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Model-assisted probability of detection and sensitivity analysis of eddy
current nondestructive testing system based on PSO-SVR
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Abstract: Model-assisted probability of detection (MAPoD) and sensitivity analysis are important to quantify the detection capabilities
of eddy current nondestructive testing (ECNDT) systems. Due to the propagation of uncertainties in the MAPoD and SA problems of
eddy current NDT, the traditional methods which are based on experiment and physical simulation models require a lot of time and labor
costs. To reduce these costs, in this paper, the particle swarm optimization ( PSO) algorithm optimized support vector regression (SVR)
model is proposed to replace the traditional experiments and physical simulation models to predict the response of eddy current NDT
models, thereby accelerating the analysis of MAPoD and SA problems. In addition, to the novelty, this paper combines the
hyperparameter optimization algorithms such as grid search, random search, simulated annealing algorithm and PSO with SVR to test the
accuracy and efficiency of them for the optimization of key parameters, and verify the advantages of PSO-SVR over other optimization
algorithms based SVR. Finally, the PSO-SVR model is applied to the ECNDT problem, and the uncertainties in length of the surface slot
is studied in MAPoD and SA analysis. The results show that the proposed method not only ensures the accuracy, but also accelerates the
study for the MAPoD and SA analysis of eddy current NDT systems. It also reduces the computational costs, which accounts for 3. 5%
and 0. 06% of those of the pure physical model in average.
Keywords : model-assisted probability of detection ( MAPoD) ; sensitivity analysis; eddy current nondestructive testing ( ECNDT) ;

particle swarm optimization (PSO) ; support vector regression (SVR)

Wk H . 2024-11-14 Received Date: 2024-11-14
* BATH  HHK ARFAE AT I H (62071245) % H)



- 20 - LSRR R e o

539 &

0 35l

il

TEFREM ( non-destructive testing, NDT) f&=—FhZEAR
5T AN R R A I AR PR RE R 52, A AR
L AN ) P BB P e AR SR IR R )z v
T R AR ) 2 X6 T X £ A R AT R SR
AT, T =S R A% BE A il R AR R R i
A TCHUR DN AT DL & IR IR N T UL A 28 FLBR
e I B , MTT B A 7 A T S e e IR G i
Kl (eddy current nondestructive testing, ECNDT) F| Ff
P02 % 7 i SR A D0 2 P X i AT A 4 i 4y
B2 Bl 1y BEL 40 42 A, ] Az T K 22 45 S v bR v i) L 2
skpE

K3 ( probability of detection, PoD) " & T4
A TCH RN ZR G A M B8 T i FE bR, AT DATHSR S A — A 2
B ROT B 2485 0 RGUR AU HEAR . PoD TR W) Sl
ST R ARG . REUE T R R AR E S
B AL W 137 7 A S e ) v RS SR RT ol
PIZS ¢ 1) Jry R AURRME 23 A7, IF 5 i A\ 25 T BT B AN S
P R 5 M AT I 17 5 2 ) 4 Ry BB S BT, BRI e i
B 7 2%, ST MR, DT A AN i 1 A0 e 52 il i
J5 2%, T Sobol 8EUAY 42 Ry BUBME 434 5 1 02 To i A
W ZR Gt dec i TR 5 125 AR SO e I 7k

ECNDT R PoD MR UL Hr it 734, F£ 58 14K
TSR BERERS B T) . S TR A W) 1 AT 4
R P25 ol 6 T L) 108 D TSP RS 477 A A P LA 4 B
FREEE ok ey AT 1) 4y A T vk 32 A 4 R (B T vk
A e R R L SR H, ST
REAU TR [R] P )i Ty T 5 S 2 [) P A PR AR v P
JE A Y BEECEE A S B6 HM ECNDT 2848 4 Wi 1
G RR AT . B A0 E PETE ECNDT RS 1y f%
| ()BT A A S 2 | 5 BEAE LI [R] PN 3R A5 K 8 iy 2R
AL 157, 3K ARMESE B

J A A BRI T n
R 38 R R T D ( A ) B AR AR 1 2 T
PRI EE AR AR A 45 5 I THE N . TR ik A g
ZWRMRIFEY FER &Y s B ek A
I 35 pR A5 7 B SR ) 1 9% (support vector
regression, SVR) F=TEFE T 45 44 AU B /b A9 T ), B #E
e 4 25 ] v SR R A [ 05 - T, DABA PR AT RE 22 1 2K
it R T TR 2R TR LA 32 By A DT 3K 38 ) 3 23
fER B SVR H SC5E S 800 e 8 H 4 e T R
FRAL RS BE AR, 8 2 i A Ak T LI 2o 8 2 00 A 5 s
RIM, HMSIAAEE MM R PSR LR K
Bk FHESE L (particle swarm optimization, PSO) 4§,

XU R LA B[] P 6 SVR Hf 6 2 7 L UE A
TR RSBl e e g

ASCHR T —Fh LT SVR )7 2K Fi I ECNDT 11
RERIE N, 5 I AT PSO Bikfifb SVR B8 [ S50
PEE, TERE T PRI ECNDT R G0, AR SCHFSE T
PSO 5 HAB MBI ALE S SVR 454 19t sk K i
T TCHURE I MAPoD 1R AR 43 ] 51, -3 3k 55 451
SR T T HE 5 RS B ANAIOR

1 PSO-SVR #8Y

HT PSO-SVR HE I i MAPoD i SA BF5% i A% 4 14
1T o 2 7 A A2 S S 1) AN A0 S 5 00 8 EL A I 1 R
RO AR W ASEARIE L LIRS . SR )5, X L
i A BN E S 800 o ) BB R AL G IR A9 R R
Bt SVR B SVR A 1) S HGEBCR T T PSO
S B PEAGASE Y B WA P G0 SRR AN L TR Y
WA, D) 225 B AP SR ST T U 2R 4 . T SR A
RUIKBIHE BE 20K I AR T MAPoD B R 3 437 7]

53T

((mmpn }—{ mma | E%E

PSO SVR

| i |
Bl 1 T PSO-SVR ARG I HE S Al
RAGPE B
Fig. 1 Flowchart of probability of detection and sensitivity
analysis based on the PSO-SVR model
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Table 1 Comparison of key indicators of model-assisted

detection probability in case 1

LY/BL GS- RS- SA- PSO-  HxfiR

Y SVR SVR SVR SVR  #/%
w 0.7816 0.7837 0.7837 0.7755 0.7805 0.15
o 0.1218 0.1191 0.1191 0.1193 0.1202 1.32
as, 2.1850 2.1653 2.1653 21718 2.1825 0.12
agy 2.5541 2.5659 2.5659  2.5373 2.5459 0.32
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Fig.7 Comparison of the accuracy and computation time of

different hyperparametric optimization algorithms in case 2
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Table 2 Comparison of key indicators of model-

assisted detection probability in case 2

L7BE GS- RS- SA- PSO-  FHXTIR

A SVR SVR SVR SVR /%
w  0.5339 0.5338 0.5338 0.5339 0.5337 0.04
o 0.0265 0.0246 0.0246 0.0250 0.0262 1.15
a5y  1.7056 1.7054 1.7054 1.7057 1.7052 0.02
agy  1.7645 1.7602 1.7602 1.7612 1.7634  0.06
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