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摘　 要:双电机驱动变桨系统是一个强耦合非线性时变系统,两台伺服电机的参数也会在运行过程中发生变化,导致系统的机

理模型不准确,影响两台电机的同步控制精度。 提出了一种基于改进麻雀搜索算法优化混合核极限学习机( CGSSA-HKELM)
的数据驱动模型以及量子遗传算法(QGA)求解目标函数的双电机模型预测同步控制系统。 首先,采用核极限学习机回归原

理,建立两台电机的统一预测模型,提高预测模型的准确度、泛化能力以及学习的快速性。 其次,针对核极限学习机对参数设置

敏感的问题,利用改进的麻雀搜索算法优化其模型参数并进行离线训练,获得具有自适应能力的预测模型。 在构建的模型预测

同步控制系统中,引入量子遗传算法对目标函数进行优化求解,避免求解陷入局部最优,得到两个电机的最优控制量。 最后,为
了证明该方案的有效性,进行了仿真和实验验证,结果表明,设计的双电机同步控制策略与交叉耦合滑模控制策略相比,两台电

机的转矩误差下降了 45%,转矩脉动下降了 40%,仿真和实验结果有效证明了所设计的双电机模型预测同步控制方案的合理

性及有效性。
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Abstract:The
 

dual-motor
 

drive
 

pitch
 

system
 

is
 

a
 

strong
 

coupling
 

nonlinear
 

time-varying
 

system.
 

The
 

parameters
 

of
 

the
 

two
 

servo
 

motors
 

will
 

also
 

change
 

during
 

operation,
 

resulting
 

in
 

inaccurate
 

mechanism
 

model
 

of
 

the
 

system
 

and
 

affecting
 

the
 

synchronous
 

control
 

accuracy
 

of
 

the
 

two
 

motors.
 

In
 

this
 

paper,
 

a
 

data-driven
 

model
 

based
 

on
 

improved
 

sparrow
 

search
 

algorithm
 

to
 

optimize
 

hybrid
 

kernel
 

extreme
 

learning
 

machine
 

(CGSSA-HKELM)
 

and
 

a
 

dual-motor
 

model
 

predictive
 

synchronous
 

control
 

system
 

based
 

on
 

quantum
 

genetic
 

algorithm
 

(QGA)
 

to
 

solve
 

the
 

objective
 

function
 

are
 

proposed.
 

Firstly,
 

the
 

kernel
 

extreme
 

learning
 

machine
 

regression
 

principle
 

is
 

used
 

to
 

establish
 

a
 

unified
 

prediction
 

model
 

for
 

two
 

motors,
 

which
 

improves
 

the
 

accuracy,
 

generalization
 

ability
 

and
 

learning
 

speed
 

of
 

the
 

prediction
 

model.
 

Secondly,
 

aiming
 

at
 

the
 

problem
 

that
 

the
 

kernel
 

extreme
 

learning
 

machine
 

is
 

sensitive
 

to
 

parameter
 

settings,
 

the
 

improved
 

sparrow
 

search
 

algorithm
 

is
 

used
 

to
 

optimize
 

its
 

model
 

parameters
 

and
 

conduct
 

offline
 

training
 

to
 

obtain
 

a
 

prediction
 

model
 

with
 

adaptive
 

ability.
 

In
 

the
 

constructed
 

model
 

predictive
 

synchronous
 

control
 

system,
 

quantum
 

genetic
 

algorithm
 

is
 

introduced
 

to
 

optimize
 

the
 

objective
 

function,
 

so
 

as
 

to
 

avoid
 

falling
 

into
 

local
 

optimum
 

and
 

obtain
 

the
 

optimal
 

control
 

of
 

two
 

motors.
 

Finally,
 

in
 

order
 

to
 

prove
 

the
 

effectiveness
 

of
 

the
 

scheme,
 

simulation
 

and
 

experimental
 

verification
 

are
 

carried
 

out.
 

The
 

results
 

show
 

that
 

the
 

torque
 

error
 

of
 

the
 

two
 

motors
 

is
 

reduced
 

by
 

45%
 

and
 

the
 

torque
 

ripple
 

is
 

reduced
 

by
 

40%
 

compared
 

with
 

the
 

cross-coupled
 

sliding
 

mode
 

control
 

strategy.
 

