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摘　 要:提出一种改进的快速随机树法( improved
 

rapidly-exploring
 

random
 

tree,IRRT)与预测型的改进人工势场法( predicted-
improved

 

artificial
 

potential
 

field,P-IAPF)相融合的多机器人路径规划方法,以实现多机器人系统在复杂环境中的有效避障。 首

先,针对快速随机树(RRT)算法存在收敛速度慢与搜索范围具有随机性的缺点,采用目标偏向策略引导随机采样点的生成,同
时将改进的人工势场法加入到双向的随机搜索树中,以快速找到全局路径。 其次,针对传统的人工势场(APF)算法易陷入局部

最小值且路径规划效率低问题,提出多虚拟关键点的预测型 APF 算法,采用道格拉斯-普克(Douglas
 

Peucker,DP)算法寻找所规

划出全局路径中的子关键点序列,通过切换关键点使多机器人来逃离局部最小值,以提高多机器人路径规划效率与平滑性。 最

后,通过对具有 U 型障碍物以及长矩形障碍物的复杂环境进行仿真实验,验证了提出的改进算法的安全性与有效性,同时具有

路径规划效率高、避免多机器人碰撞等优点。
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Abstract:
 

A
 

method
 

is
 

proposed
 

for
 

multi-robot
 

path
 

planning
 

in
 

complex
 

environments,
 

employing
 

an
 

improved
 

rapidly-exploring
 

random
 

tree
 

(IRRT)
 

algorithm
 

and
 

predicted-improved
 

artificial
 

potential
 

field
 

( P-IAPF)
 

algorithm
 

to
 

achieve
 

obstacle
 

avoidance
 

in
 

multi-robot
 

systems.
 

Firstly,
 

in
 

view
 

of
 

the
 

shortcomings
 

of
 

slow
 

convergence
 

speed
 

and
 

random
 

search
 

range
 

of
 

RRT
 

algorithm,
 

the
 

target-biased
 

strategy
 

is
 

used
 

to
 

guide
 

the
 

generation
 

of
 

random
 

sampling
 

points,
 

simultaneously,
 

the
 

improved
 

artificial
 

potential
 

field
 

method
 

is
 

integrated
 

into
 

the
 

bidirectional
 

random
 

search
 

tree
 

to
 

rapidly
 

identify
 

the
 

global
 

path.
 

Secondly,
 

in
 

response
 

to
 

the
 

problem
 

of
 

traditional
 

APF
 

algorithm
 

being
 

prone
 

to
 

getting
 

stuck
 

in
 

local
 

minima
 

and
 

having
 

low
 

path
 

planning
 

efficiency,
 

a
 

predicted
 

APF
 

algorithm
 

with
 

multiple
 

virtual
 

keypoints
 

is
 

proposed,
 

the
 

Douglas
 

Peucker
 

(DP)
 

algorithm
 

is
 

used
 

to
 

find
 

the
 

sequence
 

of
 

sub
 

keypoints
 

in
 

the
 

planned
 

global
 

path,
 

and
 

the
 

multi
 

robot
 

system
 

switches
 

keypoints
 

to
 

escape
 

from
 

local
 

minima,
 

thereby
 

enhancing
 

both
 

the
 

efficiency
 

and
 

smoothness
 

of
 

multi-robot
 

path
 

planning.
 

