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摘　 要:模型辅助检测概率( model-assisted
 

probability
 

of
 

detection,
 

MAPoD)和灵敏度分析对于量化涡流无损检测( eddy
 

current
 

nondestructive
 

testing,
 

ECNDT)系统的检测能力非常重要。 由于不确定性在涡流无损检测的 MAPoD 和 SA 问题中的传播,传统

基于实验方法和物理仿真模型对该问题的分析需要耗费大量的时间和人力成本,为了降低这些成本,提出基于粒子群算

法(particle
 

swarm
 

optimization,
 

PSO)的支持向量回归(support
 

vector
 

regression,
 

SVR)模型取代传统的实验方法以及物理仿真模

型,对涡流无损检测模型的响应进行预测,从而加速 MAPoD 和 SA 问题的分析。 此外,创新性地将网格搜索、随机搜索、模拟退

火算法和 PSO 等优化算法与 SVR 相结合,研究不同的优化算法对 SVR 的关键参数优化的精度和效率,验证 PSO 相较于其他优

化算法的性能优势。 最后,将 PSO-SVR 模型应用于 ECNDT 算例中,对表面裂缝长度的不确定性进行 MAPoD 和 SA 的分析。 结

果表明,所提算法在保证求解精度的同时,加速了涡流无损检测系统的 MAPoD 和 SA 问题的研究,并减少了计算开销。 在计算

量方面,对这两个问题的求解,平均分别仅需纯物理模型计算量的 3. 5%和 0. 06%。
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Abstract:

 

Model-assisted
 

probability
 

of
 

detection
 

(MAPoD)
 

and
 

sensitivity
 

analysis
 

are
 

important
 

to
 

quantify
 

the
 

detection
 

capabilities
 

of
 

eddy
 

current
 

nondestructive
 

testing
 

( ECNDT)
 

systems.
 

Due
 

to
 

the
 

propagation
 

of
 

uncertainties
 

in
 

the
 

MAPoD
 

and
 

SA
 

problems
 

of
 

eddy
 

current
 

NDT,
 

the
 

traditional
 

methods
 

which
 

are
 

based
 

on
 

experiment
 

and
 

physical
 

simulation
 

models
 

require
 

a
 

lot
 

of
 

time
 

and
 

labor
 

costs.
 

To
 

reduce
 

these
 

costs,
 

in
 

this
 

paper,
 

the
 

particle
 

swarm
 

optimization
 

(PSO)
 

algorithm
 

optimized
 

support
 

vector
 

regression
 

(SVR)
 

model
 

is
 

proposed
 

to
 

replace
 

the
 

traditional
 

experiments
 

and
 

physical
 

simulation
 

models
 

to
 

predict
 

the
 

response
 

of
 

eddy
 

current
 

NDT
 

models,
 

thereby
 

accelerating
 

the
 

analysis
 

of
 

MAPoD
 

and
 

SA
 

problems.
 

In
 

addition,
 

to
 

the
 

novelty,
 

this
 

paper
 

combines
 

the
 

hyperparameter
 

optimization
 

algorithms
 

such
 

as
 

grid
 

search,
 

random
 

search,
 

simulated
 

annealing
 

algorithm
 

and
 

PSO
 

with
 

SVR
 

to
 

test
 

the
 

accuracy
 

and
 

efficiency
 

of
 

them
 

for
 

the
 

optimization
 

of
 

key
 

parameters,
 

and
 

verify
 

the
 

advantages
 

of
 

PSO-SVR
 

over
 

other
 

optimization
 

algorithms
 

based
 

SVR.
 

Finally,
 

the
 

PSO-SVR
 

model
 

is
 

applied
 

to
 

the
 

ECNDT
 

problem,
 

and
 

the
 

uncertainties
 

in
 

length
 

of
 

the
 

surface
 

slot
 

is
 

studied
 

in
 

MAPoD
 

and
 

SA
 

analysis.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

method
 

not
 

only
 

ensures
 

the
 

accuracy,
 

but
 

also
 

accelerates
 

the
 

study
 

for
 

the
 

MAPoD
 

and
 

SA
 

analysis
 

of
 

eddy
 

current
 

NDT
 

systems.
 