The
 

simulation
 

and
 

experimental
 

results
 

effectively
 

prove
 

the
 

rationality
 

and
 

effectiveness
 

of
 

the
 

dual-motor
 

model
 

predictive
 

synchronous
 

control
 

scheme
 

designed
 

in
 

this
 

paper.
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0　 引　 言

　 　 随着新型电力系统的构建和“双碳”目标的持续推

进,中国电力向绿色低碳转型的步伐显著加快。 中国拥

有广阔的国土面积和丰富的风能资源,风电有望成为国

内电力的主要来源之一,助力实现“碳中和”和“碳达峰”
的战略目标[1] 。 因此对风力发电机组的研究具有十分重

要的现实意义。
变桨系统是大型风力发电机组的重要组成部分,能

够确保机组在超过额定风速时安全、稳定和高效的运行。
风力发电机组目前主要存在电动变桨和液压变桨两种变

桨技术方案[2] 。 国内整机厂商大多采用电动变桨技术方

案;目前电动变桨系统主要采用单个电机驱动,由于现代

风电机组日趋大型化,功率等级较高的风电机组变桨负

荷较重,单电机驱动的变桨系统齿轮和轴承等部件的接

触面应力过于集中,对其材料强度要求极高,且机组功率

等级的增大,对应核心部件也相应增大,不利于后期维

护。 相比于单电机驱动的变桨系统,双电机驱动变桨系

统能够显著减小轴承齿面的应力,延长轴承的使用寿

命[3] ,更适用于大型风力发电机组。
双电机驱动变桨系统必须实现两台电机的同步控

制,保证两台电机同时输出相同的力矩和速度[4] ,避免两

个减速箱和轴承齿轮“打齿” 这样的问题。 目前多电机

同步驱动主要利用理想化的机理模型进行研究。 文

献[5]基于交叉耦合同步控制策略,设计了双环滑模控

制器控制单台电机,实现了双电机的速度耦合控制。 文

献[6]提出了一种基于双电机主从结构的模型预测直接

转矩控制策略,在二步预测代价函数的基础上,对启动、
稳态以及动态阶段进行了深入的配置优化,最终实现了

分阶段抑制转矩误差的效果。 文献[7]在有限集模型预

测控制框架下,提出了一种统一建模的多轴运动系统预

测轮廓控制策略,有效提高了轮廓轨迹的动态性能和精

度。 文献[8]对双电机有限集模型预测控制中价值函数

的设计进行改进,设计了一种只有一个权重系数矩阵的

二次型价值函数,解决了加权求和型价值函数 3 个权重

系数整定困难的问题。 由于多电机同步控制是一个复杂

非线性问题,且大型风电机组长期处于野外恶劣环境中,
受环境因素、负载扰动以及运行磨损的影响,两个电机的

参数并不能完全相同,且齿轮和传动轴的摩擦系数等参数

在长时间运行过程中也会发生变化[9] ,使用上述理想化机

理模型进行分析建模会降低双电机同步控制的精度。
数据驱动技术自提出以来就受到了国内外学者的高

度关注[10-12] 。 其主要思想是通过收集并利用系统的运行

数据,实现对系统的建模与控制。 数据驱动技术的提出

有效解决了模型不确定或者模型时变系统的控制问

题[13] 。 因此,数据驱动模型相较于机理模型更适用于大

型风电机组变桨系统双电机同步控制的研究。
数据驱动技术在多电机控制领域的应用比较少,但

在其他现代工程领域中的应用日益普遍。 文献[14] 提

出了一种基于数据驱动的模块化多电平换流器预测电流

控制方案,将无模型自适应控制的数据驱动方案集成到

有限集模型预测控制框架中,有效抑制了模型不确定性

导致的性能下降。 文献[15] 构建了一种基于随机工况

数据的改进自适应模糊神经网络推理系统用于对锂电池

容量进行准确估计,以应对锂电池容量衰减对其安全性

和稳定性的影响,帮助用户进行更好的决策。 文献[16]
设计了一种利用小波核极限学习机建模的模型预测控制

方案,有效解决了醋酸精馏过程中温度控制精度不足的

问题。 核极限学习机( kernel
 

extreme
 

learning
 

machine,
KELM)算法相比于支持向量机、随机森林、BP 神经网络

等算法具有训练速度快、泛化能力强、可靠性高等特点,
同样适用于双电机同步预测控制系统的建模。

2022 年 1 月,中国东方风电公司自主研发的双电机

驱动变桨系统正式下线,该系统适用于 15
 

MW 及以上级

别的风力发电机组,随后,这一系统被其生产的 18
 

MW
海上风电机组成功应用。 其双电机同步控制采用的是主

从控制策略,在主从同步控制策略中,电机的运行状态传

递是单向的,从机的状态变化不会对主机产生影响。 此

外,该方案还存在较大的信号传递时延问题,尤其在起动

和停止阶段[17] ,且没考虑到电机参数变化的影响,因此

双电机的同步性能有待进一步提高。
针对以上问题,本文建立了一种基于数据驱动模型

的双永磁同步电机( permanent
 

magnet
 

synchronous
 

motor,
PMSM)模型预测同步控制系统。 根据 KELM 回归原理

建立双电机同步控制系统的数学模型,以两台电机定子

电流的直轴和交轴分量、转子旋转角速度作为模型的输

入,以下一时刻两个电机的输出电磁转矩、转子旋转角速

度作为模型输出;利用改进的麻雀搜索算法 ( sparrow
 

search
 

algorithm,SSA) 优化 KELM 的模型参数并引入模

型的反馈校正环节,对预测模型进行优化校正;根据控制

目标设计目标函数,通过量子遗传算法( quantum
 

genetic
 

algorithm,QGA) 进行求解寻优,得到两个伺服电机的最

优控制量;采用数据驱动建模技术替代上述研究中的理

想化机理模型,以解决实际预测模型的时变性问题,提高

预测模型的准确度。 最后通过仿真和实验分析,证明了

本文设计的数据驱动双电机模型预测同步控制系统能够

有效提高双电机运行时的转矩和转速同步性能以及跟踪

性能。

1　 双电机同步预测控制方案设计

　 　 单个叶片的双驱变桨系统以两个伺服电机驱动齿轮
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系统实现变距调节功能,系统主要组成部分包括两台性

能参数完全相同的永磁同步电机、两台结构完全相同的

减速器、编码器、变桨轴承以及连接轴等。 两个减速器的

小齿轮与变桨轴承内圈齿轮啮合,变桨轴承外圈分布着

许多螺孔,桨叶通过螺栓与变桨轴承连接,桨叶经过减速

器和轴承在两台伺服电机作用下作变桨调节。 大型风电

机组单个桨叶的双驱变桨系统结构如图 1 所示,从图 1
可以看出,减速器的两个小齿轮与变桨轴承内圈的大齿

轮是一种刚性连接的关系,因此为了避免“打齿”现象的

发生,提高系统的可靠性,必须保证两台电机出力的

同步。

图 1　 双电机驱动变桨系统结构

Fig. 1　 Structure
 

diagram
 

of
 

dual
 

motor
driven

 