Ultimately,
 

to
 

confirm
 

the
 

effectiveness
 

of
 

the
 

proposed
 

algorithm,
 

simulation
 

experiments
 

in
 

complex
 

environments
 

with
 

U-shaped
 

and
 

long
 

rectangular
 

obstacles
 

are
 

carried
 

out,
 

and
 

it
 

has
 

the
 

advantages
 

of
 

high
 

path
 

planning
 

efficiency
 

and
 

avoiding
 

multi-robot
 

collision.
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0　 引　 言

　 　 随着近年来科学技术的飞速发展,移动的机器人在

采矿、救援、农业等领域得到了广泛的应用[1] 。 然而,随
着研究的不断深入以及应用领域的逐渐细化,单个机器

人在负载能力、续航时间和信息处理能力等方面存在很

多局限。 因此,需要多个机器人协作来完成单个机器人

无法完成的复杂任务。 近年来,多机器人系统逐渐成为

一个热门且具有挑战性的研究课题。 路径规划是多机器

人控制系统的重要应用之一,受到了众多研究者的关注。
机器人在复杂环境中有效地防止互相碰撞以及安全规避

障碍物[2] 是目前亟待解决的关键问题。 因此,设计一种

有效的多机器人路径规划算法对多机器人协同技术的发

展具有深远意义。 机器人路径规划算法可以分别为全局

路径规划算法和局部路径规划算法两大类[3] 。 全局路径

规划 算 法 主 要 包 括 快 速 随 机 树 法 ( rapidly-exploring
 

random
 

tree, RRT ) [4] 、 遗 传 算 法 ( genetic
 

algorithm,
GA) [5] 、A∗ 算法[6] 、 蚁群算法 ( ant

 

colony
 

optimization,
ACO) [7] 和 粒 子 群 算 法 ( particle

 

swarm
 

optimization,
PSO) [8] 等。 Garcia 等[9] 结合 A∗算法的优化能力和协同

进化算法的搜索能力生成一种高效的无碰撞的多机器人

路径规划解决方案。 Shao 等[10] 提出一种综合改进的

PSO 路径规划算法来提高编队路径规划的快速性和最优

性。 Liu 等[11] 提出一种基于自适应灵敏度决策算子的粒

子群算法有效地规划出高质量路径。 然而,全局路径规

划算法在大任务空间下存在计算时间长和计算量大等问

题,不能满足实时性要求。 因此,在实际应用中很少单独

使用。 局部路径规划算法是指根据局部障碍物的动态信

息生成局部路径,其优点是能够快速处理局部障碍物信

息,满足实时性要求[12] 。 人工势场法( artificial
 

potential
 

field,APF)是最常用的局部路径规划算法,具有响应速

度快、计算简单、实时性强等优点[13] 。 然而,传统的人工

势场法存在局部极小值问题,容易导致机器人无法及时

躲避障碍物。 因此,许多研究者对其进行了改进。 Fu
等[14] 提出一种新的人工势函数来解决多智能体的避障

问题,但未考虑在复杂环境下可能出现目标不可达现象

以及陷入局部最小的情况。 Pan 等[15] 提出以一种数学形

式的虚拟目标搜索方法来解决局部最小问题和目标不可

达问题,但该算法会存在冗余路径。 Pan 等[16] 提出一种

改进的人工势场法,通过加入旋转势场来逃离局部最小

值。 但该算法未考虑可能出现目标不可达问题的情况。
李科宇等[17] 提出一种灰狼优化算法( grey

 

wolf
 

optimizer,
GWO)与人工势场法相结合的多智能体编队避障方法来

解决随机障碍物环境下的多机器人路径规划问题,但该

算法未考虑复杂环境的情况且不能满足路径规划最优。

针对局部规划算法能够实时规划任务且具有较高的实时

性,但缺乏全局路径规划策略、存在目标不可达以及易陷

入局部最优的问题,全局规划算法通常可以规划出全局

最优但存在实时性差的问题,将上述两类算法有效结合,
利用各自的优势弥补各自的不足,进而搭建一个良好的

建模方案,是一种可行的多机器人路径规划方案。 所以

本文在双层规划思想的基础上,提出了一种混合路径规

划算法。 该算法利用改进的 RRT 算法( improved
 

rapidly-
exploring

 

random
 

tree,IRRT)路径规划算法来生成全局路

径,并将全局路径划分为多个子目标点序列,将这些子目

标点作为预测型改进的 APF 算法 ( predicted-improved
 

artificial
 

potential
 

field,P-IAPF) 的虚拟目标点,利用 P-
IAPF 算法来规划出最优无碰撞路径。

本文将目标偏向策略和改进的 APF 算法思想加入

到 RRT 算法中,提高原始 RRT 算法的方向性,降低 RRT
算法的迭代次数,减少 RRT 算法的运行时间,提高 RRT
算法规划路径的效率;针对全局路径采用道格拉斯-普
克(Douglas

 

Peucker,DP
 

) 算法寻找多个虚拟关键点;P-
IAPF 算法比改进的 APF 算法路径更优。

1　 基于 IRRT 全局路径搜索算法

　 　 RRT 算法从起始点开始随机生长,直至目标点在随

机生长树上或者距离随机生长树足够近,连接初始位置

和目标位置,这样就能在随机生长树上找到有效路径,该
算法广泛用于二维、三维场景的路径规划中[18] 。 但 RRT
算法存在随机性强和搜索效率低等缺点。 针对该算法的

