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Multi-scale deformable graph convolutional networks for
two person interactive action recognition
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Abstract: Two-person interaction action recognition based on skeleton sequence data has broad application prospects. To address the
issues of insufficient interaction feature representation and redundant intra-class features in current recognition models, we propose a
multi-scale deformable graph convolutional network (MD-GCN) for recognizing two-person interaction actions. First, we construct a two-
person interaction hypergraph, including a person pair hypergraph and an interaction relationship matrix. Unlike traditional graphs, this
hypergraph better captures the interaction between the two people, enabling a more comprehensive representation of the interaction
features. Next, three input branches perform data preprocessing and feature extraction, and then the extracted features are fused and fed
into the main branch, which is based on the multi-scale deformable graph convolutional network for action classification. This network
learns deformable sampling positions in a multi-modal manner, effectively capturing key interaction features while avoiding feature
redundancy and information loss. The proposed MD-GCN achieves a recognition accuracy of up to 98.41% on the 26 interaction action
classes from the NTU RGB+D 60 and NTU RGB+D 120 datasets. This approach effectively addresses the challenges of feature
representation in two-person interaction action recognition. Experimental results show that the method not only maintains high recognition
accuracy but also significantly reduces the computational cost, achieving a good balance between inference performance and accuracy,
making it highly valuable for practical applications.
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Fig. 1 The overall framework of the network
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Fig.5 The demonstration of input data
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Table 5 Comparison of ablation results
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ST-GAT!®! (A—HI) 14. 60 2.40 +0.17
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Table 6 Comparison of experimental

results about the modules

% Params/

LAY HER2/ %
GFLOPs  (x10%)
ST-GCN!! (TC—MDTC) 16. 32 3.10 +1.91
CTR-GCN'?) (TC—MDTC) 4.68 2.01 +1.01
Efficient-GCN' 2! (TC—MDTC) )  8.45 1.10 +0.26
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Table 7 Comparison of ablation results

. Y8/ Params/  NTU 60 NTU 120

GFLOPs (x10°) WEFIR/ % WEWR/ %
ST-GCNM! (1 ) 16.32  3.10 93.70 80. 07
2S-AGCNU® (2 3%)  37.32 6.94 96. 36 89. 11
Efficient-GCN' 2/ (3 %)  8.45 1.10 97. 46 89. 90
2P-GCNI (4 3%) 3.76  1.67 98.73 92.31
CTR-GCN'®I(4 %)  7.16  5.68 97. 60 91. 80
ST-GAT'®)(4 )  14.60  2.40 98. 00 91.53
De-GCN'2 (4 3%) — 5.56 97. 41 91. 89

AR (3 HE) 4.14 1.28 98. 41 91. 85
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