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Abstract: Urban rail transit track condition monitoring is one of the critical tasks for ensuring the safety of railway transportation
systems. The urban rail transit track includes key components such as rails, fasteners, bolts, and sleepers. In response to the demand
for real-time and refined detection, this study, building on previous work, further investigates and proposes an innovative intelligent
method based on instance segmentation for the rapid and refined identification of multiple key components of urban rail transit tracks,
analyzes, and quantifies the detection results of common defects. Specifically, this research, based on the existing RTLSeg model,
integrates field-of-view enhancement and image post-processing techniques, proposing an improved track image segmentation and
evaluation model ( ABI-RTLSeg). Firstly, to enhance the model’ s learning of high-level semantic information, this study introduces a
dilated spatial pyramid pooling ( ASPP) module into the deep backbone network. Secondly, a convolution-based bilinear interpolation
structure is incorporated into the Coord-Protonet to obtain higher-quality prototype masks and semantic information awareness. Lastly,

based on the visual features of defect segmentation masks, a segmentation result analysis module is constructed, employing ellipse fitting
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and morphological analysis methods to analyze the safety status of common defects. Experimental results demonstrate that this method is

feasible for rapid and refined detection, segmentation, and analysis of multiple target key components and common defects of railway

track lines, and its performance surpasses that of the comparative baseline models. In particular, ABI-RTLSeg is able to achieve

90.91% bbox mAP and 91. 67% mask mAP with the customized dataset. Meanwhile, the average inference speed reaches 25. 62 fps.

The average detection accuracy and recall are 100% and 99. 85% , respectively. Furthermore, the feasibility of the proposed methods for

assessing the severity of fastener damage and estimating key parameters of rail corrugation has been explored through multiple case

studies. In summary, this study provides a new technical approach for the intelligent monitoring of rail transit track lines, which is of

great significance for improving the safety and reliability of the railway transportation system.

Keywords : multi-component inspection; defect analysis; instance segmentation; ASPP; morphological analysis; ellipse fitting
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Fig. 1 The main structure of the proposed ABI-RTLSeg model
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Table 1 The number of different categories in the original dataset

Image nut screw bolt normal_clip

fractured_clip rail

rail_corrugation  backing_plate gauge_block

num 322 31 31 638 544

329 336 539 619

(a) BHEE

(a) Original image
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Fig. 7 Example of original image and
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(b) Instance label visualization

labeling results with 7 categories
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Table 2 The number of different categories in the dataset after data augmentation

Image nut screw bolt normal_clip  fractured_clip rail rail_corrugation  backing_plate gauge_block
num 1251 119 119 2 481 2 246 1264 1328 2 109 2432
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{LEERT IEREA AT

FEREHI O L, 0 5638 X il (binary cross-entropy,
BCE) $i5% , Ht 54 50 LnF .

L. =BCE(M,M§I) (13)
A MR A T O M, ACRIERIRY
JAH

FFE MR L FRER = 63 A
I REMETE R A A B B2 11 [] I £ TR AR 19 24 75
BRI, L, WIHEAURTIIZREE .

2.3 fhigtR

FEPEAL AN [R) A2 1 A6 0 5 73 F M BRI, A SC S50 2R
2K B2 YI{E ( mean average precision, mAP ) VE A3 Ay
fotn, Horp SFHPRGEE (AP) (BT 56 T-RS 0 -1 [l
R(P-R) Mgk, W¥EE X, 78 P-R figrh, K% 15N
PALbR A R AR R A BR , AP {2 P-R 4T BYTH
T R 202 FHOR DA 000 245 2 r v 1, 4 [l 58 00
el B T B TR B 5E R Mk RS il SRR A AR sE X
e

TP
p= (14)
TP + FP
TP
R= (15)
TP + FN

KA. TP A1 FP 43 50 8 IE 00 A R U0 B IE R AR B
FN TR TR IEB B AR A SR, Fe T X85 X, AP B
AR A e LA

AP=f1P(R)dR (16)

K. P AR 20 F8 K 0 3 A 01 % P(R) 3R PR
ik,

AICRHT MS COCO Hudl S vl ik, JFh i
FERI Y 7E P-R M2 FoRAE T 100 s iE AT IS M
Ab, X138 35 (intersection over union, LoU) B3 5E B {H 1
IS TEEE N 0.5 FF4R, L 0.05 K, H = 0.95, %t

BABE T B AP EHEAT 5, IR BOX e H 3R 45 2R 1 -
BEAE Ry e A M PEAG S5 2R . il AP 25 X 5 — 28 )
B, T mAP WRZRE BT 200 0 AP (5151 - F2IME
M mAP & LA

mAPziflP(R)dR (17)