不足,提出了一种 IRRT 算法即基于目标偏向的双向

IAPF-RRT 算法的机器人路径规划方法。 全局路径规划

算法与局部路径规划算法融合框图如图 1 所示。 采用目

标偏向策略的双向 IAPF-RRT 算法的工作图如图 2 所

示。 首先,采用目标偏向策略指导随机采样点的生成,并
通过双向 RRT 算法建立两棵相互交替的随机搜索树进

行搜索,提高了算法的收敛速度。 其次,通过将改进的人

工势场法结合到双向生长树中,大大减少了迭代次数。

1. 1　 单向目标偏向策略

　 　 传统 RRT 算法的采样点的范围广,且随机性强,导
致随机树在扩展过程中缺乏一定的引导性,以至于算法

搜索时间较长。 为了改进这一缺点,引入目标偏向策

略[18] ,随机树以一定的概率把目标点作为采样点进行扩

展,提高随机树向目标点的扩展的概率以及随机点的质

量,减少迭代次数,加速随机扩展树的形成,从而提高算

法的搜索效率。 本节改进了随机采样点 qrand 的选取和新

节点 qnew 的生长方向。 单向目标偏向策略根据式(1)选

择随机采样点。
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图 1　 全局路径规划算法与局部路径规划算法融合算法框图

Fig. 1　 Block
 

diagram
 

of
 

fusion
 

algorithm
 

of
 

global
 

path
planning

 

algorithm
 

and
 

local
 

path
 

planning
 

algorithm

图 2　 采用目标偏向策略的双向 IAPF-RRT 算法

Fig. 2　 The
 

bidirectional
 

IAPF-RRT
 

algorithm
with

 

goal-biased
 

strategy

qrand =
Random, rand() > m
qgoal, 其他{ (1)

式中:rand()为 0 ~ 1 之间的随机数;m 为设定的目标偏

向阈值,随机数中新节点 qnew 的生长方向由 m 来决定。
当 rand() > m 时,生长树在采样空间中随机生长;反之,
生长树向每个生长树的目标点方向生长。 单向目标偏向

策略如图 3 所示。

图 3　 单向目标偏向策略

Fig. 3　 One-way
 

target
 

bias
 

strategy

1. 2　 单向 APF-RRT 算法

　 　 将改进人工势场法的思想加入到 RRT 算法中,每棵

随机树的目标点 qgoal 和随机采样点 qrand 分别对最近节点

qnear 有吸引力,障碍物对最近节点 qnear 有排斥力,使得随

机生长树的搜索速度加快,提高路径搜索的目的性,减少

规划时间。 但是对于传统 APF 算法,当机器人接近周围

存在障碍物的目标点时,机器人受到的斥力大于引力导

致难以到达目标点,出现目标不可达现象。 本文使用一

种改进的 APF 算法来解决这一目标不可达问题,在传统

的斥力势场函数中加入了一个关于机器人与目标点的调

节因子。 排斥力可以分解为两个力,即障碍物指向机器

人的排斥力和机器人指向目标点的吸引力。 它可以保证

机器人在接近目标点时,机器人的吸引力远大于排斥力,
使机器人在吸引力的作用下向目标移动。 改进的 APF
算法可以解决目标点不可达的问题。 则改进的 RRT 算

法中的新节点 qnew 扩展函数如式(2)所示。
qnew = qnear + Fatt1 + Fatt2 + Frep (2)

式中: Fatt1 为新节点 qnew 随机扩展函数; Frep 为障碍物与

最近节点 qnear 的斥力函数; Fatt2 为目标点与随机树中最

近节点 qnear 的引力函数。
新节点的随机扩展函数 Fatt1 如式(3)所示。

Fatt1(p) = λ
prand - p
ρ(prand,p)

(3)

式中: p、prand 分别表示 qnear 和 qrand 的位置; ρ(prand,p) 为

qrand 与 qnear 之间的距离; λ为随机树的扩展步长。 改进的

APF 算法势场函数如下:

Uatt(p) = 1
2
kaρg(p,pgoal) (4)

Urep(p) =

1
2
kr

1
ρ(p,pobs)

- 1
ρ0

( ) ρn(p,pgoal),

ρ(p,pobs) ≤ ρ0

0,ρ(p,pobs) > ρ0

ì

î

í

ï
ïï

ï
ï

(5)

