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摘　 要:灰度图像由于其单通道构成的限制,导致图像中目标对比度低、特征信息模糊以及缺少颜色信息,因此检测精度低、且
检测难度较大。 为提升灰度图像检测的准确率,降低误检和漏检率,提出一种融合双重观察与注意力机制的目标检测算法

SAC-YOLO。 首先,在主干网络中引入变换空洞卷积,将标准卷积层转换为空洞卷积层,并结合全局上下文模块,提升模型在处

理不同尺度和复杂度信息的准确性;其次,特征融合部分采用高效多尺度注意力机制,通过编码全局信息来重新校准各通道权

重,跨纬度交互捕捉灰度图像中的像素级关系;最后,添加超分辨率重构检测头,内置感受野注意力模块和卷积模块,关注感受

野内空间信息,为大尺寸卷积核提供有效注意力权重,使得模型能够更加精确地适应和表达灰度图像中的小目标信息的特征。
在 NEU-DET 数据集中进行对比实验,改进后的 YOLOv8 算法对于灰度图像信息的识别精度达到 79. 3%,相较于 YOLOv8 原始

网络提升了 3. 1%,由可视化实验可以看出,误检漏检问题得到改善。 以上实验结果表明,SAC-YOLO 检测效果良好,能够实现

在灰度图像场景下的高质量检测。
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Abstract:
 

Owing
 

to
 

the
 

constraint
 

of
 

the
 

single-channel
 

structure
 

of
 

gray
 

images,
 

the
 

target
 

contrast
 

within
 

the
 

image
 

is
 

low,
 

the
 

feature
 

information
 

is
 

indistinct,
 

and
 

the
 

color
 

information
 

is
 

lacking.
 

Hence,
 

the
 

detection
 

accuracy
 

is
 

low
 

and
 

the
 

detection
 

process
 

is
 

arduous.
 

To
 

enhance
 

the
 

accuracy
 

of
 

gray
 

image
 

detection
 

and
 

reduce
 

the
 

rates
 

of
 

false
 

detection
 

and
 

missed
 

detection,
 

an
 

object
 

detection
 

algorithm,
 

SAC-YOLO,
 

combining
 

dual
 

observation
 

and
 

attention
 

mechanism
 

was
 

proposed.
 

Firstly,
 

transform
 

atrous
 

convolution
 

was
 

integrated
 

into
 

the
 

backbone
 

network
 

to
 

convert
 

the
 

standard
 

convolution
 

layer
 

into
 

an
 

atrous
 

convolution
 

layer,
 

and
 

the
 

global
 

context
 

module
 

was
 

combined
 

to
 

enhance
 

the
 

model’ s
 

accuracy
 

in
 

processing
 

information
 

of
 

different
 

scales
 

and
 

complexities.
 

Secondly,
 

the
 

feature
 

fusion
 

part
 

employs
 

an
 

efficient
 

multi-scale
 

attention
 

mechanism
 

to
 

recalibrate
 

the
 

weight
 

of
 

each
 

channel
 

by
 

encoding
 

global
 

information
 

and
 

interactively
 

captures
 

the
 

pixel-level
 

relationship
 

in
 

gray
 

images
 

across
 

latitudes.
 

Finally,
 

a
 

super-resolution
 

reconstruction
 

detection
 

head
 

was
 

added,
 

and
 

a
 

receptive
 

field
 

attention
 

module
 

and
 

a
 

convolution
 

module
 

were
 

constructed
 

to
 

focus
 

on
 

the
 

spatial
 

information
 

within
 

the
 

receptive
 

field
 

and
 

provide
 

effective
 

attention
 

weights
 

for
 

the
 

large-size
 

convolution
 

kernel,
 

enabling
 

the
 

model
 

to
 

adapt
 

and
 

represent
 

the
 

characteristics
 

of
 

small
 

target
 

information
 

in
 

gray
 

images
 

more
 

precisely.
 

The
 

comparison
 

experiment
 

in
 

the
 

NEU-DET
 

dataset
 

reveals
 

that
 

the
 

recognition
 

accuracy
 

of
 

the
 

improved
 

YOLOv8
 

algorithm
 

for
 

gray
 

image
 

information
 

attains
 

79. 3%,
 

which
 

is
 

3. 1%
 

higher
 

than
 

that
 

of
 

the
 

original
 

YOLOv8
 

network.
 

It
 

can
 

be
 

observed
 

from
 

the
 

visualization
 

experiment
 

that
 

the
 

issue
 

of
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false
 

detection
 

and
 

missed
 

detection
 

has
 

been
 

alleviated.
 