It
 

also
 

reduces
 

the
 

computational
 

costs,
 

which
 

accounts
 

for
 

3. 5%
 

and
 

0. 06%
 

of
 

those
 

of
 

the
 

pure
 

physical
 

model
 

in
 

average.
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0　 引　 言

　 　 无损检测
 

(non-destructive
 

testing,
 

NDT)是一种在不

损害或不影响被检测对象使用性能的前提下,检查材料、
组件和结构内部缺陷的技术[1] 。 这项技术广泛应用于

工业领域,特别是对于那些对安全性和可靠性要求极

高的行业,如航空航天、核能、石油天然气、汽车制造

等。 通过无损检测可以发现肉眼不可见的裂纹、孔隙、
夹杂等缺陷,从而确保产品质量与安全[2] 。 涡流无损

检测
 

( eddy
 

current
 

nondestructive
 

testing,
 

ECNDT) 利用

电磁感应原理通过检测线圈对试样进行非直接接触分

析线圈的阻抗变化,可检测大多数导电材料中的裂纹

或缺陷[3-4] 。
检测概率

 

(probability
 

of
 

detection,
 

PoD) [5] 是用于量

化无损检测系统检测能力的指标,可以计算出某一个裂

缝尺寸的裂缝被系统检测出的概率。 PoD 计算最初是通

过实验开发和获得的。 灵敏度分析[6] 是量化不确定性参

数对模型响应产生影响的重要方法。 灵敏度分析可分为

两类:1)局部敏感性分析,研究输入空间值附近的不确定

性如何影响模型响应;2)全局敏感性分析,研究模型响应

的方差,更确切地说,关注输入的不确定性如何影响输出

方差。 基于 Sobol 指数的全局敏感性分析方法是无损检

测系统最常用的方法,也是本文所选用的方法。
ECNDT 系统的 PoD 和灵敏度分析的分析,传统上依

赖于实验,既耗时又费力。 为了降低人力物力成本开销,
利用各种基于物理的涡流无损检测仿真模型用以部分取

代实验。 这些物理模型的构建方法主要包括数值方法,
如有限元法[7] 和边界元法[8] 。 与实验相比,基于物理的

模型计算时间快,成本方面更实惠,同时能保持很高的精

度。 如今,用物理模型替代实验获取 ECNDT 系统的响应

变得越来越流行。 随着不确定性在 ECNDT 系统中的传

播,问题变得愈发复杂,需要在短时间内获得大量的物理

模型响应,这很难完成。
为了减轻计算负担,提升计算效率,引入了元建模技

术,通过构建快速近似(或插值)模型代替耗时的基于物

理的数值模型来解决给定的计算应用。 元建模方法包括

多项式混沌展开法[9] 、克里金法[10] 、共克里金法[11] 和径

向基函数等方法[12] 。 支持向量回归法 ( support
 

vector
 

regression,
 

SVR)主要基于结构风险最小化的原则,即在

高维空间中寻求最佳回归超平面,以确保尽可能多的数

据点落在该超平面周围的边际带内,从而达到预测连续

值的目的[13] 。 SVR 中关键参数的选择直接决定了构建

模型的精度和效率,超参的优化可以通过超参优化算法

来实现。 超参优化算法如网格搜索、随机搜索、模拟退火

算法和粒子群算法(particle
 

swarm
 

optimization,
 

PSO)等,

这些算法可以在短时间内对 SVR 中关键参数在保证模

型效率的同时实现快速选择[14-17] 。
本文提出了一种基于 SVR 的方法来预测 ECNDT 的

模型响应,并引入了 PSO 算法优化 SVR 模型的超参数的

选择。 在基于物理模型的 ECNDT 系统中,本文研究了

PSO 与其他超参数优化算与 SVR 结合的性能,加速求解

了涡流无损检测 MAPoD 和灵敏度分析问题,并通过算例

验证了所提方法的精度和效率。

1　 PSO-SVR 模型

　 　 基于 PSO-SVR 模型的 MAPoD 和 SA 研究流程如图

1 所示。 该过程从确定关键的不确定参数及其相应的概

率分布开始,对输入参数根据经验随机抽样。 然后,这些

输入的不确定参数通过物理模型传播,并利用所得采样

数据构建 SVR 模型,SVR 模型的超参数选取采用了 PSO
算法。 最后评估模型的准确性,如果精度不满足所需的

阈值,则需要具有额外采样点的新训练数据集。 如果模

型达到精度要求,那么模型用于 MAPoD 或灵敏度分析问

题的分析。

图 1　 基于
 

PSO-SVR
 

模型的检测概率和

灵敏度分析流程

Fig. 1　 Flowchart
 

of
 

probability
 

of
 

detection
 

and
 

sensitivity
analysis

 