式中: pgoal 和 pobs 分别表示目标点和障碍物的位置;
Urep(p) 为斥力势场; kr 为斥力增益系数; ka 表示引力增

益系数; n 为随机数且 0 ≤ n < 1;ρ(p,pgoal) 为 qnear 与目

标点之间的距离; ρ(p,pobs) 为 qnear 与障碍物之间的距离。
目标引力函数 Fatt2 如式(6)所示。
Fatt2(p) = λkaρ(p,pgoal) (6)

式中: ka 为引力系数; ρ(p,pgoal) 为 qnear 与 pgoal 之间的

距离。
排斥力为改进的排斥力势场的负梯度,公式如下:

Frep = - ▽Urep(p) =
Frep1 + Frep2,ρ(p,pobs) ≤ ρ0

0,ρ(p,pobs) > ρ0
{

(7)
式中: Frep1 和 Frep2 分别为排斥力 Frep 在不同方向上的力。
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其公式如下:

Frep1(p) = kr
1

ρ(p,pobs)
- 1

ρ0
( )·

ρn(p,pgoal)
ρ2(p,pobs)

(8)

Frep2(p) = - n
2
kr

1
ρ(p,pobs)

- 1
ρ0

( )
2

·ρn-1(p,pgoal)

(9)
式中: Frep1 为排斥力中的斥力分量,方向由障碍物指向

qnear;Frep2 为排斥力中的引力分量,方向由 qnear 指向目标

点 pgoal。 改进的 RRT 算法的节点扩展示意图如图 4 所

示。 合力 F total 的方向即新节点 qnew 的扩展方向。

图 4　 加入人工势场法后节点扩展示意图

Fig. 4　 Node
 

expansion
 

diagram
 

after
 

adding
artificial

 

potential
 

field
 

method

1. 3　 双向目标偏向策略

　 　 RRT 算法在复杂环境下的机器人轨迹规划中存在搜

索时间较长、采样点不具有方向型的问题。 本文引入双

向目标偏向策略,一方面,在每次迭代中同时展开两棵随

机树,使得提高搜索效率;另一方面,加入目标偏向策略,
优化采样过程,使其具有一定的方向性,解决采样点随机

　 　 　 　

性强的问题。 双向 RRT 算法节点扩展过程如图 5 所示。

图 5　 双向 RRT 节点扩展示意图

Fig. 5　 Bidirectional
 

RRT
 

node
 

expansion
 

diagram

1. 4　 双向 IAPF-RRT 算法

　 　 在 RRT 算法基础上,本节的算法将单向生长树改进

为双向生长树,并引入改进的人工势场法思想。 将单向

生长树改进为双向生长树加快了随机生长树的搜索速

度,改进人工势场法思想的加入减少了随机生长树在迭

代过程中的冗余节点数,提高了随机生长树的搜索效率。
双向 IAPF-RRT 算法即 IRRT 算法新节点 qnew 的扩展示

意图如图 6 所示。 其中, Frep 为障碍物对于 qnear 的排斥合

力, Fatt1 和 Fatt2 分别为随机点和目标点对于 qnear 的引力。
最后,基于平行四边形法则找到对 qnear 的合力 F total ,则合

力 F total 的方向为新节点 qnew 的扩展方向。 起点、终点随

机树都以同样方式进行扩展。

图 6　 IRRT 算法节点扩展示意图

Fig. 6　 Bidirectional
 

RRT
 

node
 

expansion
 

diagram
 

with
 

improved
 

APF

1. 5　 实验仿真对比

　 　 为了验证本文提出的 IRRT 算法的性能, 使用

MATLAB2018a 对原始地图进行 50 次实验仿真,分别记

　 　 　

录了 4 种不同 RRT 算法的路径长度、迭代次数和运行时

间,4 种算法的性能对比如图 7 所示,模拟数据如表 1
所示。
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表 1　 四种 RRT 算法的数据对比

Table
 

1　 Data
 

comparison
 

of
 

four
 

RRT
 

algorithms
算法 平均路径长度 / m 平均迭代次数 平均运行时间 / s

原始 RRT 算法 934. 316
 

7 1
 

351. 000
 

0 322. 520
 

0
引力思想的双向 RRT 算法 917. 305

 