The
 

above
 

experimental
 

results
 

indicate
 

that
 

SAC-YOLO
 

has
 

an
 

excellent
 

detection
 

effect
 

and
 

can
 

achieve
 

high-quality
 

detection
 

in
 

grayscale
 

image
 

scenarios.
Keywords:object

 

detection;
 

YOLOv8;
 

gray
 

image
 

detection;
 

receptive
 

field
 

attention;
 

void
 

convolution

0　 引　 言

　 　 目标检测是计算机视觉领域的重要技术之一,其主

要目的是模拟人类的视觉和认知能力,探索统一的框架

来实现对不同类型目标的识别和定位。 这项技术在无人

驾驶、智能家居、智能电网和智慧医疗等多个领域发挥着

关键作用[1] 。 目前,绝大多数目标检测技术以彩色图像

为数据集图像,检测效果良好,但容易受到天气、光照强

度等环境因素的影响。 相比之下,灰度图像以其单通道

灰度信息的特性,简化目标特征,降低环境噪声干扰,使
得模型在进行目标检测任务中能够大大降低烟雾、雾霾、
雨雪等恶劣环境造成的影响。 但灰度图像由于缺少颜色

信息的描述,图像中会出现纹理细节较少,对比度和信噪

比较低以及模糊成像等问题,使得现阶段目标检测算法

难以提取到图像的深层语义特征,检测效果较差。 因此,
研究并设计高效准确的灰度图像目标检测算法具有重要

意义。
灰度图像检测技术的发展主要分为基于人工特征的

检测和基于深度学习的检测[2] 两个阶段。 基于人工特征

的检测依靠传统的图像处理技术和算法开发人员的专业

知识来手动设计特征。 通过设计特征和使用支持向量机

对于分类,识别各种类型的对象,但是手动特征设计复

杂,并且在性能和适应性方面具有局限性。 随着深度学

习技术的快速发展,图像处理和计算机视觉领域取得了

巨大的进步,目前基于深度学习的目标检测算法分为双

阶段算法和单阶段算法。 双阶段目标检测算法,如区域

卷积神经网络( region-based
 

convolutional
 

neural
 

network,
R-CNN) [3] 、快速区域卷积神经网络( faster

 

region-based
 

convolutional
 

neural
 

network,Faster
 

R-CNN) [4] 和掩码区域

卷积神经网络 ( mask
 

region-based
 

convolutional
 

neural
 

networks,Mask
 

R-CNN) [5] ,首先生成一组可能包含待检

测目标的候选框,然后通过特征提取来确定这些候选目

标的位置和类别。 这类算法在精确度上表现出色,但由

于其复杂的算法结构,训练速度较慢且资源消耗较大。
相比之下,单阶段目标检测算法,如单步骤多框检测

器(single
 

shot
 

multibox
 

detector,SSD) [6] 、YOLO 系列( you
 

only
 

look
 

once,YOLO) [7] 和实时 Transformer 检测器(real-
time

 

detection
 

transformer,RT-DETR) [8] ,直接利用卷积神

经网络从图像中提取特征,并同时预测目标的位置和类

别。 由于省去了候选框生成的步骤,单阶段算法在检测

速度上更为高效,且网络结构相对简单。 基于深度学习

的检测技术通过训练神经网络来提取目标特征,虽然其

计算量相对较大,但随着计算机性能的提升和神经网络

的不断优化,该检测方法逐渐成为灰度图像检测领域的

研究重点。 其中,Ghose 等[9] 以 Faster
 

R-CNN 作为基础

网络,引入 PiCA-Net 作为检测网络的注意力机制,专注

于像素级特征信息,辅助以 R3-Net,重建和整合由 PiCA-
Net 提取的大量信息,检测性能显著提升,但引入的网络

并未集成到 Faster
 

R-CNN 中,训练过程较为复杂。 Liu
等[10] 利用坐标注意力和特征融合技术构建了名为 DG-
Light-NLDF 的灰度图像目标检测模型,该模型通过扩张

线性瓶颈结构代替卷积结构提取目标纹理和语义特征,
避免误检,并利用简化全局模块进一步强调目标的位置

特征,抑制背景干扰。 Li 等[11] 提出了以 YOLOv5 为内核

的检测算法,在特征提取阶段扩展和迭代跨级部分连接

结构,最大化浅层特征的使用,增加多尺度检测头,提升

目标检测准确性,但是这种方法的高计算需求使其不适

合部 署 在 边 缘 设 备 上。 Hu 等[12] 提 出 了 一 种 基 于

YOLOv7 的检测方法,将红外和可见光的双通道特征提

取与注意力模块相结合,以提高检测精度。 然而,对于细

节特征较少的图像,网络的检测能力仍有不足。 Zhou
等[13] 提出 YOLO-CIR 模型,它通过红外图像增强算法提

升图像质量,然后使用 ConvNext 提取特征,并集成分裂

注意力模块以优化特征融合。 虽然这种方法提高了准确

性,但它需要对红外图像进行预处理,增加了检测任务的

复杂性。
综上,为权衡检测精度以及运行效率,研究选取

YOLOv8 作为基础网络,结合当前灰度图像检测的不足,
提出一种融合双重观察与注意力机制的目标检测算法

SAC-YOLO ( self-adaptation
 

and
 

atrous
 

convolution-based
 

YOLO)。
1)