based
 

on
 

the
 

PSO-SVR
 

model

SVR[13] 是一种基于统计学习理论的回归分析方法,
它在线性函数的两侧创建一个“边界带”,根据经验将边

界带的宽度设置为 ε 。 对于落在边距带内的所有样本,
不会计算损失。 对于边际带外的样本,函数的损失是根

据支持向量计算的。 最终,通过最小化总损耗和最大化

边界来得出优化模型。 对于非线性模型,使用核函数映

射到特征空间,然后进行回归。 本文使用的核函数是径

向基函数核[18] 。
K(x,x′) = exp( - γ‖x - x′‖2) (1)

式中: K(x,x′) 是两个样本 x 和 x′ 之间的相似度度量; γ
是一个正数,决定了核函数的宽度; ‖x - x′‖2 表示样本

x 和 x′ 之间欧氏距离。
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SVR
 

模型的数学表达式如式(2) ~ (5)所示。

min
ω,b,ξ i, ξ̂ i

0. 5wTw + C∑
m

i = 1
(ξ i +ξ̂ i) (2)

s. t.
 

f(x i) - y i ≤ ε + ξ i (3)

y i - f(x i) ≤ ε +ξ̂ i (4)

ξ i ≥ 0,ξ̂ i ≥ 0,i = 1,2,…,m (5)
式中: w 和 b 是模型确定的参数; x i 表示样本特征值; y i

表示样本标签值;C 是惩罚系数; ξ i 表示误差项; ε 表示

f(x i) 和 y i 之间的偏差。
PSO 算法的灵感来自鸟类觅食行为的规律性,并经

过多年的改进,具有快速收敛、最少参数的特点,并且与

其他算法相比,能够更快地收敛到高维优化问题的最佳

解决方案,使其成为当今应用最广泛的算法之一[19] 。
PSO 的核心思想在于信息共享,通过整个群之间的信息

共享,及时更新每个粒子的搜索方向,最终引导整个群找

到最佳解决方案。 算法中,粒子由速度和位置两个属性

定义,其表达式如式(6)所示。
v(d) = w·v(d-1) + C1·r1·(pbest(d) - x(d) ) +

C2·r2·(gbest(d) - x(d) ) (6)
式中: v(d) 表示粒子在第 d 次迭代时的速度。 整个速度

表达式分为 3 个部分。 第 1 部分表示上一步中粒子自身

速度的惯性,其中 w 是惯性系数。 w 值越大,表示粒子越

不可能改变其先前的运动方向,并且更倾向于探索未知

领域。 第 2 个组成部分是自我认知,其中 C1 代表个人学

习因素。 较高的 C1 值表示粒子倾向于向自己的最佳解

决方案移动,表示为
 

pbest,这是个体找到的最优解决方

案。 第 3 个组成部分是社会认知,其中 C2 是社会因素。
较高的值 C2 表示粒子倾向于向整个种群找到的最优解

移动,表示为
 

gbest,这是群体发现的最优解。 γ 1 和 γ 2 两

者都是随机数,范围是[0,
 

1]。
本文研究采用了惯性系数的自适应表达式:
w = wmax - (wmax - wmin)·t / epochs (7)
在这种情况下, wmax 和 wmin 分别表示惯性系数的最

大值和最小值,在本文设置为 0. 9 和 0. 4。 此外,t 表示当

前迭代次数,而 epochs 表示 PSO 算法的最大迭代次数,在
本文设置为 1

 

000。 通过 PSO 优化 SVR 算法中核函数的

宽度值和惩罚系数。

2　 灵敏度分析和模型辅助探测概率

　 　 灵敏度分析用于确定随机输入参数如何影响模型响

应,通过 Sobol 指数表征[20] 。 Sobol 指数是通过蒙特卡洛

抽样法或准蒙特卡洛法[21] 估算的,需要为蒙特卡洛生成

一系列随机分布的点,以及为准蒙特卡洛生成低差异

序列。

1)生成一个 N×2m 的样本矩阵,其中每一行都是 2m
维超空间中的一个样本点。 m 为不确定性参数的个数。

2)使用矩阵的前 m 列作为矩阵 A,其余 m 列作为矩

阵 B。 这有效地给出了多维单位超立方 N 个点中的两个

独立样本。
3)构建 m 个 N×m 矩阵 AB i,其中 i = 1,

 