2.4 ABI-RTLSeg & 14 88114

1) 58 o e MESL g0 2

SCHY K T B B S R 5 Mask R-CNN'T
YOLACT"* YOLACT++"' }% RTLSeg"" #47 T H ¢, LA
BIE ABI-RTLSeg S5 A RLPE R AT AT, Al 07 L4k
g5 J 0N IE T, I R HE Y 3 2R T ik 35 R AR ) Y
ResNet-01-FPN 1Eh 3Ehl B T /2% I ZEAA R B RTL-T |
R4 LTINS, A S B0™ ks i BRI, e
Gt it iAt ., B 8 s A ABI-RTLSeg A5 AU 75 1|
Srad B b SRR RN A AR AR AR B, e b, B9
TR A r 4 Y ABI-RTLSeg A5 7 7 Y1 25 i 2 b 36 HiE
FEBER AR AL, AR S A0 R TR RS B A B (B, AT AU
B FEL ik 72 000 R % 1CJ5 , ABI-RTLSeg #5251 5 3
WS R

25r — Total Loss

BBOX Loss

20 I --. Conf Loss

—-- Mask Loss

— Segmentation Loss

Q \} Q \ Q Q \ \ \
QQQ QQQ QQQ QQQ QQQ QQQ QQQ QQQ
A P L - S R S
Iteration

El'8 ABI-RTLSeg f5 75 ()41 5% il &
Fig. 8 Loss curves of the ABI-RTLSeg model
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mAP/%
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Fig. 9 Validation accuracy of the ABI-RTLSeg model
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DU R T AR5 A, iR 3 im0, A e de
Y9 ABI-RTLSeg #5587 26 K 22 5000 PEAl 48 A L #0558
T AU MERE , 2 W] ABI-RTLSeg 75 341 FHE KGN | 5455 43 1)
DR AR By T A R B TN SR g T . AR FUE
I 7 T, A SCAL L) AP {EAH S T IR AR YOLACT A5 7Y
1 YOLACT++ELA 43 G EEF T 6. 29% F1 4. 66% , WAL T
RTLseg f57 0. 44% , JL4 Mask R-CNN 53| T f5 &5 1
mAP {8 93. 59% , {H 7E [& %€ ToU_box = 0. 5 F ToU_box =
0.75 W %1 F, ABI-RTLSeg 7£ AP @ 0. 5_bhox il AP@
0.75_mask $& 5 b % 2D 43 51 i 3 H A LR 0. 07% F
0.16%, TE53HIMERETT I, /{48 ABI-RTLSeg LI 7E AP
@0. 5_mask Fl AP@ 0. 75_mask #5855 _EAHEST RTLSeg £  21. 46 fps, ifif HLJL-FJ& RTLSeg HL7 4 2 %, /s 78 5K
RIS A TR BAE mAP {8 FHISCE TR TF, 76 AP E I, P A By TR ) S
% 3 ABI-RTLSeg #2E 5 E L&A 2 @M 45 Bl aE I LB

Table 3 The comparison of detection and segmentation performance between the proposed model and the baselines

ARSI AT Mask R-CNN  YOLACT H1 YOLACT++4}
WHETET 2.35% .5.76% Fl 4. 62% , 3 H A% F RTLSeg
B 0.07% AP, fE[E %E ToU_mask =0.5 il ToU_mask =
0.75 W41, ABI-RTLSeg 7E AP@ 0. 5_mask fil AP@
0. 75_mask ¥8Fr I 2 /D AR (BR RTLSeg 4b) $2 7+
T 0.25% F1 0. 62% , # # T RTLSeg #% BIAL T % T
0. 17%H1 0. 1%, 76 H5 AU 3 3 7 1w , i 28 3 /T, i
THAG I S WK, Mask R-CNN (1) $i B JF g )% T He At
A SEIS SN 6,94 fps, T AS SCHF 5T 2 MY AY ABI-
RTLSeg 171 ) -S4 B FE R 2 T 25. 62 fps, AU
T YOLACT + + £ B ) 16.33 fps Fl YOLACT £ BY ()

N bbox/ % mask/ % N
ik Backbone AP AP@0.5 AP@O.75 AP AP@0.s  Ap@o.7s  TREE/fps
Mask R-CNN'?"! R-101-FPN 93.59 98.19 97.78 89.32 98.28 97.42 6.94
YOLACT!#! R-101-FPN 84. 62 97.88 94.98 85.91 98.09 95.34 21.46
YOLACT++(%] R-101-FPN 86.25 98. 66 97.52 87.05 98.72 97.32 16.33
RTLSeg "’ R-101-PaFPN 91.35 98.90 98. 02 91. 60 99. 14 98. 14 13.07
ABI-RTLSeg R-101-ASPP-PaFPN  90.91 98.97 98.18 91. 67 98.97 98. 04 25.62

P10 J 7R S A6 A0 2 ) (9 4 3 LB 4 2R (GT 1RER
Grounding truth ) , X BE R B N E M BB A T ABI-
RTLSeg fAITE L FR 45 514 T (456 A2 Ak AR BLAA
TR R) A REF G IE, 8 B G
Ho, 7] LA F i ABI-RTLSeg 7£ &b B & 24 37 5% B 149 £t bk