 

构建变换空洞卷积,用空洞卷积层代替标准卷积

层,引入双重观察机制,使得每个特征信息结合两种空洞

率进行卷积,再由两个全局上下文模块关注图像整体内

容,共享信息间权重,使得网络更全面和灵活的理解特征

信息。
2)

 

在特征融合部分采用高效多尺度注意力模块,重
新组织通道维度和批次维度,并进行信息的跨维度交互,
提升网络对于灰度图像信息的细节捕捉。

3)
 

引入超分辨率重构检测头,其感受野注意力模块

使网络重点关注感受野的空间特征,大尺度卷积核辅助

注意力模块更加有效地处理重要空间特征。
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1　 YOLOv8 目标检测算法原理

　 　 YOLO 系列神经网络开放用于目标检测和图像分割

任务,基于先前 YOLO 版本的基础,YOLOv8 拥有很好的

可拓展性,不仅支持之前版本的切换运行,还可以调整参

数生 成 5 种 不 同 比 例 的 模 型 YOLOv8n、 YOLOv8s、
YOLOv8m、YOLOv8l 和

 

YOLOv8x,便于在各种应用场景

的硬件设备上灵活部署[14] 。 YOLOv8 网络结构主要由主

干网络( Backbone),颈部网络( Neck)和预测头( Head)3
个部分构成。

YOLOv8 通过训练数据集自动学习锚点框,沿用

YOLOv5 中的 mosaic 数据增强,随机选取 4 张图像拼接

其中的部分区域, 改善目标分布不均匀的情况[15] 。
Backbone 主干网络主要由跨阶段部分模块( cross

 

stage
 

partial
 

network,C2f)、标准卷积(convolutional
 

layer,Conv)
和快速空间金字塔池化 ( spatial

 

pyramid
 

pooling
 

fast,
SPPF)模块组成。 C2f 模块借鉴了 YOLOv7 中的增强局

部特 征 提 取 网 络 ( enhanced
 

local
 

feature
 

extraction
 

network,ELEN)模块,通过多分支跨层链接高效聚合网络

结构,丰富了模型的梯度流,从而实现更好的参数利用率

并增加网络深度[16] 。 Conv 模块则包含 2 D 卷积块,用于

对输入的特征信息进行下采样,同时进行归一化和激活

处理。 最终,Backbone 的下采样部分通过 SPPF 模块完

成。 SPPF 模块将池化核大小分别为 13×13、9×9、5×5 和

1×1 的最大池化层串行结合,并引入并行结构,以分别处

理不同像素大小的特征图,完成特征融合。
YOLOv8 的 Neck 部分采用了 PAFPN 结构,结合了

特征图金字塔网络( feature
 

pyramid
 

networks,FPN) 和路

径聚合网络( path
 

aggregation
 

network,PAN)。 特征金字

塔结构通过上采样将深层特征图中的强语义信息传递到

浅层,从而实现多尺度特征的融合;而路径聚合网络则通

过下采样将浅层的位置信息传递到深层,进一步提升多

尺度特征图的表示能力和检测精度。
相较于 YOLOv7,YOLOv8 采用解耦头结构,将分类

和回归任务分支处理,并以 DFL
 

Loss 和 CIoU
 

Loss 作为

损失函数,在模型训练和推理中获取更高性能的收益,为
了提高训练的准确率,YOLOv8 还引入了 YOLOX 中的最

后 10
 

epoch 关闭 Mosiac 增强的操作[17] 。

2　 本文方法

2. 1　 网络整体结构

　 　 灰度图像中目标特征信息少,细节纹理不明显等问

题,导致目标检测难度较大,检测效果不佳。 研究以

YOLOv8 作为基础网络,提出基于双重观察与注意力机

制的目标检测算法 SAC-YOLO,整体结构如图 1 所示。

图 1　 SAC-YOLO 结构

Fig. 1　 Structure
 

diagram
 

of
 

SAC-YOLO

　 　 在 Backbone 网络的 C2f 结构中添加变换空洞卷积,
灵活适应不同尺度的特征,有效提升网络对于模糊信息

的理解能力,在 Neck 网络中引入高效多尺度注意力模

块,提升模型灰度图像中纹理细节的关注,Head 部分使

用超分辨率重构检测头,结合空间注意力和感受野特征,

强化对小目标区域的关注,避免漏检现象。
2. 2　 变换空洞卷积模块

　 　 一般卷积因卷积核大小固定,对于上下文信息捕捉

有限,在提取灰度图像中模糊特征信息时出现困难,其主

要表现为较小的目标可能会被大感受野忽略,而较大的
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目标可能会受背景或局部信息影响,导致检测不准确。
变换 空 洞 卷 积 模 块 ( switchable