2,
 

3,
 

…,
 

m,使得矩阵 AB i 的第 i 列元素等于 B 矩阵的第 i 列元

素,其余的列来自矩阵 A。
4)矩阵 A、B 和 m 个 AB i 矩阵指定了输入空间中的

N(m+2)个点(每行一个)。 在矩阵 A、B 和 AB 中的每个

设计点运行物理模型,计算出 N(m+2)个模型响应,对应

于 f(A)、f(B)和 f(AB)的值。
5)使用以下估计器计算灵敏度分析指数。 一阶和全

阶 Sobol 指数可以使用两种常用的蒙特卡洛估计法计算,
如式(8)和(9)所示。

VarXi{EX ~ i
[M(X) | X i)]} ≈

1 / N∑
N

j = 1
f(B) j[ f(AB i) j - f(A) j] (8)

EX ~ i
{VarXi[M(X) | X ~ i]} ≈

1 / (2N)∑
N

j = 1
[ f(A) j - f(AB i) j]

2 (9)

基于 â vs. a 回归的 MAPoD 分析描述了模型响应 â
和缺陷尺寸 a 之间的关系,在对数-对数尺度上的线性回

归描述了这种关系,表述为:

ln( â) = β0 + β1 ln(a) + γ (10)
式中: β0 和 β1 是线性回归参数; γ 服从正态分布,均值为

0,标准差为 σγ 的随机误差。 任意尺寸缺陷的 PoD 表

示为:

Φ ln(a) -
ln â th( ) - β0

β1

é

ë
êê

ù

û
úú

σγ

β1

é

ë
êê

ù

û
úú{ } (11)

式中: Φ 为标准正态分布的累积密度函数。 a50 和 a90 是

无损检测系统常用的 MAPoD 指标,分别为系统探测概率

为 50%和 90%时对应的缺陷尺寸。
使用归一化均方根误差( normalized

 

root
 

mean
 

square
 

error,
 

NRMSE)验证模型精度,公式如下:

NRMSE =
∑ Nt

i = 1
ŷ i - y i( ) 2 / N t

max( ŷ) - min(y)
(12)

式中: N t 为总测试点的个数; ŷ i 和 y i 分别为第 i个测试点

的模型预测值和实际响应值; max( ŷ) 和 min(y) 分别是

模型预测值中的最大值和实际响应值中的最大值。

3　 算例分析

　 　 对目标表面缺陷的涡流无损检测系统的不确定性传

播进行测试,如图 2 所示,在对 MAPoD 和灵敏度分析问
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题的分析中,将网格搜索、随机搜索、模拟退火算法和

PSO 等优化算法与 SVR 相结合,将测试结果与纯物理模

型进行比较,验证 PSO-SVR 模型的精度和效率。 测试中

的计算成本开销定义为训练点所需要的物理模型响应的

总数。

图 2　 有限横截面的线圈探测金属板中的表面缺陷

Fig. 2　 Detection
 

of
 

surface
 

defects
 

in
 

metal
 

plates
using

 

finite-cross-section
 

coils

探测线圈沿着金属板表面缺陷的长度方向进行扫

描。 对于 MAPoD 和灵敏度分析研究,算例 1 和算例 3 采

用线圈 A(工作频率为 900
 

Hz)悬空放置,算例 2 采用线

圈 B(工作频率为 7
 

000
 

Hz)悬空放置。 算例 1 和算例 2
沿着表面缺陷的 y 方向进行扫描。 算例 3 沿着 x 方向进

行扫描。 线圈 A 的内径和外径分别为 6. 15 和 12. 4
 

mm,
线圈厚度为 6. 15

 

