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基于 YOLO-RMFP 的光伏板缺陷检测方法研究∗

李　 莹　 孙钰鑫　 张　 强　 王淦源

(辽宁工程技术大学电气与控制工程学院　 葫芦岛　 125105)

摘　 要:针对光伏板内部缺陷目标小且尺寸差异大的问题,提出了一种基于 YOLOv8n 的改进模型 YOLO-RMFP。 首先,将高效

多尺度注意力机制与感受野注意力相结合,提出了一种感受野混合注意力机制,使模型聚焦不同尺度的特征,并解决高效多尺

度注意力机制参数共享问题,提升光伏板微小缺陷检测精度。 其次,将感受野混合注意力机制与空间金字塔池化模块结合,增
强模型对多尺度特征的捕捉能力及对复杂特征区域的关注度,使模型在复杂背景下能够有效剔除噪声并增强鲁棒性,进一步增

强光伏板缺陷小目标的检测精度。 然后,将 YOLOv8n 主干网络中不同分辨率的特征映射与改进后的多尺度特征融合金字塔网

络相结合,进一步增强了特征信息的交互性,以实现更全面的特征提取并增强目标检测的检测性能。 最后,在 PIoU 的基础上,
通过改变缺陷样本难易的权重,提升目标定位的精确度,有效缓解了光伏板缺陷样本不平衡问题。 通过消融实验和对比实验的

结果表明,YOLO-RMFP 网络模型的检测精度 mAP@ 0. 5 和
 

mAP@ 0. 5:0. 95 值分别提高
 

3. 1%和
 

6. 5%,精准度和召回率分别

提升了 4. 2%和 3. 5%。 满足了光伏板缺陷检测的评估要求。
关键词:

 

光伏板缺陷;目标检测;YOLOv8n;感受野混合注意力机制;多尺度特征融合金字塔网络

中图分类号:
 

TM914. 4;TN919. 5　 　 　 文献标识码:
 

A　 　 国家标准学科分类代码:
 

520. 20

Research
 

on
 

photovoltaic
 

panel
 

defect
 

detection
 

method
 

based
 

on
 

YOLO-RMFP

Li
 

Ying　
 

SunYuxin　
 

Zhang
 

Qiang　 Wang
 

Ganyuan
(Faculty

 

of
 

Electrical
 

and
 

Control
 

Engineering,
 

Liaoning
 

Technical
 

University,
 

Huludao
 

125105,
 

China)

Abstract:
 

To
 

address
 

the
 

challenge
 

of
 

small
 

and
 

highly
 

variable
 

defect
 

sizes
 

in
 

photovoltaic
 

panels,
 

an
 

improved
 

YOLOv8n-based
 

model
 

named
 

YOLO-RMFP
 

is
 

proposed.
 

First,
 

by
 

integrating
 

an
 

efficient
 

multi-scale
 

attention
 

mechanism
 

with
 

receptive
 

field
 

attention,
 

a
 

Receptive
 

Field
 

Mixed
 

Attention
 

mechanism
 

is
 

introduced.
 

This
 

mechanism
 

enables
 

the
 

model
 

to
 

focus
 

on
 

features
 

at
 

multiple
 

scales
 

while
 

addressing
 

the
 

parameter-sharing
 

limitations
 

of
 

conventional
 

multi-scale
 

attention,
 

thereby
 

enhancing
 

the
 

detection
 

accuracy
 

for
 

tiny
 

defects
 

in
 

photovoltaic
 

panels.
 

Second,
 

the
 

Receptive
 

Field
 

Mixed
 

Attention
 

mechanism
 

is
 

integrated
 

with
 

the
 

Spatial
 

Pyramid
 

Pooling
 

module
 

to
 

enhance
 

the
 

model’ s
 

capability
 

to
 

capture
 

multi-scale
 

features
 

and
 

focus
 

on
 

complex
 

regions.
 

This
 

integration
 

improves
 

the
 

model’s
 

ability
 

to
 

suppress
 

noise
 

in
 

complex
 

backgrounds,
 

thereby
 

further
 

boosting
 

the
 

detection
 

precision
 

of
 

small
 

defects
 

in
 

photovoltaic
 

panels.
 

Then,
 

feature
 

maps
 

of
 

different
 

resolutions
 

from
 

the
 

YOLOv8n
 

backbone
 

are
 

fused
 

with
 

an
 

improved
 

multi-scale
 

feature
 

fusion
 

pyramid
 

network.
 