2 209. 500
 

0 25. 375
 

9
双向目标偏向 RRT 算法 834. 825

 

0 200. 000
 

0 36. 741
 

9
IRRT 算法 819. 754

 

3 121. 480
 

0 16. 800
 

6

图 7　 4 种算法的性能对比

Fig. 7　 Comparison
 

diagram
 

of
 

performance
of

 

different
 

algorithms

　 　 原始地图的分辨率是 500×500,起点和终点坐标分

别为[10,10]和[490,490],黑色区域为障碍物区域。 4
种 RRT 算法避障效果如图 8 所示,4 种 RRT 算法避障路

径对比如图 9 所示。 图 8(d)是本文改进的 RRT 算法即

双向 IAPF-RRT 算法,在平均路径距离上比原始 RRT 算

法减少了 14. 0%,在平均迭代次数上比原始 RRT 算法减

少了 10 倍以上,在平均运行时间上缩短了 18. 2 倍;相比

与图 8(c)的双向目标偏向的 RRT 算法在平均距离上相

差不大,在迭代次数在减少了 88 次,在平均运行时间上

缩短了 8. 58
 

s,明显减少了低质量随机点的数量和迭代

次数;比图 8(b)算法在平均距离上减少了 11. 9%,在平

均迭代次数上减少了 79 次,在平均运行时间上缩短了

19. 9
 

s,由图 8(b)可以看出,算法虽然提高了搜索效率,
但由于缺乏障碍物排斥,该算法在障碍物周围存在冗余

点。 由图 8( d) 看出,I-RRT 算法能明显减少随机点数,
提高算法的收敛速度,更加优于其他算法。
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图 8　 4 种 RRT 算法的避障效果对比

Fig. 8　 Comparison
 

of
 

obstacle
 

avoidance
results

 

of
 

four
 

RRT
 

algorithms

图 9　 4 种 RRT 算法避障路径对比

Fig. 9　 Comparison
 

of
 

obstacle
 

avoidance
paths

 

of
 

four
 

RRT
 

algorithms

2　 P-IAPF 算法

　 　 APF 是一种简单实用的反馈控制策略,其优点是路

径的规划直接与环境实现闭环,增强了机器人的适应性

和避障能力,且具有成熟度高、效率高、数学计算简单等

优点,得到了广泛的应用。 作为一种具有实时性且确定

性的局部路径规划算法,移动机器人在人工势场法所构

造的引力场和排斥力场共同作用的虚拟合力场下,能够

避开障碍物并向目标点运动。 复杂环境下 APF 算法规

划路径如图 10 所示。 但是,当使用传统的人工势场法进

行路径规划时,主要存在以下缺陷。
1)由于传统的人工势场法采用虚拟力来控制机器人

的运动,机器人可能无法通过狭窄通道,或者当机器人因

受到合力作用只能在直线上反复运动时不能运动到目

标点。
2)在仅有一个目标点的情况下,当机器人尚未到达

目标点时,目标点对机器人的引力可能会等于障碍物对

机器人的排斥力,即合力为零时,机器人将陷入局部最小

值而停止前进到达不了目标点。
3)在只有一个目标点的情况下,机器人的轨迹虽然

可以成功到达目标点,但其轨迹不满足最短路径等最优

条件。 并且在路径规划过程中,受环境因素影响较大。

图 10　 复杂环境下 APF 算法规划路径

Fig. 10　 APF
 

algorithm
 

planning
 

path
 

in
 

complex
 

environment

基于以上传统 APF 算法的不足与缺陷,将对其进行

改进。
2. 1　 P-IAPF 算法

　 　 对于上述传统的人工势场法的缺点与不足,对此进

行以下改进。
对于避障任务,较短的路径长度总是比较长的路径

长度更优选,因为较短的路径通常有较少的燃料消耗,并
且可以降低遇到意外威胁的概率。 在改进的人工势场算

法的基础上,根据三角形不等式此定理即对于任何三角

形来说,任意两边之和大于第三边,本文提出了 P-IAPF
算法。 P-IAPF 算法可以获得更短、更平滑的路径,提供

能量有效的路径规划算法。 未来运动的预测通过改进的

人工势场法切换机器人的临时目标以校正机器人当前运

动方向,使机器人提前对障碍物做出反应以避免不必要

的运动。
本文提出的 P-IAPF 算法思维图如图 11 所示。 算法

步骤如下:
1)定义一条方向线作为当前改进的 APF 力方向;
2)使用改进的人工势场法来生成连续的路径位置;
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3)计算每个点到方向线的垂直距离;
4)以离方向线最大距离的点作为新的临时子目