variable
 

pitch
 

system

1. 1　 双电机模型预测同步控制系统设计方案

　 　 本文提出了一种数据驱动模型的双 PMSM 模型预测

同步控制方案;采用混合核极限学习机 ( hybrid
 

kernel
 

extreme
 

learning
 

machine,HKELM) 算法构建双电机统一

预测模型,并利用改进 SSA 对 KELM 的参数进行寻优,提
高预测模型的准确度;引入反馈校正环节,提高系统的预

测精度;根据控制目标设计价值函数 J,并采用具有优秀

全局寻优能力的 QGA 进行优化求解,得到两个电机的最

优控制量以消除两个电机之间输出转速和电磁转矩的误

差,提高风电机组变桨系统的可靠性。 控制框图如图 2
所示。

图 2 中,Y = [Te1,Te2,
 

ω1,ω2 ],Te1、Te2 分别为两台

PMSM 输出的电磁转矩,ω1、ω2 分别为两台电机的转子

旋转角速度;Y∗为两台电机的角速度和电磁转矩的参考

值;Ym 为预测模型的角速度和电磁转矩的预测值;Yp 为

经过反馈校正后的角速度和电磁转矩的预测值;X = [ id1,
iq1,ω1,id2,iq2,ω2],id1、id2 分别为两电机定子电流的直轴

分量,iq1、iq2 分别为两电机定子电流的交轴分量;U =
[u1,u2] T 为两台电机的控制量。

为提高预测模型的预测精度,引入反馈矫正环节,把
当前时刻的实际输出值 Y ( k) 与预测模型的预测值

Ym(k)做差,作为预测误差,将该误差反馈量作为校正信

号补偿到当前时刻基于预测模型的预测值 Ym(k+1)上,
从而达到修正预测模型的目的,反馈矫正后 Yp(k + 1) =
Ym(k + 1) + [Y(k) - Ym(k)]。

图 2　 双电机模型预测同步控制框图

Fig. 2　 Block
 

diagram
 

of
 

predictive
 

synchronization
 

control
 

for
 

dual
 

motor
 

models

　 　 通过对预测模型的反馈校正,有效避免了系统外部

扰动等因素导致的预测模型不准确的问题。 根据校正后

系统输出的预测值构建目标函数,进行优化求解,寻找最

优的电机控制量,实现对电机的预测控制。

2　 CGSSA-HKELM 预测模型建立

　 　 KELM 是极限学习机 ( extreme
 

learning
 

machine,
ELM)的一种核化扩展。 其核心思想是利用核函数替代

ELM 中随机生成的隐层节点参数,通过核函数将输入样
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本映射到一个高维特征空间,在该空间中,模型通过求解

一个正则化最小二乘问题直接获得输出权重[18] 。 相较

于 ELM,KELM 能够有效避免随机初始化导致的模型性

能不稳定问题,具有更优的泛化能力和鲁棒性。
KELM 可在具体应用中用于处理非线性映射,但预

测结果对参数设置非常敏感。 SSA 是一种受麻雀种群觅

食与反捕食行为启发的群体智能优化算法,相比灰狼算

法(grey
 

wolf
 

optimizer,GWO)
 [19] 、粒子群算法( particle

 

swarm
 

optimization,PSO) [20] 等智能优化算法,在处理寻优

问题时具有收敛速度快、求解精度高和稳定性好等优点,
被广泛应用[21] ,算法将种群个体抽象为 3 类角色。

1)发现者,负责探索食物丰富的区域(解空间中有

潜力的区域),指引种群搜索方向,通常由适应度值较优

的个体担任。
2)跟随者,跟随发现者在其周围进行更精细的搜

索(开发),尝试获取更好资源。
3)警戒者,负责监视环境风险(如捕食者)。 当感知

到潜在威胁(如个体陷入局部最优或位置过于集中)时,
会驱动部分个体(通常是适应度较差的个体)向随机方

向或全局最优方向进行较大幅度移动,以帮助种群逃离

局部最优。
通过模拟这 3 类角色在觅食过程中的位置更新、竞

争行为和危险预警,有效平衡算法的全局探索和局部开

发能力,从而高效地求解复杂优化问题。
用改进的麻雀搜索算法对模型参数进行寻优,形成

准确的预测模型,解决双电机模型预测同步控制系统使

用机理模型建模不准确的问题。 利用本文设计改进麻雀

搜索算法对 HKELM 的参数进行优化的流程如图 3
所示。
2. 1　 KELM 预测模型的建立

　 　 对于非线性样本数据(X i,Y i) ( i = 1,2,…,Q),输入

量 X i = [ x i1,x i2,
 

…,x in] T ∈Rn,输出量 Y i = [ y i1,y i2,
 

…,
y im] T∈Rm,单隐层神经网络公式为:

∑
L

i = 1
β ig(Wi·X j + b i) = o j 　 j = 1,…,Q (1)

式中:L 为隐层节点的数目;β i = [β i 1,β i 2,
 

…,β im] T,表示

输出层与隐层节点间的权重向量;g( x)为激活函数,可
以是任意有界的非恒定连续函数;Wi = [w i ,1,w i ,2,…,
w i,n]

T 代表隐层节点与输入节点之间的权重向量;Wi ·
X j 表示 Wi 和 X j 的内积;b i 为第 i 个隐的偏置;o i 为网络

的输出。 单隐层神经网络以最小化输出误差为学习目

标,公式为:

∑
Q

j = 1
‖o i - y i‖ = 0 (2)

即存在 β i、Wi 和 b i,使得式(3)成立。

图 3　 CGSSA 算法优化 HKELM 参数流程

Fig. 3　 Flow
 

chart
 

of
 

HKELM
 

parameters
optimized

 

by
 

CGSSA
 

algorithm

∑
L

i = 1
β ig(Wi·X j + b i) = y j 　 j = 1,…,Q (3)

其矩阵表示为:
Hβ = T (4)
H(W1,…,WL,b1,…bL,X1,…XQ) =

g(W1·X1 + b1) … g(WL·X1 + bL)
… … …

g(W1·XQ + b1) … g(WL·XQ + bL)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