mm,线圈匝数 3
 

790。 线圈 B 的内径和

外径分别为 9. 34 和 18. 4
 

mm,线圈厚度为 9
 

mm,线圈匝

数 408。 金属板的导电率为 3. 06 × 107
 

S / m, 厚度为

12. 22
 

mm。 裂缝深度为 5
 

mm,宽度为 0. 28
 

mm,长度范

围为 1 ~ 5
 

mm,间隔为 1
 

mm。 900
 

Hz 时的趋肤深度约为

3. 04
 

mm,而 7
 

000
 

Hz 时的趋肤深度为到 1. 09
 

mm。
在测试案例中,选择对涡流检测影响较大的参数,如

检测线圈的提升高度 l、x 轴和 y 轴位置作为不确定度参

数,并考虑了不同经验分布对输出响应分布的影响,在第

1 个算例中,提升高度 l、x 轴和 y 轴经验分布分别为

G
 

(2
 

mm,
 

0. 5
 

mm),G
 

( 9
 

mm,
 

0. 7
 

mm) 和 G
 

( 0
 

mm,
 

0. 5
 

mm),在第 2 个算例中,这 3 个不确定性参数的经验

分布为 U
 

(1. 83
 

mm,
 

2. 23
 

mm),G
 

(14
 

mm,
 

0. 5
 

mm)和
U

 

( -1. 5
 

mm,
 

1. 5
 

mm),在第 3 个算例中,这 3 个不确定

性参数的经验分布为 G
 

( 9
 

mm,0. 5
 

mm),
 

G
 

( 0
 

mm,
0. 5

 

mm),
 

G
 

(0. 88
 

mm,0. 2
 

mm)。
在训练过程中,应用网格搜索( grid

 

search,
 

GS)、随
机搜 索 ( random

 

search,
 

RS )、 模 拟 退 火 ( simulated
 

annealing,
 

SA)算法以及 PSO 来优化用于 MAPoD 和灵敏

度分析研究的 SVR 模型的准确性和效率。 使用 NRMSE
作为判断精度的标准,训练点的数量从 10 开始依次增

加,直到找到满足精度要求所需的最小训练点数,模型构

建完毕。

对算例 1 的 4 种超参数优化算法分别结合 SVR 模型

在裂缝长度为 1
 

mm 时的预测数据集精度收敛图如图 3
(a)所示,可以看出,基于 PSO 优化的 SVR 模型的训练点

个数达到 30 时,NRMSE 收敛到 1%以内,而当其他 3 种

优化算法优化的 SVR 模型训练点个数增加到 50 时,模
型精度依然无法收敛。 4 种超参数优化算法结合 SVR 模

型的优化时间、训练点仿真时间以及总时间对比如图 3
(b)所示,仿真时间对总时间起决定性影响,PSO 的优化

时间并非最短,但由于其所需训练点最少,总时间达到了

最低。 基于以上分析,在该算例的测试中,PSO-SVR 模

型在精度和时间上相较于 SA-SVR、RS-SVR、GS-SVR 模

型都表现出明显的计算效率的优势。

图 3　 算例 1 中不同超参优化算法优化 SVR 模型的

精度和计算时间对比

Fig. 3　 Comparison
 

of
 

the
 

accuracy
 

and
 

computation
time

 

of
 

different
 

hyperparametric
optimization

 

algorithms
 

in
 

case
 

1

不同裂缝长度下 1
 

000 个验证点的预测响应箱线图

如图 4(a)所示,箱线图可以观察到数据分布,包括不同
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缺陷长度下不确定性参数的模型响应的平均值(蓝色虚

线)、中位数(红色实线)、最大值和最小值。 5 个裂缝长

度下,PSO-SVR 模型的精度如图 4(b)所示,可以看出,当
训练点达到 30 时,5 个裂缝长度的模型精度均满足

NRMSE<1%的要求。

图 4　 算例 1 中 PSO-SVR 模型的精度和预测效果

Fig. 4　 The
 

accuracy
 

and
 

prediction
 

effect
 

of
 

the
PSO-SVR

 

model
 

in
 

Case
 

1

算例 1 的对数线性回归曲线和 PoD 曲线如图 5 ( a) 和

(b)所示,PoD 曲线表示了 a50 和 a90 的值,分别为 2. 18 和

2. 55
 

mm,这表明,在算例 1 中,有 50%的概率被检测到

的裂缝长度为 2. 18
 

mm,有 90%概率检测到的裂缝长度

为 2. 55
 

mm。 算例 1 中纯物理模型与 4 种算法的 PoD 关

键指标对比如表 1 所示,PSO-SVR 的 PoD 指标与纯物理

模型更为接近,并计算了纯物理模型与 PSO-SVR 模型计

算出的 PoD 关键指标之间的相对误差,均达到了精度

要求。

图 5　 算例 1 的模型辅助探测概率分析

Fig. 5　 Model-assisted
 

probabilistic
 

analysis
 

of
 

case
 

1

表 1　 算例 1 的模型辅助探测概率关键指标对比

Table
 

1　 Comparison
 

of
 

key
 

indicators
 

of
 

model-assisted
detection

 

probability
 

in
 

case
 

1
物理

模型

GS-
SVR

RS-
SVR

SA-
SVR

PSO-
SVR

相对误

差 / %
μ 0. 781

 