This
 

enhances
 

the
 

interaction
 

of
 

feature
 

information,
 

enabling
 

more
 

comprehensive
 

feature
 

extraction
 

and
 

improving
 

overall
 

detection
 

performance.
 

Finally,
 

based
 

on
 

the
 

PIOU
 

loss
 

function,
 

the
 

model
 

adjusts
 

the
 

weightings
 

of
 

defect
 

samples
 

according
 

to
 

their
 

detection
 

difficulty.
 

This
 

improves
 

the
 

localization
 

accuracy
 

and
 

effectively
 

mitigates
 

the
 

problem
 

of
 

sample
 

imbalance
 

in
 

photovoltaic
 

defect
 

detection.
 

Results
 

from
 

ablation
 

and
 

comparative
 

experiments
 

show
 

that
 

the
 

YOLO-RMFP
 

model
 

improves
 

detection
 

accuracy,
 

with
 

mAP@ 0. 5
 

and
 

mAP@ 0. 5:0. 95
 

increasing
 

by
 

3. 1%
 

and
 

6. 5%,
 

respectively.
 

Precision
 

and
 

recall
 

are
 

also
 

enhanced
 

by
 

4. 2%
 

and
 

3. 5%,
 

respectively.
 

These
 

results
 

demonstrate
 

that
 

the
 

proposed
 

model
 

meets
 

the
 

performance
 

requirements
 

for
 

photovoltaic
 

panel
 

defect
 

detection.
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0　 引　 言

　 　 随着全球对清洁能源重视程度的不断提升,各国纷

纷加大太阳能、风能等可再生能源的开发和利用力度。
其中,光伏发电作为关键性技术,近年来迎来了飞速发展

的态势。 截至 2023 年,光伏发电成为中国仅次于火电的

第二大电力来源[1] 。 随着光伏发电的广泛应用,光伏板

会因制造时的工艺瑕疵、材料质量,以及在长期运行中遭

受的环境影响和老化作用[2] 等问题,出现裂纹、黑斑和断

栅等缺陷。 这些缺陷不仅降低了光伏系统的发电效率和

使用寿命,还可能引发设备故障。 因此,实现对光伏板缺

陷的高精度检测对确保光伏系统的稳定运行并延长设备

寿命至关重要。
目前,光伏板缺陷检测方法主要分为两类:传统检测

方法和结合深度学习的现代检测方法。 传统方法包括人

工检测和无损检测。 其中,人工检测主要依赖视觉判断,
该方法容易受到主观因素的影响,导致误差,并且耗时费

力、效率低下,容易出现漏检和误检,从而影响光伏板的

发电质量[3] 。 而无损检测则通过电磁、声学、光学和热成

像等技术,实现快速准确的缺陷检测[4] ,其中电致发光检

测是最常用的技术。 该方法利用半导体材料在通电时释

放能量的特性,使产生的红外光能够被红外摄像机捕捉,
进而用于缺陷识别[5] 。 然而,随着光伏产业的快速发展,
传统方法在处理海量数据时面临效率和准确性的挑战。

随着深度学习与计算机视觉技术的不断革新,基于

计算机视觉技术和深度学习的现代目标检测算法展现出

了高精度、高速度、强鲁棒性和低误检率等优点,克服了

传统方法的不足。 在现代目标检测方法中,深度学习目

标检测算法主要分为一阶段算法和二阶段算法两类。 其

中,二阶段算法主要以 Faster
 

R-CNN[6] 和 Mask
 

R-CNN[7]