PERE
2) A TR VA AR

4 NFEETA S ST P42 3 1 ABI-RTLSeg #5554 1)
BB ZE %2 B bR GRS A B UL S5 56 A 00 %) TRV R e
HAp BEERESREERN 0.5, Mg R EW, 1% H

F 4 ABI-RTLSeg 2B 5 E LT 2 @145 Bl aE I LB

Table 4 The comparison of detection and segmentation performance between the proposed model and the baselines

{HF , ABI-RTLSeg BRIV IaAe 1 2 AN HLIE 55 Fn 2 ib 2
SRR Y LA R RE YR 1 R R AR 4
B BRE B BE IR ] T 100% , 43 181584 99. 08% ; 46.2%
BUEE P i ORS B B2 A I R A 43 GG B T 100% i
99. 58% , IXEEAML K 1 E BT REZ B T MG E 42
IR ZE A2, HeAh 8 AT AL R B B R I
SO IRVE MR AE L Y I — M B R I B 1 E
PF ST 2L s 0 ) PR o o 1 o7 e & 2k
SMATIT T, ABI-RTLSeg #5175 K6 I 4% 1 1 T8 2k 6 11 O
RN LR T B T v 55 ) MR P R AT S

Predicted class

Actual class normal fractured rail backing gauge ND AHFE*/%
nut screw bolt rail
_clip _clip _corrugation  _plate _block
nut 15 100
screw 15 100
bolt 502 100
normal_clip 446 100
fractured_clip 14 100
rail 251 100
rail_corrugation 216 2 99. 08
backing_plate 420 100
gauge_block 477 2 99. 58
FEHR/ % 100 100 100 100 100 100 100 100 100

F.1. ‘ND’ represents ‘ Not detected’
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(a) Original
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Fig. 10 Qualitative comparison of segmentation results between baseline models and ABI-RTLSeg
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I LB IE BT X, RN R R T T EE A 0 3
= PPAL 5 B S S s S A Ty T i T Ak
TR R LSRR A AT AT WA R T A RS, A
5 F Iy v BE RIS 8 F0 4 R0 A 0 S 1 AL, WA AR e
LA HLER 6 5 L Fg B Sl 5 AR DU 2 (R Y /R4
2 Bk Bt

X T 2 ARSI, B 4EF ] ABI-RTLSeg 15

0 sy, NOTMaL
7
— ABI-RTLScg
> )
MCCA | 'DD" 0,536 jminy [“Tovel2 |
SFp e Y
(a) 52491 1
(a) Case 1
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Fig. 11

RIS A TR ORI BIHER S R, B S
Gy EIEE R N oy BN G Ry e, 454 MCCA ik
FUHCAR P F (scale factor, SF) , X6 3 HIHEAS 1 FR 54 745
feabBE, A= (1) THEAS B IR 44 4545 2 DD,
B RIER(2) H e LAY R FE REL (level membership
function , LMF) F1 K 3% J& I W] ( maximum subordination
principle, MSP) , 88 %€ FUA IR = B FR BE S5 2, TR0
AT B AN SR AN 11 s,

(b) 341 2
(b) Case 2

FOPFRAIR = FE R BE PG nT AL R A s

Visualization process and results of fastener damage severity assessment
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S XA AL B RN, [RIREZE I FH ABI-RTLSeg #5574
RIIF EIEREEE RS 4 Ho A 200 BI85 R At
HE—2 R FH3E T /N 36 725 (least squares method , LSM)
AR 1R 06 ( ellipse fitting, EF) B ST EAS T X

(%,7)=(507.87.251.93)
LSM i 20=131.87
—_—
FF  126=49.68
0=195 ----
o

§ — ABIRTISeg| — —
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2-157.16 |
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—
EF | 2=5659
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.
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52279 ]
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Fig. 12 Visualization process and results of corrugation key parameter estimation

AR B 5 P RS ALUAR B0, A S 491] 14 T R A Ak B
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W, Wik, M T RTL-T 8096 45, IR 42 7 —Fh ABI-
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He BT 2 T W 2% Hh, DU 5 % i 90 SUAE B 2E 2
HIYR, 1E Coord-Protonet 5] AFEF B FUAY SR VEFG(E 45
F, B TR 5 U a1 i B A AT RN 3 o 1) 1 A B
A, e, 38R A A R TR 2R A 12 A R 4
GBS BT 15 X H LB 1) 22 AR AR AT AT A
FEI3HT . SCESE I, ABI-RTLSeg #5550 75 B 40K 40 1k
I 5338 K A AT 30038 2R B 1 22 ) b O B0 44 AR DL sl
BT T LA A e E Rl A5, HAERR O T % b il L2
B, FHLC AR Y RTLSeg A7 | HERSF- A B2 A7 2474
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