标点。
关于新的临时子目标的选择算法步骤如下:

1)计算方向线 F
➝

w 的直线表达式 Ax + By + C = 0,其
中, x 和 y 为点的坐标, A、B 和 C 为直线表达式的参数。

2)计算原始路径上每一个位置点 p(x0,y0) 到方向

线的垂直距离 d ,其公式如下:

d =
| Ax0 + By0 + C |

A2 + B2
(10)

3)比较每一个位置点到方向线的距离大小,选择离

方向线最远的位置点作为新的临时子目标点。
4)根据新的临时子目标点使用改进的人工势场法重

新规划机器人的运动。

图 11　 P-IAPF 算法思维图

Fig. 11　 P-IAPF
 

algorithmic
 

thinking
 

diagram

为 了 验 证 P-IAPF 算 法 的 有 效 性, 使 用

MATLAB2018a 对分辨率为 500×500 两种不同环境进行

仿真。 P-IAPF 算法与 I-APF 算法对比如图 12 所示。 由

图 12 可知,由于三角形任意两边之和大于第三边这一三

角形三边关系定理,P-IAPF 算法规划的路径比改进的人

工势场法规划的路径更短并且更平滑。

3　 仿真结果

　 　 为了评估所提出的策略和算法的性能,在不同环境

下进行单个机器人路径规划和多个机器人路径规划。

3. 1　 单个机器人

　 　 从图 10(a)和(b)可以看出,传统的人工势场法不能

通过半包围 U 型障碍物和长矩形障碍物此类复杂地图,
而本文优化后的融合算法可以安全通过。 图 13(a)所示

是基于优化后的融合路径规划算法的单个机器人遇到半

图 12　 P-IAPF 算法与 I-APF 算法对比

Fig. 12　 Comparison
 

diagram
 

between
 

P-IAPF
algorithm

 

and
 

I-APF
 

algorithm

包围的 U 形障碍物的环境时的情况,比文献[14]使用数

学策略搜索虚拟目标优化路径的方法所规划的路径更

短、更平滑、 更灵活, 在实际情况中能耗最少。 比文

献[15]通过旋转力场来优化路径的方法所规划的路径

更短。 可知,本文的算法更具普适性且更加可靠。 图

13(b)所示是基于优化后的融合路径规划算法的单个机

器人遇到带有长矩形障碍物的复杂环境的情况。 由图

13(a)和(b)可知,本文所提出的算法在不同复杂环境的

地图下的有效性,本文提出的融合路径规划算法比现在

已有算法更具有普适性。
3. 2　 多个机器人

　 　 本文采用了一种新的融合算法,既改进了快速随机

树法的随机性与实时性差等缺点,又解决了传统人工势

场法的缺陷与不足,提高了系统的鲁棒性和可靠性。 采

用 IRRT 算法全局路径规划算法得到全局路径,并采用

DP 算法对全局路径进行分割得到路径的关键点序列。
在到达最终目标点之前,以关键点序列作为当前编队目

标点,采用多个虚拟子目标点的 P-IAPF 算法进行推进以

到达最终目标点。 在使用局部路径规划过程中,使用优

先级策略来防止各机器人之间的碰撞。 同时考虑到多机

器人编队在前进过程中可能会遇到障碍物,应采用整体

策略或分离策略,以保证各机器人运动的安全[19] 。
图 14(a)所示是虚拟领导者的运动轨迹和 3 个机器

人以半径 R= 17. 32 的圆形形队形穿越 U 形复杂静态障

碍物的运动轨迹。 由图 14(a)可以明显地看出,3 个机器

人以预定义的队形运动,并且在没有任何碰撞的情况下

以最佳路径成功到达目标点。 图 14( b)所示是在避开随

机障碍物过程中 3 个机器人之间的距离变化,可以明显
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图 13　 复杂环境下改进融合算法规划路径