6 0. 783
 

7 0. 783
 

7 0. 775
 

5 0. 780
 

5 0. 15
σ 0. 121

 

8 0. 119
 

1 0. 119
 

1 0. 119
 

3 0. 120
 

2 1. 32
a50 2. 185

 

0 2. 165
 

3 2. 165
 

3 2. 171
 

8 2. 182
 

5 0. 12
a90 2. 554

 

1 2. 565
 

9 2. 565
 

9 2. 537
 

3 2. 545
 

9 0. 32

　 　 图 6(a)和(b)所示分别为 3 个不确定参数的一阶和

全阶 Sobol 指数。 从图 6 可以看出,lift-off 对模型响应的

影响最大,线圈的 x 和 y 位置对模型响应的影响很小。
全阶响应指数与一阶响应指数相差不大,表明参数组合

对模型响应影响不大。 PSO-SVR 模型的预测结果与物

理模型计算的结果一致。 对于每个缺陷长度,PSO-SVR
模型仅使用 30 个 LHS 训练点即可准确预测 65

 

000 个预



· 24　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

测点的响应,在保持精度的同时节省了 SA 问题分析的计

算成本。

图 6　 算例 1 的灵敏度分析

Fig. 6　 Sensitivity
 

analysis
 

of
 

case
 

1

算例 2 的 4 种超参数优化算法分别结合 SVR 模型在

裂缝长度为 1
 

mm 时的预测数据集精度收敛图如图 7(a)
所示。 由图 7( a)可知,基于 PSO 优化的 SVR 模型的训

练点个数达到 40 时,精度收敛到 1%以内,而其他 3 种优

化算法训练点个数增加到 50 时,模型精度依然无法收

敛。 4 种超参数优化算法结合 SVR 模型的优化时间、训
练点仿真时间以及总时间对比如图 7( b)所示。 仿真时

间对总时间起决定影响,PSO 的优化时间并非最短,但由

于其所需训练点最少,总时间达到了最低。 基于以上分

析,PSO-SVR 模型又一次在精度和时间上,相较于 SA-
SVR、RS-SVR、GS-SVR 模型,表现出明显的优势。

图 8(a)为不同裂缝长度下 1
 

000 个验证点的预测响

应的箱线图,从箱线图可以观察到数据分布,包括不同缺

陷长度下不确定性参数响应的平均值、中位数、最大值和

最小值。 图 8(b)为 5 个裂缝长度下,PSO-SVR 模型的精

度,可以看出,当训练点达到 40 时,5 个裂缝长度的模型

精度均满足要求。

图 7　 算例 2 中不同超参优化算法优化 SVR 模型的

精度和计算时间对比

Fig. 7　 Comparison
 

of
 

the
 

accuracy
 

and
 

computation
 

time
 

of
different

 

hyperparametric
 

optimization
 

algorithms
 

in
 

case
 

2

图 9(a)和(b)分别是算例 2 的对数线性回归曲线和

PoD 曲线, PoD 曲线表示了 a50 和 a90 的值, 分别为

1. 70
 

mm 和 1. 76
 

mm,这说明在算例 2 中,有 50%的概率

被检测到的裂缝长度为 1. 70
 

mm,有 90%概率检测到的

裂缝长度为 1. 76
 

mm。 表 2 对比了算例 2 中纯物理模型

与 4 种算法的 PoD 关键指标,PSO-SVR 的 PoD 指标与纯

物理模型更为接近,并计算了纯物理模型与 PSO-SVR 模

型计算出的 PoD 关键指标之间的相对误差,均达到了精

度要求。
3 个不确定参数的一阶和全阶 Sobol 指数如图

10(a)、(b)所示。 可以看出,lift-off 对模型响应的影响最

大,线圈的 x 和 y 位置对模型响应的影响很小。 全阶指

数大于一阶指数,表明每个参数与其他两个参数的组合

都会影响模型响应。 从图中可以发现,PSO-SVR 模型预

测的 Sobol 指数与物理模型计算的 Sobol 指数一致。 对
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图 8　 算例 2 中 PSO-SVR 模型的精度和预测效果