模型为代表。 二阶段算法首先生成候选区域,然后对这

些区域进行精细处理,最终获取缺陷检测信息。 由于采

用分步处理的方法,二阶段算法通常具有较高的检测精

度,但速度相对较慢。 Li 等[8] 开发了一种增强的 Faster
 

R-CNN 模 型, 该 模 型 利 用 双 向 特 征 融 合 模

块(bidirectional
 

feature
 

pyramid
 

network,BiFPN),巧妙融

合了高级特征的丰富语义与低级特征的精确位置信息,
成功提取了光伏板上的多尺度缺陷特征,从而有效应对

了缺陷区域尺寸差异大的挑战。
一阶段算法最具有代表性的是 YOLO 模型[9] 。

YOLO 模型能够直接将输入图像中的目标对象映射到其

对应的边界框,并同时预测出这些目标的类别概率,因此

YOLO 模型相比二阶段检测算法具有较高的检测速度,
但是稳定性较差。 因此 Mazen 等[10] 在 YOLOv5 基础上

引入全局注意力模块(global
 

attention
 

module,GAM)和自

适应 特 征 空 间 融 合 ( adaptively
 

spatial
 

feature
 

fusion,
ASFF)以优化特征融合,并在 DIoU 中采用距离交叉聚

合,生成更精确的边界框,使平均精度均值( mAP) 达到

76. 3%。 Yin 等[11] 用渐近特征金字塔网络 ( asymptotic
 

feature
 

pyramid
 

network,AFPN) 替代 YOLOv7 骨干网络,
支持非相邻层直接交互,避免大语义差距。 同时,他们针

对密集目标遮挡问题引入排斥损失函数以减少误检,并
提出配备高效多尺度注意力机制 ( efficient

 

multi-scale
 

attention,EMA)的定制卷积块,显著增强模型感知与表达

能力,从而提升了光伏板缺陷检测效果。 Meng 等[12] 提

出了 YOLO-PV 目 标 检 测 算 法, 通 过 削 弱 YOLO 中

Backbone 提取深层信息的能力,专注于低级缺陷信息,并
在 Neck 部 分 使 用 路 径 聚 合 网 络 ( path

 

aggregation
 

network,PAN)进行特征融合,显著提高了光伏板缺陷检

测的检测精度和速度。
本文研究了光伏板电致光缺陷检测中存在的目标过

小、尺寸差异大以及背景复杂等问题。 以 YOLOv8n[13] 网

络模型作为基础,通过融合 EMA[14] 机制与感受野注意力

机制(receptive-field
 

attention,RFA) [15] ,设计了感受野混

合注意力机制( receptive-field
 

mixed
 

attention,RFMA),并
将其 融 入 金 字 塔 池 化 ( spatial

 

pyramid
 

pooling-fast,
SPPF) [16] 中。 该模块通过动态调整区域权重和扩展感

受野,增强模型对细小且难以区分的光伏板缺陷的敏感

性的同时,有效缓解复杂背景干扰,确保了光伏板缺陷检

测的准确识别。 此外,为提高光伏板缺陷检测中的浅层

和深层特征融合能力,减少细小缺陷在不同尺度上的信

息丢失问题,改进了多分支辅助特征金字塔网络( multi-
branch

 

auxiliary
 

feature
 

pyramid
 

network,MBA-FPN) [17] 并

设计了多尺度特征融合金字塔网络( multi-scale
 

feature
 

fusion
 

pyramid
 

network,MSF-FPN)。 最后,为进一步提升

光伏板检测精度和鲁棒性,减少光伏板缺陷检测中的定

位误差,解决光伏板缺陷中难易样本不平衡的问题,结合

PIoU[18] 与 Focaler-IoU[19] ,设计了 Focaler-PIoU,从而实现

了高精度的光伏板电致光缺陷检测任务。

1　 YOLO-RMFP 网络架构设计

　 　 改进后的
 

YOLO-RMFP
 

网络模型结构如图
 

1 所示。
首先,将

 

YOLOv8n
 

中的
 

SPPF 模块替换为引入
 

RFMA
 

注

意力机制的
 

SPPRFMA
 

模块,增强了网络的多尺度特征
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提取能力,扩展了特征图的感受野,使模型在光伏板电致