Fig. 13　 Improved
 

fusion
 

algorithm
 

for
 

path
planning

 

in
 

complex
 

environment

看出机器人尽可能保持预定队形且机器人之间一直保持

安全距离,不会发生碰撞。 此外,由图 14( b)可以看出,
由 DP 算法为虚拟领导者寻找到一个虚拟目标点。

图 15(a)所示是虚拟领导者的运动轨迹和 3 个机器

人以半径为 R = 17. 32 的圆形队形在具有长矩形复杂固

定障碍物地图中的的运动轨迹。 由图 15(a)可以明显地

看出,3 个机器人以预定义的队形运动,并且在没有任何

碰撞的情况下以最佳路径成功到达目标点。 图 15( b)所

示是在避开随机障碍物过程中 5 个机器人之间的距离变

化,可以明显看出机器人尽可能保持预定队形且机器人

之间一直保持安全距离,不会发生碰撞。 越过障碍物后,
3 个机器人试图以原来的队形朝向目标运动。

通过 MATLAB2018a 模拟仿真结果如表 2 所示。 表

2 为不同算法下机器人在具有半包围的 U 形障碍物复杂

环境中规划的路径长度,N / A 表示没有路径长度,路径规

划未完成。 通过分析,由表 2 可知 APF 算法不能避开 U
形障碍物到达目标点,而 IRRT 算法不是所有机器人可

以顺利完成路径规划,但本文所提出的融合算法所有机

图 14　 3 个机器人在半包围 U 形复杂环境下仿真

Fig. 14　 Simulation
 

results
 

of
 

three
 

robots
 

in
 

Semi-enclosed
U-shaped

 

complex
 

environment

器人都可以很好地完成任务,同时机器人之间不存在

碰撞。
表 2　 不同算法下机器人在具有半包围 U 形障碍物

复杂环境中的路径长度

Table
 

2　 The
 

path
 

length
 

of
 

robots
 

in
 

complex
 

environment
with

 

Semi-enclosed
 

U-shaped
 

obstacles
under

 

different
 

algorithms (×103m)
算法 虚拟领导者 机器人 1 机器人 2 机器人 3
APF N / A N / A N / A N / A
IRRT 3. 317 N / A N / A N / A

改进的融合算法 3. 315 3. 266 3. 462 3. 322

　 　 由仿真结果如表 3 所示。 表 3 为不同算法下机器人

在具有长矩形通道障碍物复杂环境中规划的路径长度,
N / A 表示没有路径长度,路径规划未完成。 由表 3 可知,
APF 算法不能避开长矩形障碍物到达目标点,IRRT 算法

不是所有机器人可以顺利完成路径规划,但本文所提出

的融合算法可以很好地完成任务,同时机器人之间不存

在碰撞。
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图 15　 3 个机器人在长矩形复杂环境下仿真

Fig. 15　 Simulation
 

results
 

of
 

three
 

robots
 

in
long

 

rectangle
 

complex
 

environment

表 3　 不同算法下机器人在具有长矩形固定障碍物

复杂环境中的路径长度

Table
 

3　 The
 

path
 

length
 

of
 

robots
 

in
 

complex
 

environment
with

 

long
 

rectangular
 

fixed
 

obstacles
under

 

different
 

algorithms (×103m)
算法 虚拟领导者 机器人 1 机器人 2 机器人 3
APF N / A N / A N / A N / A
IRRT 1. 404 N / A N / A N / A

改进的融合算法 1. 604 1. 596 1. 601 1. 601

4　 结　 论

　 　 为了提高多机器人系统在复杂障碍物环境下路径规

划的有效性,提出一种 IRRT 算法与 P-IAPF 算法融合的

路径规划算法。 在所提出算法中,采用 IRRT 算法获得

全局路径,通过 DP 算法寻找虚拟子目标点,采用多虚拟

子目标点的 P-IAPF 算法进行局部路径规划。 算法不仅

可以解决局部最小值问题来保证多机器人路径规划的顺

利进行,而且使迭代次数减少,路径长度缩短,提高了多

机器人路径规划的效率。 为了保证多机器人路径规划的

安全性,采用优先级策略避免多机器人之间的相互碰撞。
仿真结果验证了本文所提算法的有效性,结果表明本文

的算法可以使机器人在复杂环境中安全高效地运行。 并

且对于多机器人路径规划规划出最优无碰撞路径。 本文

主要研究了静态复杂环境的多机器人路径规划。 未来的

工作会考虑对动态复杂环境下和三维环境下的多机器人

路径规划进行进一步研究。
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