Fig. 8　 The
 

accuracy
 

and
 

prediction
 

effect
 

of
the

 

PSO-SVR
 

model
 

in
 

Case
 

2

于每个缺陷长度,PSO-SVR 模型仅使用 40 个 LHS 训练

点就准确预测了 55
 

000 个 MCS 点对 SA 的响应,在保持

精度的同时,又一次节省了 SA 问题分析的计算成本。
表 2　 算例 2 的模型辅助探测概率关键指标对比

Table
 

2　 Comparison
 

of
 

key
 

indicators
 

of
 

model-
assisted

 

detection
 

probability
 

in
 

case
 

2
物理

模型

GS-
SVR

RS-
SVR

SA-
SVR

PSO-
SVR

相对误

差 / %
μ 0. 533

 

9 0. 533
 

8 0. 533
 

8 0. 533
 

9 0. 533
 

7 0. 04
σ 0. 026

 

5 0. 024
 

6 0. 024
 

6 0. 025
 

0 0. 026
 

2 1. 15
a50 1. 705

 

6 1. 705
 

4 1. 705
 

4 1. 705
 

7 1. 705
 

2 0. 02
a90 1. 764

 

5 1. 760
 

2 1. 760
 

2 1. 761
 

2 1. 763
 

4 0. 06

　 　 算例 3 的 4 种超参数优化算法分别结合 SVR 模型在

裂缝宽度为 0. 3
 

mm 时的预测数据集精度收敛图如图

11(a)所示,由图 11(a)可知,基于 PSO 优化的 SVR 模型

图 9　 算例 2 的模型辅助探测概率分析

Fig. 9　 Model-assisted
 

probabilistic
 

analysis
 

of
 

case
 

2

的训练点个数达到 40 时,精度收敛到 1%以内,而其他 3
种优化算法训练点个数增加到 50 时,模型精度依然无法

收敛。 图 11(b)所示为 4 种超参数优化算法结合 SVR 模

型的优化时间、训练点仿真时间以及总时间对比。 仿真

时间对总时间起决定影响,PSO 的优化时间并非最短,但
由于其所需训练点最少,总时间达到了最低。 基于以上

分析,PSO-SVR 模型又一次在精度和时间上,相较于 SA-
SVR、RS-SVR、GS-SVR 模型,表现出明显的优势。

不同裂缝宽度下 1
 

000 个验证点的预测响应的箱线

图如图 12(a)所示,从箱线图可以观察到数据分布,包括

不同缺陷长度下不确定性参数响应的平均值、中位数、最
大值和最小值。 图 8( b) 所示为 5 个裂缝宽度下,PSO-
SVR 模型的精度,从图中可以看出,当训练点达到 40 时,
5 个裂缝宽度的模型精度均满足要求。

图 13(a)和(b)所示分别是算例 3 的对数线性回归

曲线和 PoD 曲线,PoD 曲线表示了 a50 和 a90 的值,分别为

0. 15 和 1. 12 mm,这说明在算例 2 中,有 50%的概率被检
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图 10　 算例 2 的灵敏度分析

Fig. 10　 Sensitivity
 

analysis
 

of
 

case
 

2

测到的裂缝宽度为 0. 15
 

mm,有 90%概率被检查到的裂

缝宽度为 1. 12
 

mm。 算例 3 中纯物理模型与 4 种算法的

PoD 关键指标对比如表 3 所示,PSO-SVR 的 PoD 指标与

纯物理模型更为接近,并计算了纯物理模型与 PSO-SVR
模型计算出的 PoD 关键指标之间的相对误差,均达到了

精度要求。
表 3　 算例 3 的模型辅助探测概率关键指标对比

Table
 

3　 Comparison
 

of
 

key
 

indicators
 

of
 

model-assisted
detection

 

probability
 

in
 

case
 

3

物理模型
GS-
SVR

RS-
SVR

SA-
SVR

PSO
-SVR

相对误

差 / %
μ -1. 854

 

4 -1. 843
 

0 -1. 843
 

0 -1. 836
 

0 -1. 856
 

3 0. 10
σ 1. 562

 