Q×L

(5)

β =
β T

1

︙
β T

L

é

ë

ê
ê
êê

ù

û

ú
ú
úú

L×m

,T =
TT

1

︙
TT

Q

é

ë

ê
ê
êê

ù

û

ú
ú
úú

Q×m

(6)

式中:T 为期望输出;β 为输出权重;H 为隐层节点的输

出;Wi 和 b i 均为随机给定。 求出输出权值 β 的最小二乘

解,训练便可完成。 因此,其学习效率和运算速度比传统

的神经网络法更高。
 

β

(

= H + T = (HTH) -1HTT (7)
式中:H+为 H 的 Moore-Penrose 广义逆。 令

h(x i) = [g(w1·X1 + b1)…g(WL·X1 + bL)] ,则:

HTH =
h(x1)

︙
h(xQ)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

T

Q×L

h(x1)
︙

h(xQ)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

Q×L

=
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h(x1)·h(x1) … h(x1)·h(xL)
… … …

h(xL)·h(x1) … h(xL)·h(xL)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(8)

式中:h(xL)·h(xL)是 h( xL)的内积形式。 可构造核函

数来代替 HTH,即:
ΩELM( i,j) = h(x i)·h(x j) = K(x i,x j) (9)

HHT = ΩELM =
K(x1,x1) … K(x1,xQ)

… … …
K(xQ,x1) … K(xQ,xQ)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(10)

h(x)HT =
K(x,x1)

…
K(x,xN)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

(11)

将正则化系数 C 加入式(4),使 KELM 具有更好的

稳定性和泛化性,计算得到权值向量。

β∗ = HT HTH + I
C( )

-1

T (12)

根据 f(x) = h(x)HT HHT + I
C( )

-1

T ,核极限学习机的

解写为:

f(x) =
K(x,x1)

︙
K(x,xN)

é

ë

ê
ê
êê

ù

û

ú
ú
úú

ΩELM + I
C( )

-1

T (13)

考虑双电机同步控制系统是一个多输入多输出的非

线性系统,根据核极限学习机回归原理,预测方程的输入

采用系统前两个时刻的状态变量和控制量,分别对输出

量进行预测,建立预测方程:
y1(k + 1) = f1(U(k - 1),X(k - 1),U(k),X(k))
y2(k + 1) = f2(U(k - 1),X(k - 1),U(k),X(k))
y3(k + 1) = f3(U(k - 1),X(k - 1),U(k),X(k))
y4(k + 1) = f4(U(k - 1),X(k - 1),U(k),X(k))

ì

î

í

ï
ïï

ï
ïï

(14)
Y = {y1,y2,y3,y4}
U = {u1,u2}
X = {x1,x2}
x = { id,iq,ω}

ì

î

í

ï
ïï

ï
ïï

(15)

式中:f 代表核极限学习机回归的回归函数,可将非线性

的样本数据映射到高维空间中;Y 代表两台电机输出的

转速和电磁转矩;U 为两台电机的控制量;X 为整个系统

的状态变量;x1、x2 分别为两台电机的状态变量;y1、y2 分

别是两台电机的转矩预测结果;y3、y4 分别是两台电机的

转速预测结果;id、iq、ω 分别为电机定子电流的 d、q 轴分

量和角速度。
预测模型训练集的输入采用 D = {X(k),

 

X(k-1),
U(k),

 

U(k-1)},输出集采用 Y= {Y i},根据式(14)建立

系统的预测模型。
2. 2　 多核核函数的构建

　 　 核函数对核极限学习机算法的非线性建模能力有重

要影响,通过选择合适的核函数将非线性输入映射到高

维的特征空间中,可有效减少学习机的计算量。 因此,核
极限学习机的性能取决于核函数的类型和核参数的

设置[22] 。
核函数分为全局核函数和局部核函数。 全局核函数

的泛化能力较强,局部核函数在测量点具有较强的的学

习能力。 高斯核函数是一种典型的局部核函数,其公式

如式(16)所示。

KRBF(x i,x j) = exp -
‖x i,x j‖

2

2σ2( ) (16)

式中:σ 为高斯径向基的核宽度。 多项式核函数是一种

典型的全局核函数,在 ELM 模型中应用广泛[23] ,其公式

如式(17)所示。
Kpoly(x i,x j) = ((x ix j) + q) p (17)

式中:q 和 p 分别为常数参数和指数参数。 设计的混合核

函数通过加权的形式将式(16)和(17)中的高斯核函数

和多项式核函数结合起来,结合全局核函数和局部核函

数的优点,使形成的混合核函数具有很好的学习能力和

泛化能力,新的混合核函数方程如式(18)所示。
K(x i,x j) = υKRBF + (1 - υ)Kpoly,υ ∈ [0,1] (18)

式中:υ 为混合核函数的权值。 核参数 σ、q、p 和 υ 都会

影响 HKELM 的模型准确度,因此,必须确定最佳核参

数,以确保 HKELM 模型的性能[24] 。
2. 3　 改进麻雀优化算法的设计

　 　 核参数和正则化系数会影响 KELM 算法的性能,核
参数决定了核函数的作用范围,惩罚系数会影响模型的

稳定性。 本文通过设计的改进麻雀算法对 HKELM 的核

参数 σ、q、p 和 υ 以及正则化系数 C 进行寻优。 在 SSA
中,发现者的主要职责是引导整个群体进行搜索活动。
该过程可以通过方程表示为:

Xb+1
i,e =

Xb
i,e·exp

- i
α·itermax

( ) ,μ < ST

Xb
i,e + H·P,μ ≥ ST

ì

î

í

ïï

ïï

(19)

