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Adaptive delay estimation and application of cascaded arctangent LMS
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Abstract: To address the issue of significant time delay estimation errors in pipeline leakage localization, which stem from the low
signal-to-noise ratio (SNR) of detection signals and the existence of diverse noise interferences, a cascaded arctangent least mean square
(LMS) adaptive time delay estimation method is proposed. First, the arctangent function is incorporated into the LMS adaptive filter to
improve the filter’ s robustness against non-Gaussian noise. Next, two channels of leakage signals are fed into the first stage adaptive
filter to suppress correlated Gaussian noise. Subsequently, the two output signals from the first stage filter serve as the input and desired
signals for the second stage filter to further eliminate noise. Finally, the time delay estimation is obtained by analyzing the weight
coefficient curve of the second stage filter. In the simulation, under the influence of correlated Gaussian noise and non-Gaussian noise
with three distinct distributions, when compared with the cross-correlation method, the arctangent LMS method, and the cascaded LMS
method, the proposed method exhibits the optimal noise suppression performance, and the signal correlation peak is the most
pronounced. As the SNR gradually declines, this method can attain superior time delay estimation accuracy at a lower SNR. Finally, the
effectiveness and practicality of the proposed method are further validated through an actual pipeline leakage location experiment. Under
the influence of noise, the method can precisely locate the leakage point, with an average relative location error of 2. 31% and a standard
deviation of 2. 08%.
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Fig. 1 Pipeline leak location model
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Fig.2 LMS adaptive filter delay estimation structure
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Fig.4 Time delay estimation schematics of cascaded ATLMS filters
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Table 1 Positioning results under different

non-Gaussian noises

w5 dy/ H5L I SE A 34528/ ms dy/m ARXTERZE/ %
m fH BCC ATLMS CLMS CATLMS CATLMS CATLMS
1 16 8.8 8.2 8.2 8.2 8.24 15. 65 2.19
2 16 88 0 0 0 8.24 15. 65 2.19
3 16 88 0 0 0 8.2 15. 625 2.3
4 16 88 0 0 0 8.24 15.65 2.19
5 16 88 0 0 0 8.22  15.638 2.26
6 16 88 0 0 0 8.21 15.631 2.31
7 16 88 0 0 0 8.16 15.6 2.5
8§ 16 88 0 0 0 8.16 15.6 2.5
9 16 88 0 0 0 8.2 15. 625 2.3
10 16 88 0 0 0 8.24 15.65 2.19
11 16 88 0 0 0 8.26  15.663 2.11
12 16 88 0 0 0 8.18 15.613 2.42
13 16 88 0 0 0 8.18 15.613 2.42
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Fig. 15 Delay estimation results of four methods

after adding non-Gaussian noise
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