 

atrous
 

convolution,
SAConv) [18] 可以使卷积层捕获更大范围特征,增强主干

网络的特征提取能力,更好的理解复杂度较高的特征信

息,SAConv 模块结构如图 2 所示。

图 2　 SAConv 模块结构

Fig. 2　 SAConv
 

module
 

structure
 

diagram

由图 2 可以看出,在 SAConv 构架中,输入图像首先

通过一个全局上下文模块,提取整个图像特征,获得全局

信息,并将全局信息送入空洞卷积层中,空洞卷积层由两

个并行的空洞卷积构成,对输入信息进行两次观察,即为

输入信息赋予两种空洞率,进行两次不同的空洞卷积。
为避免较大空洞率导致的权重缺失问题,在卷积后设置

开关函数,在开关函数中存入初始化权重,将并行卷积结

果引入开关函数中由开关函数判定卷积融合后的输出权

重和特征,然后将输出信息导入进第 2 个全局上下文模

块,归纳并筛选空洞卷积层中的重要特征,形成更全面的

图像信息,降低模型检测难度,SAConv 模块计算如式(1)
所示。

Output = S(x) × Conv(x,y,1) + (1 - S(x)) ×
Conv(x,y,Δy,r) (1)
式中: x 为输入信息; Output 为输出信息; Conv(x,y,r)
是权重为 y 的卷积运算; r 是 SAConv 的超参数; Δy 为可

训练值; S(x) 为开关函数。
在主干网络中 C2f 中加入 SAConv 结构,为输入特征

应用不同的空洞率计算空洞卷积,将卷积结果进行权重

共享,结合全局上下文模块统筹全局信息,提升网络的灵

活性以及对于模糊信息的适应性。
2. 3　 高效多尺度注意力模块

　 　 由于灰度图像中色彩的单一性,导致图像中重要信

息与背景对比度较低,细微特征和边缘信息的丢失,所以

网络对于一些局部区域内的信息检测效果不佳。 注意力

机制则可以指导模型动态的关注于重要目标区域,忽略

无关的背景信息,增强模型对于灰度图像中细节信息的

理解能力,因此,在网络的特征融合部分引入高效多尺度

注意力模块(efficient
 

multi-scale
 

attention,EMA) [19] ,EMA
结构如图 3 所示。

图 3　 EMA 结构

Fig. 3　 Structure
 

diagram
 

of
 

EMA

EMA 先按照通道注意力机制的处理方法,将输入为

G × H × W 的特征图 X 按通道维数方向划分成为 G 个子

特征图,划分公式如式(2)所示。
X = [X0,X1,…,XG-1],X i ∈ RC / / G×H×W,G ≪ C (2)
然后把各通道信息分解为为两个 1×1 的特征编码分

支和一个 3×3 的特征编码分支。 在 1×1 的两个特征编

码分支上,分别沿着水平和垂直方向对通道进行一维全

局平均池化操作,计算公式如式(3)和(4)所示。

ZH
C = 1

W∑W

i = 0
xc(H,i) (3)

Zw
C = 1

H ∑ H

j = 0
xc( j,W) (4)
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　 　 式(3)为水平方向一维全局平均池化, ZH
C 表示高度

为 H 的第 C 个通道的输出;式(4)为垂直方向一维全局

平均池化, Zw
C 表示宽度为 W 的第 C 个通道的输出。

再将两个支路的特征编码沿高度方向特征拼接,经
1×1 卷积运算分解为两个向量,利用非线性 Sigmoid 函数

线性拟合。 然后将 1×1 分支的中特征信息用乘法聚合在

一起,形成一条全新的支路,以实现跨通道特征信息交

互。 同时,3×3 的特征编码分支通过 3×3 的卷积获得局

部区域内的语义信息。 两条支路同时进入跨空间信息部

分,1×1 分支先进行二维全局平均池化操作和 Softmax 函

数线性变换,二维全局平均池化操作如式(5)所示。

ZC = 1
H × W∑ H

j = 0∑
W

i = 0
xc( i,j) (5)

