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Abstract: Owing to the constraint of the single-channel structure of gray images, the target contrast within the image is low, the feature
information is indistinct, and the color information is lacking. Hence, the detection accuracy is low and the detection process is arduous.
To enhance the accuracy of gray image detection and reduce the rates of false detection and missed detection, an object detection
algorithm, SAC-YOLO, combining dual observation and attention mechanism was proposed. Firstly, transform atrous convolution was
integrated into the backbone network to convert the standard convolution layer into an atrous convolution layer, and the global context
module was combined to enhance the model’ s accuracy in processing information of different scales and complexities. Secondly, the
feature fusion part employs an efficient multi-scale attention mechanism to recalibrate the weight of each channel by encoding global
information and interactively captures the pixel-level relationship in gray images across latitudes. Finally, a super-resolution
reconstruction detection head was added, and a receptive field attention module and a convolution module were constructed to focus on
the spatial information within the receptive field and provide effective attention weights for the large-size convolution kernel, enabling the
model to adapt and represent the characteristics of small target information in gray images more precisely. The comparison experiment in
the NEU-DET dataset reveals that the recognition accuracy of the improved YOLOvS8 algorithm for gray image information attains 79. 3%,

which is 3. 1% higher than that of the original YOLOv8 network. It can be observed from the visualization experiment that the issue of
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false detection and missed detection has been alleviated. The above experimental results indicate that SAC-YOLO has an excellent

detection effect and can achieve high-quality detection in grayscale image scenarios.

Keywords : object detection; YOLOvS; gray image detection; receptive field attention; void convolution
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Fig.2 SAConv module structure diagram
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Table 1 Experimental configuration

MC 5 2 FK LRSS
PER S Windows10
CPU Intel Core i7 10750H
GPU NVIDIA GeForce RTX 2070
PR Python3. 9
RkHES Pytorchl. 12
ISR CUDAIL.3

x2 &EsH

Table 2 Training parameters
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B AR LSS . NEU-DET %04 52 A — > 5 2k 3% 1 Bk [
R g 4 | i3k 1 800 5K FIMR LI, A 6 S bR Xt
<3| crazing , patches | inclusion | pitted _ surface | rolled-in _
scale Fll scratches , #8087 : 2 1 A4 LU 1908 B s 42 BE AL 4
AYNZRGE IR IEgE

S P P AN (] 5l P K40 B ke 30 E 18 I 248 7 JK
J VT a8 1, Herb FLIR-ADAS %46 45 & i FLIR
O3 )R AR B AT RN 4250 1) K FE AR A s 48 L 4t 14 000
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second , FPS ) e PEA AR Y (1) 550 13

iR T R IR EOE 7/ N S il Sl O RE R 7
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BARAE T4, 76 NEU-DET 3048 48 3547 455 He 1% 704 il 52
5, LA DA b Bt s o S AR R

P T RS G S 26 3 mT IAS | 78 IR B R AG I vp
YOLOv8 1Y) mAP@ 0.5 5 76.2% ,mAP@ 0.5 : 0.95 N
44. 7% ,fERH TN 01853 5102 74. 8% F1 66. 7% , S+
J& 3x10°, TF ABUR: 8.2 GFLOPs, %y 65 fps, 1 5G7E
FF ML H 5] A SACony FLH, 5 F L BRI A L mAP@
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Table 3 Results of ablation experiments

A mAP@0.5/% mAP@0.5:0.95/% P/%  R/% Params/(x10°) VFIEL/GFLOPs Wi/ fps
YOLOvS 76.2 44.7 74.8  66.7 3 8.2 65
YOLOv8+SACony 77.1 46 67.9  73.1 3.3 7.4 78
YOLOv8+EMA 78.1 45.8 68.9  75.6 3 8.3 62
YOLOv8+RFAHead 77.6 45.5 73.9  70.8 3.9 8.4 58
YOLOv8+SAConv+RFAHead 77 45.2 73.7  68.7 4.2 7.8 70
YOLOv8+SAConv+EMA 78.4 46. 4 74.9  70.7 3.3 7.5 75
YOLOv8+SAConv+EMA+RFAHead 79.3 46. 4 75.3 712 4.2 7.9 72

TESER 2% Th s in EMA 132 ML 8 0 i A&
ST I T AR 2 DA R O A A L K I 4 1 R
MEFLIAE SR BB R, TSI AP BES RO AT R AL

AU TR, 25 ) mAP@ 0. 5 42715 78. 1% , {5 i T4 3k
X FIRBE EG ARG R 0 R4, 2 2 i 2 Bk
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Table 4 Comparative experiments on NEU-DET dataset

Method mAP@ 0. 5/% mAP@ 0. 5:0.95/% Params/ ( x10°) 7 5.8/ GFLOPs Wi/ fps
SsD 62.1 33.8 41.1 145.3 40.7
YOLOv3-Tiny 61.8 34.9 8.2 12.9 27.8
YOLOv5n 74 37.9 1.7 9.5 30.9
YOLOvSs 75.2 40. 4 7 16. 4 26. 8
YOLOv7-Tiny 75.8 36 6.1 13. 1 33.4
YOLOX-s 69. 1 31.3 8 21.6 40.3
RetinaNet 74.9 - 36.2 124. 4 25.5
Faster R-CNN 72.2 - 72 167.3 16.9
Cascade R-CNN 73.2 - 84.6 26. 64 19.3
YOLOv8 76.2 44.7 3 8.2 65
RT-DETR 71.2 39.8 29.2 105.2 42
SAC-YOLO 79.3 46. 4 4.2 7.9 72
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Fig.5 Experimental results of generalization on FLIR-ADAS dataset
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Fig. 6 Experimental results of generalization on infrared aerial person-car detection dataset
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Fig.7 Comparison of steel surface defect detection effects
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