式中:b 为迭代次数;X i,e 表示 e 维空间第 i 个个体的位

置;α 为[0,1]内的随机数;itermax 表示最大迭代次数;H
是服从正态分布的随机变量;μ 为预警值;ST 为安全值,
P 为每个元素都是 1 的 1×e 的矩阵。 跟随者会根据发现

者的位置进行更新,公式表示为:

Xb+1
i,e =

Q·exp
Xb

worst - Xb
i,j

i2( ) ,i > n
2

Xb+1
P +| Xb

i,e - Xb+1
P |·ET(EET) -1·L,i ≤ n

2

ì

î

í

ï
ï

ï
ï

(20)
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式中: Xb
worst 为发现者的最差位置; Xb+1

P 发现者的最优位

置;E 表示元素为 1 或-1 的 1×d 矩阵;n 为种群数量。 警

戒者在遇到危险时会进行位置更新,这个过程用方程表

示为:

Xb+1
i,e =

Xb
best + λ·| Xb

i,e - Xb
best | ,f i > fg

Xb
i,e + J

Xb
i,e - Xb

worst

( f i - fg) + ε( ) ,f i = fg

ì

î

í

ï
ï

ïï

(21)

式中: Xb
best 表示跟随者的最优位置;λ 用来控制步长;J 为

[ -1,1]范围内的随机数;f i 为适应度值;fg 和 fw 分别为

适应度值的最佳值和最差值;ε 为一个极小的常数,避免

f i - fw = 0.
SSA 流程简单、收敛速度快、寻优能力强,但在进行

参数寻优时,容易陷入局部最优而降低收敛精度。 为提

高 SSA 的全局搜索能力和收敛精度,本文采用 Tent 混沌

映射和高斯变异方法对 SSA 进行改进。
1)

 

改进的 Tent 混沌映射

混沌变量具有随机性、遍历性和规律性,本文采用改

进 Tent 混沌映射进行麻雀种群初始化,使种群更加均

匀,生成一组符合要求的随机解。
Tent 映射的具体表达式为:

Xn+1 =
2Xn,0 ≤ Xn < 0. 5
2(1 - Xn),0. 5 ≤ Xn < 1{ (22)

式中:n 为映射次数,Xn 为第 n 次映射函数值。
Tent 混沌序列易落入小周期与不稳定周期点[25] 。

为了避免这种情况的发生,引入随机变量 rand(0,1) ×
1
NT

。 改进后的 Tent 混沌映射函数为:

Xn+1 =
2Xn + rand(0,1) × 1

NT
,0 ≤ Xn < 0. 5

2(1 - Xn) + rand(0,1) × 1
NT

,0. 5 ≤ Xn < 1

ì

î

í

ï
ï

ï
ï

(23)
式中:NT 为混沌序列的粒子数;rand(0,1)为[0,1]之间

的随机数。 麻雀个体位置应用式(23) 的解以实现种群

初始化,表达式为:
Xd = X ld + (X ld - Xud)Xn+1 (24)

式中:Xud 和 X ld 为 d 维变量 Xd 的最大和最小值。
2)

 

混沌扰动

式(23)经过贝努利移位变后换得到:

Zd = Xn+1 = (2Xn)bmod1 + rand(0,1)· 1
NT

(25)

式中:Zd 为混沌变量. 将其载波到解空间得到混沌扰量

Xd
new 为:

Xd
new = dmin + (dmax - dmin)Zd (26)

式中:dmin、dmax 为 d 维变量 Xd
new 的最小与最大值。

对个体进行混沌扰动的表达式:
X′new = (X′ + Xnew) / 2 (27)

式中: X′ 为需混沌扰动的个体位置; Xnew 为混沌扰动量;
X′new 为经过混沌扰动后个体新的位置。

3)
 

高斯变异

高斯变异是在变异操作时用一个符合正态分布的随

机数代替原参数。 变异公式为:
G(x) = x(1 + N(0,1)) (28)

式中:x 为原参数值;N(0,1)为服从正态分布的随机数;
G(x)为变异后的数值。 由正态分布特性可知,高斯变异

的重点搜索区域为原个体附近的局部区域。 通过变异策

略快速准确地进行全局搜索,避免 CGSSA 陷入局部最优

而降低收敛精度[26] 。

3　 目标函数的构建及优化求解

　 　 目标函数的选取反映了对系统性能的要求, 双

PMSM 驱动系统的控制目标是实现两台电机运行时的转

速和转矩跟踪系统给定值,并且两电机的运行应保持同

步,从而保证变桨系统的稳定运行。
对目标函数进行求解时,通常通过求导获得极值的

方法以获得最优控制序列,这种方法应用于复杂系统,求
解困难且容易陷入极大值误区,为解决寻优过程中陷入

局部最优的问题,选用 QGA 算法对目标函数寻优,获得

两台电机的最优控制量。
3. 1　 目标函数的构建

　 　 结合 2. 1 节设计的预测方程,设计了式(29)所示的

目标函数。 该目标函数主要包含两项:角速度和电磁转

矩预测输出的误差平方和;控制变量增量的平方和。

minJ = ∑
m

i = 1
‖A Yp k + i k( ) - Y∗ k + i k( )( ) ‖2 +

∑
n

i = 1
‖B△U(k + i - 1)‖2

s. t.
y(k) ≤ ymax(k),∀k ≥ 0
umin(k) ≤ u(k) ≤ umax(k),∀k ≥ 0{ (29)

式中:Yp(k+i 􀰙 k)为预测输出;Y∗(k+i 􀰙 k)为 k+i 时刻

电机角速度和电磁转矩给定值;U 为控制变量;m 为预测

步长;n 为控制步长;ymax(k)是两台电机角速度和电磁转

矩的最大约数值;A 为角速度和电磁转矩的跟踪误差加

权矩阵;B 为控制输入加权矩阵。
A = diag(a1,a2,…,am) m×m

B = diag(b1,b2,…,bm) m×m

(30)