随后将 1×1 分支和 3×3 分支的输出特征进行矩阵

点积运算相乘,在通道特征联合激活机制之前将输出维

度转化为 R1×1×C / / G
1 × RC / / G×H×W

3 。 3×3 分支在跨空间信息部

分进行同样的操作,即先通过二维全局平均池化,将池化

结果用 Softmax 线性变换,和 1×1 分支输出特征进行矩阵

点积运算,并在联合激活机制之前将输出维度转化为

R1×1×C / / G
3 × RC / / G×H×W

1 。 最后将两条分支的输出特征结合,
组成一个包含双重空间注意力权重的特征图,帮助模型

捕捉图像中的像素级关系,增强特征表示的能力。
2. 4　 超分辨率重构检测头

　 　 YOLOv8 模型有大、中、小 3 种不同尺寸的检测头,在
彩色图像的场景中均产生优异效果。 但在灰度图像中,
网络的特征提取和特征融合会导致特征图尺寸不断变

小,小目标信息很可能会随着整体像素的压缩而被模型

的检测头忽略。 为解决上述问题,引入区域特征自适应

卷积( receptive-field
 

attention
 

convolution,RFAConv) [20] 构

成超分辨率重构检测头,RFAConv 结构如图 4 所示。
超分辨率重构检测头是在解耦头的基础上,采用卷

积和空间注意力机制相结合的方式,将标准卷积替换为

RFAConv,增强检测头部分的细节恢复能力和空间感知

能力,从而提高模型对多尺度信息识别的鲁棒性。 从图

4 可以看出,RFAConv 结构分为两个分支,输入为 C×H×W
的特征图 X 通过感受野自适应卷积进入右边支路,感受野

自适应卷积以一个 3×3 的大尺度卷积核为核心,引入一个

同样尺寸的滑动窗口动态关注图像中重要信息,然后将卷

积核信息与窗口信息相乘得到特征信息。 左边支路通过

平均池化聚合感受野特征的全局信息,然后运用 1×1 卷积

进行信息交互,归一化操作关注其中的重要信息权重。 采

取参数共享策略,将注意力图中的权重与感受野卷积相结

合提取特征,调整特征尺寸,输出感受野空间注意力特征

信息。 RFAConv 计算过程如式(6)所示。
F = Softmax(g1×1(AvgPool(X))) ×

ReLU(Norm(gk×k(X))) = Arf × Frf (6)

图 4　 RFAConv 结构

Fig. 4　 Structure
 

diagram
 

of
 

RFAConv

式中: F 是特征输出; X 为特征输入;Arf 为注意力图的权

重信息; Frf 为感受野空间特征信息; g1×1 表示 1×1 的分

组卷积; AvgPool 代表平均池化; Norm 是归一化操作;
ReLU 是激活函数。

3　 实验与结果分析

3. 1　 实验环境与数据集

　 　 为确保实验的公平性,本文所有实验均在相同的实

验设置和训练参数下进行,具体的实验配置如表 1 所示,
训练参数如表 2 所示。

表 1　 实验配置

Table
 

1　 Experimental
 

configuration
配置名称 配置信息

操作系统 Windows10
CPU Intel

 

Core
 

i7
 

10750H
GPU NVIDIA

 

GeForce
 

RTX
 

2070
编程语言 Python3. 9
算法框架 Pytorch1. 12
加速环境 CUDA11. 3

表 2　 训练参数

Table
 

2　 Training
 

parameters
参数名称 参数信息

学习率 0. 01
权重衰减系数 0. 000

 

5
图像尺寸 640×640
批量大小 8
训练周期 300
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　 　 为评估改进算法在灰度图像下的有效性和可行性,
实验采用开源灰度数据集 NEU-DET 数据集进行消融实

验和对比实验。 NEU-DET 数据集是一个钢铁表面缺陷

检测数据集,由总共 1
 

800 张图像组成,带有 6 类标注对

象即 crazing、 patches、 inclusion、 pitted _ surface、 rolled-in _
scale 和 scratches,按照 7 ∶ 2 ∶ 1 的比例将数据集随机分

为训练集,测试集和验证集[21] 。
还使用两种不同领域的数据集来验证改进网络在灰

度图像下的通用性,其中,FLIR-ADAS 数据集是由 FLIR
公司采集到的行人和车辆的灰度图像数据集,共 14

 

000
张图像,有 11 种不同尺度的标注对象。 另一个数据集是

InfiRay 公司开源的红外航拍人车检测数据集,该数据集

共 8
 

402 张图像,有 7 种标注对象,小目标信息较多。 选

择这两个数据集作为模型泛化能力实验数据集,同样按

照 7 ∶ 2 ∶ 1 的比例进行划分[22-23] 。
3. 2　 评价指标

　 　 采用准确率(precision,P),召回率(recall,R)和平均

精度均值(mean
 

average
 

precision,mAP)来评估模型的检

测能 力, 选 择 模 型 参 数 量 ( Params ) 和 浮 点 计 算

量(GFLOPs)来评估模型的复杂程度,以验证改进后模型

对灰度图像的检测性能和效率。 选择帧数( frames
 

per
 

second,FPS)来评估模型的计算速度。
准确率表示在识别出的物体中,检测到的正确目标

在全部目标中的占比。 召回率表示所有正确目标中,模
型能够预测出来的比例。 指标计算公式如式(7)和(8)
所示。

P = TP
TP + FP

(7)

R = TP
TP + FN

(8)

式中:TP 表示为正确检测到目标信息的数量,即模型判

断为正例的数;FP 表示为模型误判为目标信息的数量;