0 1. 353
 

3 1. 353
 

3 1. 319
 

5 1. 539
 

3 1. 47
a50 0. 156

 

5 0. 158
 

3 0. 158
 

3 0. 159
 

4 0. 156
 

2 0. 18
a90 1. 158

 

7 0. 897
 

0 0. 897
 

0 0. 864
 

9 1. 123
 

5 3. 14

　 　 3 个不确定参数的一阶和全阶 Sobol 指数如图

14(a)、(b)所示。 可以看出,Lift-off 对模型响应的影响

最大,线圈的 x 和 y 位置对模型响应的影响很小。 全阶

指数大于一阶指数,表明每个参数与其他两个参数的组

合都会影响模型响应。 可以发现,PSO-SVR 模型预测的

图 11　 算例 3 中不同超参优化算法优化 SVR 模型的

精度和计算时间对比

Fig. 11　 Comparison
 

of
 

the
 

accuracy
 

and
 

computation
 

time
 

of
different

 

hyperparametric
 

optimization
 

algorithms
 

in
 

case
 

3

Sobol 指数与物理模型计算的 Sobol 指数一致。 对于每个

缺陷长度,PSO-SVR 模型仅使用 40 个 LHS 训练点就准

确预测了 45
 

000 个 MCS 点对 SA 的响应,在保持精度的

同时,又一次节省了 SA 问题分析的计算成本。
为了评估本文提出的 PSO-SVR 模型在实际涡流无

损检测应用中的有效性,基于一组实验数据对表面矩形

槽进行了 PoD 测试。 实验设置如图 15 所示。 该实验的

工作频率为 50
 

kHz,线圈内外径分别为 1. 5 和 3 mm,线
圈匝数为 125,提升距离为 1. 39 mm。 测试样本由 304 不

锈钢制成,其上表面有 3 个深度(1、3、5
 

mm)不同的矩形

槽(图 16),矩形槽的长度为 15
 

mm,宽度为 0. 3
 

mm。 空

心扁平线圈的采样位置由台式控制器精确控制。 使用

LCR 数字电桥直接测量线圈阻抗,并将其与无缺陷时的

线圈阻抗进行比较,从而表征线圈阻抗的变化。 基于测

得的阻抗变化进行 PoD 计算。
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图 12　 算例 3 中 PSO-SVR 模型的精度和预测效果

Fig. 12　 Accuracy
 

and
 

prediction
 

of
 

the
PSO-SVR

 

model
 

in
 

case
 

3

图 13　 算例 3 的模型辅助探测概率分析

Fig. 13　 Model-assisted
 

probabilistic
 

analysis
 

of
 

case
 

3

图 14　 算例 3 的灵敏度分析

Fig. 14　 Sensitivity
 

analysis
 

of
 

Case
 

3

算例采用 PSO-SVR 算法对该算例的 PoD 进行计算,采用

了 31 个训练点预测 1
 

000MCS 的响应值。 预测响应计算

获得的 PoD 曲线如图 17 所示,PoD 曲线表示了 a50 和 a90
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的值,分别为 0. 58 和 8,2
 

mm,这说明在算例 2 中,有

50%的概率被检测到的裂缝深度为 0. 58
 

mm,有 90%概

率被检测到的裂缝深度为 8. 2
 

mm。

图 15　 ECNDT 检测系统实验平台

Fig. 15　 Experiment
 

platform
 

of
 

ECNDT
 

system

图 16　 带有 3 个表面槽的测试板

Fig. 16　 Test
 

specimen
 

with
 

three
 

surface
 

slots

图 17　 PoD 曲线

Fig. 17　 PoD
 

curves

4　 结　 论

　 　 本文基于 SVR 模型对 ECNDT 的 MAPoD 和灵敏度

分析问题进行研究。 将网格搜索算法、随机搜索算法、模

拟退火算法与粒子群算法分别与 SVR 相结合构建代理

模型,预测 MAPoD 和灵敏度分析问题所需的模型响应。
通过 ECNDT 算例验证了 PSO-SVR 相较于其他超参优化

算法优化的 SVR 模型在精度和成本上的优势。 结果表

明,本文所提算法在保证求解精度的同时,加速了涡流无

损检测系统的 MAPoD 和灵敏度分析问题的研究,平均分

别占纯物理模型计算量的 3. 5%和 0. 06%。
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