通过优化计算系统的控制量使该目标函数达到最

小,得到两台电机的最优控制量,进而实现两台电机的

同步。
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3. 2　 目标函数优化求解

　 　 QGA 算法是一种融合量子计算原理和遗传算法的

概率进化算法。 利用量子态叠加特性增强搜索能力,通
过量子比特编码同时表征多个解空间状态,显著提升全

局探索效率,进而对目标函数进行高效求解。 相较于传

统遗传算法,QGA 具有更优的种群多样性和收敛速度,
其实现基本流程如下。

1)初始化量子种群,设置种群规模及量子染色体长

度,初始化所有量子比特为等概率叠加态,设定最大进化

代数及终止条件。
2)观测生成候选解,对量子种群进行测量操作,将量

子态坍缩为经典二进制解,形成当前代可行解集合。
3)适应度评估,计算候选解的目标函数值,记录当代

最优解及其适应度,更新历史全局最优解。
4)量子旋转门更新,根据当前解与最优解的差异,设

计量子旋转门调整策略,更新量子比特概率幅分布,增强

优质解的生成概率。
5)迭代终止与结果输出:检查进化代数达上限,验证

最优解收敛状态,评估适应度达标情况,输出最佳适应

度值。
利用 QGA 算法对目标函数进行求解得到两个电机

最优控制量的流程如图 4 所示。

图 4　 QGA 算法滚动优化求解流程

Fig. 4　 Flow
 

chart
 

of
 

QGA
 

algorithm
 

for
rolling

 

optimization
 

solution

量子比特是量子计算中的信息载体,不同于二进制

位,量子比特能同时处于两种量子态的叠加状态,展现出

并存的量子特性。 例如:
φ〉 = α 0〉β 1〉 (31)

满足:

| α | 2 +| β | 2 = 1 (32)
式中: | 0〉 和 | 1〉 分别表示自旋向下和自旋向上两种

态; |α | 2、 | β | 2 分别表示量子位坍缩于 0 和 1 两种状态的

概率。
通过使用量子比特编码,一个染色体能够以叠加态

形式表达多种状态,使得 QGA 算法在多样性特征方面具

有明显优势。 此外,量子比特编码还增强了算法的收敛

特性,随着 |α | 2 或 | β | 2 逐渐收敛至“0”或“1”,染色体最

终将趋向于单一态。
量子门在量子遗传算法中用来更新种群个体,其种

类有很多,结合量子遗传算法的计算特性,量子旋转门是

比较合适的选择。 量子旋转门的矩阵表示为:

U(θ i) =
cosθ i - sinθ i

sinθ i cosθ i

é

ë

ê
ê

ù

û

ú
ú

(33)

其更新过程如下:
α′i
β′i

é

ë

ê
ê

ù

û

ú
ú
= U(θ i)

α i

β i

é

ë

ê
ê

ù

û

ú
ú

=
cosθ i - sinθ i

sinθ i cosθ i

é

ë

ê
ê

ù

û

ú
ú

α i

β i

é

ë

ê
ê

ù

û

ú
ú

(34)

式中:(α i,β i)
T 和(α′i,

 

β′i)
T 分别为染色体中第 i 个量子

比特在旋转门更新前后的概率幅度;θi 表示第 i 位量子

对的旋转角。
由式(34)可以得出 α′i和 β′i分别为:
α′i = α icosθ i - β isinθ i

β′i = α isinθ i + β icosθ i
{

则有:
| α′ | 2 +| β′ | 2 = [α icosθ i - β isinθ i]

2 + [α isinθ i -
β icosθ i]

2 =| α i |
2 +| β i |

2 = 1
可以看出变换之后 | α′ | 2 +| β′ | 2 的值仍为 1。

4　 仿真分析

4. 1　 预测模型的效果验证

　 　 以两台 PMSM 为研究对象,选取电机的工作数据,以
当前时刻和上一时刻两台电机的控制电流、转速作为预

测模型的输入,以下一时刻电机输出的转速和电磁转矩

作为预测模型的输出,对搭建的 CGSSA-HKELM 预测模

型进行训练。
随机选取两台电机的 500 组历史运行工况数据,数

据覆盖双电机驱动系统的整体运行工况,包含增大和减

小电机转速来改变电机输出力矩的过程。 前 350 组数据

作为模型验证训练集,后 150 组数据作为模型测试集,为
了确保数据的可靠性,将该数据集打乱使用,分别使用

PSO 算法、SSA 算法和本文提出的改进 SSA 算法对混合

核极限学习机预测模型进行离线优化。
本文采用的 SSA 最大迭代次数设置为 20,麻雀种群

数量为 20,优化参数目标值上限和下限分别为 0. 01 和
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20。 PSO 算法最大迭代次数设置为 20,种群规模大小为