FN 表示漏检的目标信息的数量。
平均精度(average

 

precision,AP)表示模型对特定类

型目标的检测准确性,以该目标 Precision 和 Recall 分别

作为横纵坐标绘制而成的函数图像,对数据集中的全部

类型目标的 AP 值进行平均,可得平均精度均值,用于网

络模型的整体性能评估,其公式如式(9)和(10)所示。

AP = ∫1

0
P(R)dR (9)

mAP = 1
n ∑ n

i = 1
AP (10)

式中:n 为类别个数。
参数量反应网络结构的复杂程度,结构越复杂,内存

占用的参数量就越多,浮点计算量反应模型训练或检测

时的计算性能,浮点计算量越大,说明模型具有更高的计

算能力。 FPS 表示网络每秒处理的图像的帧数,帧率越

高说明网络的计算效率越高。
3. 3　 消融实验

　 　 为证明 SAC-YOLO 中变换空洞卷积,高效多尺度注

意力机制和超分辨率重构检测头的有效性,以 YOLOv8
网络作为基础,对基础模型逐步添加改进模块,在 BCCD
数据集下训练,在 NEU-DET 数据集进行模块的消融实

验,以分析以上改进点对整体算法的影响。
由消融实验结果表 3 可以得出,在灰度图像检测中

YOLOv8 的 mAP @ 0. 5 为 76. 2%,mAP @ 0. 5 ∶ 0. 95 为

44. 7%,准确率和召回率分别是 74. 8%和 66. 7%,参数量

是 3×106,浮点数是 8. 2
 

GFLOPs,帧数为 65
 

fps。 首先在

主干网络中引入 SAConv 模块,与基线模型相比 mAP @
0. 5 提升了 0. 9%,召回率达到 73. 1%,浮点数下降了 0. 8

 

GFLOPs,帧数提升至 78
 

fps, 但是准确率有所下降,
SAConv 使用开关函数组合两种不同的空洞率,为输入信

息提供多样化空洞卷积,获得更为丰富的上下文信息,但
削弱了网络对于局部信息的关注度。

表 3　 消融实验结果

Table
 

3　 Results
 

of
 

ablation
 

experiments
模型 mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % P / % R / % Params / ( ×106 ) 浮点数 / GFLOPs 帧率 / fps

YOLOv8 76. 2 44. 7 74. 8 66. 7 3 8. 2 65
YOLOv8+SAConv 77. 1 46 67. 9 73. 1 3. 3 7. 4 78

YOLOv8+EMA 78. 1 45. 8 68. 9 75. 6 3 8. 3 62
YOLOv8+RFAHead 77. 6 45. 5 73. 9 70. 8 3. 9 8. 4 58

YOLOv8+SAConv+RFAHead 77 45. 2 73. 7 68. 7 4. 2 7. 8 70
YOLOv8+SAConv+EMA 78. 4 46. 4 74. 9 70. 7 3. 3 7. 5 75

YOLOv8+SAConv+EMA+RFAHead 79. 3 46. 4 75. 3 71. 2 4. 2 7. 9 72

　 　 在颈部网络中添加 EMA 注意力机制,通过对输入信

息进行通道维数重组以及跨维度信息交互,将网络的特

征提取能力放大至像素级,在引入少量参数量和浮点数

的同时,网络的 mAP@ 0. 5 提升到 78. 1%,但由于检测头

对于灰度图像整体像素的压缩,仍会有少量重要信息被

忽略,导致模型准确率只有 68. 9%。 所以在检测头添加
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感受野注意力模块,根据输入信息的复杂性和重要性动

