-92942.
[41]　 LIU

 

W,
 

ANGUELOV
 

D,
 

ERHAN
 

D,
 

et
 

al.
 

Ssd:
 

Single
　 　 　 　

shot
 

multibox
 

detector [ C ]. Computer
 

Vision-ECCV
 

2016:
 

14th
 

European
 

Conference,
 

2016:
 

21-37.
[42]　 BOLYA

 

D,
 

ZHOU
 

C,
 

XIAO
 

F
 

Y,
 

et
 

al.
 

Yolact:
 

Real-
time

 

instance
 

segmentation [ C ]. Proceedings
 

of
 

the
 

IEEE / CVF
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2019:
 

9157-9166.
作者简介

　 　 魏德华(通信作者),2014 年于福州大

学获
 

得学士学位,2017 年于福州大学获得

硕士学位,2023 年于北京交通大学获得博

士学位,现为兰州交通大学讲师,主要研究

方向:铁路安全智能感知、铁路信息化、智能

交通、计算机视觉等。
E-mail:

 

wdh7016@ lzjtu. edu. cn
Wei

 

Dehua
 

( Corresponding
 

author)
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Fuzhou
 

University
 

in
 

2014,
 

M. Sc.
 

degree
 

from
 

Fuzhou
 

University
 

in
 

2017,
 

and
 

Ph. D.
 

degree
 

from
 

Beijing
 

Jiaotong
 

University
 

in
 

2023.
 

Now
 

he
 

is
 

a
 

lecturer
 

in
 

Lanzhou
 

Jiaotong
 

University.
 

His
 

main
 

research
 

interests
 

include
 

railway
 

safety
 

and
 

intelligent
 

perception,
 

railway
 

informatisation,
 

intelligent
 

transportation
 

and
 

computer
 

vision,
 

etc.
魏秀琨,1992 年于兰州理工大学获得

学士学位,1995 年于兰州理工大学获得硕

士学位,2006 年于奥地利林茨大学获得博

士学位,2006 年至 2009 年于荷兰代尔夫特

理工大学系统与控制中心从事博士后研究

工作,现为北京交通大学教授、博士生导师,
主要研究方向:故障诊断及其应用、智能交通系统、状态监测

及其在铁路交通控制、安全和运输等众多领域的应用。
E-mail:

 

xkwei@ bjtu. edu. cn
Wei

 

Xiukun
 

received
 

his
 

B. Sc.
 

degree
 

from
 

Lanzhou
 

University
 

of
 

Technology
 

in
 

2014,
 

M. Sc.
 

degree
 

from
 

Lanzhou
 

University
 

of
 

Technology
 

in
 

2017
 

and
 

Ph. D.
 

degree
 

from
 

Johannes
 

Kepler
 

University
 

Linz
 

in
 

Austria
 

in
 

2023.
 

From
 

2006
 

to
 

2009,
 

he
 

conducted
 

postdoctoral
 

research
 

at
 

the
 

Delft
 

Center
 

for
 

Systems
 

and
 

Control,
 

Delft
 

University
 

of
 

Technology,
 

Netherlands.
 

Now
 

he
 

is
 

a
 

professor
 

and
 

supervisor
 

for
 

Ph.
 

D.
 

student
 

in
 

Beijing
 

Jiaotong
 

University.
 

His
 

main
 

research
 

interests
 

include
 

fault
 

diagnosis
 

and
 

its
 

applications,
 

intelligent
 

transportation
 

systems,
 

and
 

condition
 

monitoring
 

and
 

its
 

applications
 

in
 

a
 

variety
 

of
 

fields,
 

such
 

as
 

rail
 

traffic
 

control,
 

safety,
 

and
 

transportation.