20,代表 PSO 算法局部和全局搜索能力的参数因子 c1,c2

均设置为 2;w 起着权衡局部最优和全局最优的能力,初
始权重 wmax = 0. 9,最终权重 wmin = 0. 9。 转矩预测的验证

效果如图 5 和 6 所示,转速预测的验证效果如图 7 和 8
所示。

图 5　 输出 1 测试集预测结果对比

Fig. 5　 Comparison
 

of
 

prediction
 

results
 

for
 

output
 

1
 

test
 

set

图 6　 输出 2 测试集预测结果对比

Fig. 6　 Comparison
 

of
 

prediction
 

results
 

for
 

output
 

2
 

test
 

set

图 5 和 6 中,预测结果为电磁转矩,图 7 和 8 中,预
测结果为转速,由此可以看出,改进的 SSA 算法相较于

SSA 算法和 PSO 算法,通过训练得到的预测模型更加准

确,能够以较高精度实现非线性预测模型的代替。
对 SSA 算法和 CGSSA 算法的适应度曲线进行比较,

如图 9 所示,可以看出,本文提出的 CGSSA 算法相较于

SSA 算法来说,收敛速度更快,收敛精度更高。 改进 SSA
算法提高了算法的全局搜索优化能力,可防止种群陷入

局部最优,具有较强的的适应能力。
为验证提出的 CGSSA-HKELM 预测模型的预测效

图 7　 输出 3 测试集预测结果对比

Fig. 7　 Comparison
 

of
 

prediction
 

results
 

for
 

output
 

3
 

test
 

set

图 8　 输出 4 测试集预测结果对比

Fig. 8　 Comparison
 

of
 

prediction
 

results
 

for
 

output
 

4
 

test
 

set

图 9　 两种优化算法适应度对比

Fig. 9　 Comparison
 

of
 

the
 

fitness
 

of
 

the
 

two
optimization

 

algorithms

果,采用常用度量平均绝对误差 ( MAE) 和均方根误
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差(RMSE)预测性能指标。 分别对 BP 神经网络预测模

型、KELM 预测模型、PSO-KELM 预测模型、SSA-KELM 预

测模型、CGSSA-KELM 模型的预测结果进行对比。 以电

机 1 的测试集预测结果为例,通过比较不同方法所得到

的预测性能指标来对其预测结果进行衡量,预测性能指

标如表 1 所示。

表 1　 预测模型性能指标表

Table
 

1　 Table
 

of
 

prediction
 

model
 

performance
 

indicators
种类 模型 MAE RMSE

输出 1

BP 3. 215
 

71 4. 050
 

57
KELM 3. 173

 

68 3. 787
 

34
PSO-KELM 2. 072

 

81 2. 468
 

18
SSA-KELM 0. 874

 

00 1. 071
 

52
CGSSA-KELM 0. 297

 

53 0. 394
 

14

　 　 由表 1 可知,采用改进的 SSA 算法优化提出的

HKELM 得到的预测模型有较高的预测精度,在 5 种预测

模型中误差最小。 以输出 1 为例,改进 SSA 算法优化

HKELM 的预测模型相较于传统 SSA 算法优化 HKELM
的预 测 模 型, MAE 减 少 了 65. 96%, RMSE 减 少 了

63. 22%,证明了本文设计的改进麻雀算法的优越性。
4. 2　 控制方案仿真验证

　 　 为验证所提控制方案 的 可 行 性, 在 MATLAB /
Simulink 中搭建仿真模型和构建仿真系统。 通过仿真测

试,验证数据驱动的模型预测控制方案与文献[27]采用

的偏差耦合滑模控制方案的性能,并对两者的控制效果

进行对比分析。 实验使用的两台永磁同步电机的部分参

数如表 2 所示。

表 2　 永磁同步电机参数

Table
 

2　 PMSM
 

parameters
参数 单位 数值

额定功率 kW 37
额定转速 r·min-1 1

 

000
额定电压 V 380
额定频率 Hz 50
定子电阻 Ω 0. 1
定子电感 mH 35. 5
极对数 ——— 3

　 　 目标转速设置为 1
 

000
 

r / min,仿真时间为 1
 

s,电磁

转矩的参考值设定为 400
 

N·m。为验证本文设计的数据

驱动模型预测控制系统优越性,使用文献[27]提出的偏

差耦合多电机滑模控制方案进行对比,两台电机电磁转

矩的变化和转矩误差分别如图 10、11 所示,仿真结果的

量化对比如表 3 所示。

图 10　 滑模控制的 PMSM 电磁转矩和转矩误差

Fig. 10　 Sliding-mode
 

control
 

controlled
 

PMSM
electromagnetic

 

torque
 

and
 

torque
 

error

图 11　 本文模型预测控制的 PMSM 电磁转矩和转矩误差

Fig. 11　 PMSM
 

electromagnetic
 

torque
 

and
 

torque
 

error
 

of
the

 

model
 

predictive
 

control
 

in
 

this
 

paper

表 3　 仿真结果的量化对比

Table
 

3　 Quantitative
 

comparison
 

of
 

simulation
 

results
(N·m)

方案 转矩脉动 转矩误差

文献[27] ±25 ±22
本文模型预测控制 ±15 ±12



　 第 9 期 数据驱动的风电机组变桨系统双电机同步驱动控制 ·211　　 ·

　 　 为验证本文控制方案的转矩跟踪性能,初始电磁转

矩的目标值设置为 400
 

N·m,在电机工作到 0. 5
 

s 时,将
目标值增大为 600

 