态调整感受野,提升大尺寸卷积核效率,有效捕捉重要空

间信息,使得网络 mAP@ 0. 5 达到 77. 6%,召回率提升了

5. 9%,准确率与基础网络基本相同,参数量和浮点数分

别是 3. 9×106 和 8. 4
 

GFLOPs,检测效率略微下降。 引入

SAConv 的同时替换检测头为 RFAHead,使得网络的主干

部分和检测头部分同时实现参数共享,提升网络在灰度

图像检测中的灵活性和自适应性,相较于 YOLOv8 网络,
mAP@ 0. 5 提升了 0. 5%,准确率为 73. 7%,召回率上涨

到 68. 7%。 为兼顾网络的全局信息识别能力与局部特征

捕捉能力,在 YOLOv8 的基础上结合 SAConv 与 EMA 模

块,特征提取部分运用 SAConv 获得更为广泛的灰度图像

信息,特征融合部分引入 EMA 注意力机制,整合并关注

细节信息,网络的 mAP@ 0. 5 相较于先前的网络提升至

78. 4%,准确率得到有效改善,达到 74. 9%,召回率为

70. 7%。 在第 5 组实验的网络基础上,将检测头改进为

RFAHead,mAP@ 0. 5 进一步提升至 79. 3%,准确率和召

回率将较于先前实验也有所提升, 分别为 75. 3% 和

71. 2%,参数量对比基础网络有略微提升,帧数为 72
 

fps,
检测效率相较于基础网络有所提升。 综上所述,所采用

的改进点有效提高了模型对于灰度图像的目标检测性

能,充分发挥了各改进点的作用,证明了 SAC-YOLO 的有

效性和可行性。
3. 4　 对比实验

　 　 在保证相同实验环境及数据集的前提下,将 SAC-
YOLO 与现阶段主流算法进行综合对比实验,选择的算

法包括 Faster
 

R-CNN、 Cascade
 

R-CNN[24] 、 RetinaNet[25] 、
SSD、 YOLOv3[26] 、 YOLOv5、 YOLOv7、 YOLOX、 YOLOv8、
RT-DETR。 在 NEU-DET 数据集上以 mAP@ 0. 5、mAP@
0. 5 ∶ 0. 95、Params、浮点数和帧数的实验参数做对比,验
证改进后网络模型的检测性能,实验结果如表 4 所示。

表 4　 NEU-DET 数据集对比实验

Table
 

4　 Comparative
 

experiments
 

on
 

NEU-DET
 

dataset
Method mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % Params / ( ×106 ) 浮点数 / GFLOPs 帧率 / fps

SSD 62. 1 33. 8 41. 1 145. 3 40. 7
YOLOv3-Tiny 61. 8 34. 9 8. 2 12. 9 27. 8

YOLOv5n 74 37. 9 1. 7 9. 5 30. 9
YOLOv5s 75. 2 40. 4 7 16. 4 26. 8

YOLOv7-Tiny 75. 8 36 6. 1 13. 1 33. 4
YOLOX-s 69. 1 31. 3 8 21. 6 40. 3
RetinaNet 74. 9 - 36. 2 124. 4 25. 5

Faster
 

R-CNN 72. 2 - 72 167. 3 16. 9
Cascade

 

R-CNN 73. 2 - 84. 6 26. 64 19. 3
YOLOv8 76. 2 44. 7 3 8. 2 65

RT-DETR 71. 2 39. 8 29. 2 105. 2 42
SAC-YOLO 79. 3 46. 4 4. 2 7. 9 72

　 　 从表 4 的实验结果可以得出,YOLOv3-Tiny 和 SSD
算法的检测精度最差,YOLOv3-Tiny 的 mAP @ 0. 5 只有

61. 8%, SSD 算法在 41. 1 × 106 高参数量的情况下,
mAP@ 0. 5 仅比 YOLOv3-Tiny 高 0. 3%,效果不佳。 Faster

 

R-CNN 和 Cascade
 

R-CNN 的平均精度均值分别达到

72. 2%和 73. 2%,检测效果较好,但作为二阶段算法,其
参数量和浮点数过于庞大,帧数只有 16. 9 和 19. 3

 

fps,实
时检测效率低。 RetinaNet 网络的 mAP@ 0. 5 为 74. 9%,
参数量和浮点数分别是 36. 2 × 106 和 124. 4

 

GFLOPs,检
测性能优于先前列出的一阶段和二阶段算法,但是它的

浮点数较大,在实际应用中部署较为困难。 同时选择以

Transformer 网络为基础,进行特征提取和关联学习的

RT-DETR 目标检测算法进行对比实验,通过结果可以看

出,相较于 YOLO 系列,该算法计算复杂度仍然略高,参
数量和浮点数达到了 29. 9 × 106 和 105. 2

 

GFLOPs,且识

别精度要低于 YOLOv8。 在 YOLO 系列中, YOLOv5 和

YOLOv7 算法开发程度较高,YOLOv5 选择的是 YOLOv5n

和 YOLOv5s 版本,识别精度为 74%和 75. 2%,YOLOv7 算

法选择的则是复杂度相对较低的 YOLOv7-Tiny 版本,其
识别精度达到 75. 8%。 但相较于以上算法,YOLOv8 算

法 mAP @ 0. 5 是 76. 2%,检测效果最好,因此选择以

YOLOv8 作为基础模型,提出 SAC-YOLO 算法,改进算法

的 mAP@ 0. 5 为 79. 3%,mAP@ 0. 5 ∶ 0. 95 为 46. 4%,参
数量和浮点数是 4. 2×106 和 7. 9

 

GFLOPs,在引入少量参

数量的前提下,识别精度相比 YOLOv8 网络上涨 3. 1%,
帧数为 72

 

fps,可以满足在灰度图像检测中检测精度和检

测效率的需求。
3. 5　 泛化性实验

　 　 为体现改进后模型的泛化能力,展现模型在不同类

型灰度图像中仍具有良好的适应能力,在 FLIR-ADAS 和

红外航拍人车检测数据集下进行泛化性实验,以测试

SAC-YOLO 对灰度图像检测的鲁棒性,对比实验结果如

图 5 和 6 所示,横坐标表示训练轮数,纵坐标表示平均精

度均值。
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图 5　 FLIR-ADAS 数据集上的泛化性实验结果

Fig. 5　 Experimental
 

results
 

of
 

generalization
 

on
 

FLIR-ADAS
 

dataset

图 6　 红外航拍人车检测数据集上的泛化性实验结果

Fig. 6　 Experimental
 

results
 

of
 

generalization
 

on
 

infrared
 

aerial
 

person-car
 

detection
 

dataset

　 　 由图 5 可以看出,相较于 YOLOv8 基础网络,SAC-
YOLO 模型能够提取更为丰富的全局特征和局部特征,
在 60 轮往后检测性能得到有效提高,说明改进网络不仅

适用于处理图像模糊和目标边缘化的问题,在 FLIR-
ADAS 这种多尺度信息数据集仍有较好表现。 InfiRay 公

司开源的红外航拍人车检测数据集图像是由航拍无人机

捕捉到的,所以其图像中目标信息大多为密集的小目标

信息,如图 6 所示,SAC-YOLO 在此数据集上,mAP@ 0. 5
和 mAP@ 0. 5 ∶ 0. 95 的值始终比 YOLOv8 有着更加显著

的提升, 且收敛速度更快。 综上, SAC-YOLO 模型在

NEU-DET 数据集上具备优异性能,且适用于其他灰度图

像场景下的目标检测任务,具备良好的泛化性。
3. 6　 可视化实验

　 　 为直观展示改进方法在不同灰度图像场景下的表

现,在数据集中随机选取灰度图像进行测试,测试结果如

图 7 所示。 图 7(a) ~ (c)分别代表原始图像,YOLOv8 检

测结果图像以及 SAC-YOLO 检测结果图像。

图 7　 钢铁表面缺陷检测效果对比

Fig. 7　 Comparison
 

of
 

steel
 

surface
 

defect
 

detection
 

effects

　 　 从图 7 可以看出,灰度图像中目标信息模糊,对比度

较低,YOLOv8 网络很难准确识别图像中的缺陷信息,导
致出现漏检的问题,而 SAC-YOLO 采用双重观察机制,充
分把握图像特征,有效区分背景信息和缺陷信息,增强网

络的特征提取能力。 在图 8 的 Multi-scale
 

image 图中,展

现了不同尺度的灰度图像信息对基础网络造成的影响,
如对于图中的大尺度背景信息, YOLOv8 网络误检为

motor,对于小目标的 sign 目标则是出现了漏检的问题,
在 Small

 

target
 

image 图中,则进一步展现了小目标的灰

度图像信息对基础网络造成的影响,如对于图片右侧路
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灯以及远距离车辆,YOLOv8 网络出现出现了漏检的问

题,SAC-YOLO 以变换空洞卷积把握多元化信息特征,同
时引入 EMA 注意力机制关注灰度图像的局部信息,大大

增强网络对于多尺度目标特征的提取能力,因此能够更

好的检测出多尺度的目标信息。 图 9 的 Original
 

image 为

航拍下的灰度车辆信息,图像中车辆目标密集, SAC-
YOLO 在检测头部分的感受野中引入空间注意力,有效

还原在特征提取和特征融合阶段被压缩的特征信息,进
一步增强模型的理解能力,相较于基础网络,改进网络在

该场景中也表现出良好的性能。

图 8　 道路场景检测效果对比

Fig. 8　 Comparison
 

of
 

road
 

scene
 

detection
 

effects

4　 结　 论

　 　 针对灰度图像对比度低、识别精度差、检测难度高等

问题,提出一种融合双重观察与注意力机制的目标检测

算法 SAC-YOLO。 为解决灰度图像中因特征模糊而导致

的误检漏检的问题,基于变换空洞卷积重新构建特征提

取网络,采用双重观察机制获取全局信息,提升模型对于

复杂特征信息的理解能力为解决特征融合阶段小目标特

征信息难以捕捉的问题,引入高效多尺度注意力模块,重
点关注局部信息特征,以较小的计算成本有效提升特征

融合能力,增强模型对边缘和细节信息的捕捉能力;通过

添加超分辨率重构检测头,获得感受野的空间信息特征,
兼顾多层次特征信息,确保模型在灰度图像场景下的检

测稳定性更高。 实验结果表明,所提出的 SAC-YOLO 模

型在灰度表面缺陷检测中识别精度达到 79. 3%,帧率达

到 72
 

fps,检测性能以及检测效率均优于现阶段目标检测

模型。 通过泛化性实验,证明方法不仅适用于灰度缺陷

检测,在多场景灰度图像检测中同样拥有良好的鲁棒性。
为适应更加复杂和多样化的灰度图像检测,在未来研究

中将继续优化算法结构,以轻量化网络为前提,进一步提

升网络的检测精度和检测效率。
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