N·m,由图 10 和 11 可知,两种同步控

制策略下,电机均能快速响应目标电磁转矩,且在目标转

矩发生变化时也能够快速响应,但两种控制策略下电机

的转矩脉动相差较大,滑模控制下电机的转矩脉动大约

在±25
 

N·m 范围内,本文设计的模型预测控制下电机的

转矩脉动大约在±15
 

N·m 范围内,本文设计的模型预测

控制系统下电机的转矩脉动明显小于滑模控制控制系统

下运行的电机的转矩脉动。 综上所述,本文所提出的控

制方法应用于双电机驱动变桨系统,对于目标转矩具有

较好的跟踪控制效果。
本文的主要目标是实现两个驱动电机输出转矩的同

步,齿轮连接的双电机驱动变桨系统是一个刚性连接系

统,两台电机的转速强制同步,两台电机转矩的同步性能

对变桨系统的可靠性有着重大影响。 这里分别对偏差耦

合滑模控制和本文设计的模型预测控制两种策略下双电

机系统的转矩误差进行仿真,结果显示,偏差耦合滑模控

制下两台电机的转矩误差大约在±22
 

N·m 范围内,本文

设计的模型预测控制下两台电机的转矩误差大约

在±12
 

N·m 范围内,本文设计的模型预测控制系统下双

电机的转矩误差明显小于偏差耦合滑模控制系统下双电

机的转矩误差,能够显著提高两台电机的转矩同步性能,
进而提高变桨系统长期运行的可靠性。

综上所述,仿真结果初步证明所提的数据驱动模型

预测同步控制策略应用于双电机驱动变桨系统,能够有

效减小电机运行时的转矩脉动和转矩误差,对电机转矩

具有较好的跟踪控制效果和同步控制效果,控制方案合

理有效。
4. 3　 实验验证分析

　 　 为进一步验证本文所提出的方法的可行性和有效

性,通过项目合作企业得普达公司的两个电机实验平台

进行实验验证。 如图 12 所示,该平台由实验电机、负载

电机、转矩仪、电源柜、控制台等组成,两个平台所装实验

电机完全相同,两台电机由同一台控制器控制,实验电机

采用得普达公司生产的型号为 TZ230XS80618N23-QT 的

永磁同步电机。
为验证仿真分析的准确性及本文设计方案的转矩和

转速同步性能、跟踪性能和抗扰动性能,将两台实验电机

的目标转速设定为 1
 

200
 

r / min,转矩设定为 400
 

N·m,进
行实验。 在系统运行至 0. 5

 

s 时改变实验电机电磁转矩

值为 600
 

N·m,分别对偏差耦合滑模控制和本文设计的

数据驱动模型预测控制策略下的两台电机进行试验,得
到两种控制策略下的转速、转矩和转矩误差结果,实验结

果的量化对比如表 4 所示。

图 12　 双电机同步控制系统实验

Fig. 12　 Experimental
 

diagram
 

of
 

the
 

dual-motor
synchronous

 

control
 

system

表 4　 实验结果的量化对比

Table
 

4　 Quantitative
 

comparison
 

of
 

experimental
 

results

方案
转矩脉动 /

(N·m)
转矩误差 /

(N·m)
达到设定转

速时间 / s
突加负载转速

恢复时间 / s
偏差耦合滑模控制 ±40 ±25 0. 1 0. 07
本文模型预测控制 ±23 ±12 0. 06 0. 04

　 　 两种控制策略下,实验电机的转速、转矩和转矩误差

的输出结果如图 13、14 所示。 从转速曲线可以看出,滑
模控制下,实验电机大约在 0. 1

 

s 第 1 次达到设定转速,
突加负载时,大约经过 0. 07

 

s 能够恢复到设定转速;本文

模型预测控制下,实验电机大约在 0. 06
 

s 第 1 次达到设

定转速,突加负载时,大约经过 0. 04
 

s 能够恢复到设定转

速,且两台电机的转速同步性能更好。 由此可见,本文设

计的模型预测控制策略能够有效提高实验电机的转速的

同步性能、跟踪性能和抗扰动性能。
从图 13 和 14 中实验电机的转矩曲线可以看出,突

加负载时,两种控制策略下的电机均能够较快地响应目

标转矩变化,鲁棒性较好,但是两种控制策略下电机转矩

脉动差别很大,偏差耦合滑模控制下的实验电机的转矩

脉动大约在±40
 

N·m 范围内,模型预测控制下的电机转

矩脉动大约在±23
 

N·m 范围内,模型预测策略控制下电

机的转矩脉动明显小于对照组,因此本文提出的数据驱
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图 13　 偏差耦合滑模控制下电机的转速、转矩和转矩误差

Fig. 13　 Speed,
 

torque
 

and
 

torque
 

error
 

of
 

the
 

motor
under

 

deviation-coupled
 

sliding
 

mode
 

control

图 14　 本文模型预测控制下电机的转速、转矩和转矩误差

Fig. 14　 Speed,
 

torque
 

and
 

torque
 

error
 

of
 

the
 

motor
 

under
predictive

 

control
 

of
 

the
 

model
 

in
 

this
 

paper

动模型预测控制策略可以提高实验电机的转矩跟踪

性能。
从图 13 和 14 中实验电机的转矩误差曲线可以看

出,偏差耦合滑模控制策略下,两台电机的转矩误差大约

在±25
 

N·m 范围内,数据驱动模型预测控制策略下,两台

电机的转矩误差大约在±12
 

N·m 范围内,与仿真分析中

的误差结果基本一致,设计的数据驱动模型预测控制策

略下两台实验电机的转矩误差明显小于偏差耦合滑模控

制策略控制下两台实验电机的转矩误差,因此本文提出

的控制策略能够显著提高两台实验电机的转矩同步

性能。
综上所述,实验结果能够验证上述仿真分析结果,可

以证明,设计的数据驱动模型预测同步控制策略能够更

好地实现两台电机输出转矩的同步、减小转矩脉动、提高

系统的抗扰动性能,满足双电机驱动变桨系统的工作

要求。

5　 结　 论

　 　 针对风电机组双电机驱动变桨系统双电机同步控制

精度低的问题,提出了一种基于改进麻雀搜索算法优化

HKELM 的数据驱动预测模型以及 QGA 优化求解目标函

数的双电机模型预测同步控制系统。 为提高系统预测模

型的精确度,构建混合核函数极限学习机预测模型,利用

混沌-高斯变异算法改进的麻雀搜索算法对 HKELM 模型

的正则化系数和核参数并进行寻优,得到能够准确反映

双电机驱动系统非线性特性的预测模型。 根据构建的数

据驱动预测模型建立模型预测控制系统,并引入了反馈

校正环节;设计目标函数,引入量子遗传算法优化求解,
得到两台电机的最优控制量,提高了两台电机的转矩和

转速控制精度。 通过仿真和实验分析,本文设计的数据

驱动的模型预测控制方案相较于传统偏差耦合滑模控制

方案能够有效降低双电机驱动系统的运行转矩误差,提
高两台电机的同步性能。
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