光检测任务中能够更有效地处理不同尺寸的目标。 接

着,通过
 

MSF-FPN
 

融合各层级的特征信息,进一步提高

模型对光伏板缺陷检测任务中不同大小目标的识别精

度。 最 后, 将
 

YOLOv8n
 

中 的
 

CIoU[20] 换 成 改 进 的
 

Focaler-PIoU,优化了
 

YOLO-RMFP
 

的资源分配和目标定

位性能,提升模型对光伏板缺陷检测中小目标缺陷的检

测能力。

图 1　 YOLO-RMFP 网络模型结构

Fig. 1　 YOLO-RMFP
 

network
 

model
 

structure

2　 改进模块设计与实现

2. 1　 RFMA 模块

　 　 一方面,光伏板缺陷,如微裂纹和隐裂,具有细小难

以识别的特点,导致传统检测方法容易发生漏检或误判。
另一方面,光伏板表面受环境光照变化、反射和背景噪声

的影响,传统检测模型在复杂背景下难以准确区分缺陷

与非缺陷区域,从而降低了检测的鲁棒性和精度。 为解

决以上问题,本文引入 EMA 注意力机制。 该机制通过动

态调整特征图中不同区域的权重,增强了对微小缺陷的

敏感性,准确地捕捉在多变的光照和复杂环境条件下光

伏板缺陷,显著提高检测精度和鲁棒性。 然而,EMA 在

处理动态场景时面临着参数共享问题,这限制了模型在

多尺度特征处理中的表现。 此外,EMA 的单一结构也制

约了不同空间特征之间的有效交互。 为克服这些局限

性,本文创新性地将 EMA 注意力机制与 RFA 机制融合,
提出了 RFMA 注意力机制。 RFMA 模块不仅能帮助模型

重点关注重要特征区域,还能增强不同空间特征间的交

互,并自适应地调节感受野的大小,从而更精确地捕捉多

尺度特征,进一步提升了光伏板电致光缺陷检测的检测

精度与鲁棒性。
RFMA 网络结构如图 2 所示。 RFMA 首先采用分组

卷积、归一化、特征分组操作,将输入特征转化为 X = [X0,
X1,…,X(G-1) ],X i ∈ R(C / / G×KH×KW) 。 这种转化优化了感受

野调制,使得模型能够灵活调整感受野,从而精准捕捉不

同尺度的特征。 然后将输出通过双路径的 1×1 分支和单

路径的 3×3 分支。 在 1×1 分支中,先对输入使用一维最

大池化对水平和垂直两个维度方向进行通道编码。 以水

平维度方向为例,其本质可以视为沿垂直维度方向的位

置信息集合, 因此水平方向的一维最大池化公式如

式(1)所示。 然后,将两个编码结果拼接后,通过同一个
 

1×1
 

卷积分解为两个向量并在每条路径上依次应用
 

Sigmoid
 

激活函数和
 

1×1
 

卷积对向量进一步处理。 最后

通过相乘的方式将两条平行路径的输出与原始输入进行

聚合,由此得到 1×1 分支输出。 在 3×3 分支中,通过对

输入使用 3×3 卷积,来获取多尺度特征表示。
zHC(H) = maxKW

0 xc(H,i) (1)
随后 1×1 分支和 3×3 分支的输出进入跨空间学习
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阶段。 首先将
 

1×1 分支和 3×3 分支的输出转化为二维最

大池化的维度形状,其中 1×1 分支的结果是为 R(1× / / G)
1 ×

R(C / / G×KH×KW)
3 , 而 3 × 3 分 支 的 结 果 为 R(1× / / G)

3 ×
R(C / / G×KH×KW)

1 。 接着对调整后的输出进行二维最大池化

并通过非线性 Softmax 函数对二维最大池化结果拟合,从
而提取出关键特征,其中二维最大池化公式如式(2) 所

示。 随后,通过 Matmul 矩阵乘法,将两个分支的输出特

征映射生成两个空间注意力权重值集合。 这两个权重值

集合相加后,经过 Sigmoid 函数得到最终的输出特征图。

最后,该特征图与分组卷积后的输出进行逐元素相乘,再
经过一次卷积操作,得出 RFMA 的最终输出结果。

zc = maxKH
j maxKW

i xc( i,j) (2)
综上所述,RFMA 模块通过有效整合不同尺度的特

征信息,自适应调整感受野,并选择性地强调复杂特征区

域,从而显著增强了模型在光伏板缺陷检测中的多尺度

特征融合能力。 这一机制使得模型能够在复杂背景下,
精准识别光伏板缺陷检测中细小且难以区分的缺陷,如
微裂纹和隐裂,提升了检测的精度和鲁棒性。

图 2　 RFMA 网络结构

Fig. 2　 RFMA
 

network
 

structure

2. 2　 SPPRFMA 模块

　 　 在 YOLOv8n 模型中,SPPF 模块通过多尺度池化技

术,能够在不同尺度上精确且高效地提取丰富的特征信

息,并显著增强了全局上下文信息的捕捉能力,这对于提

高模型在复杂多变环境下的目标检测精度至关重要。 为

了进一步提升 SPPF 模块在光伏板电致光缺陷检测中的

检测性能,本文在 SPPF 模块基础上巧妙地通过残差连

接融入了 RFMA 模块,创新性地设计了基于感受野混合

注意力机制的空间金字塔池化( spatial
 

pyramid
 

pooling
 

based
 

on
 

receptive
 

field
 

mixed
 

attention,SPPRFMA)模块,
模块网络结构如图

 

3 所示。 SPPRFMA 模块有效增强了

模型在多尺度特征提取中的能力,尤其在处理光伏板缺

陷时,能够更精确地识别和提取复杂特征。 令模型在面

对细小且难以辨识的缺陷,如微裂纹和隐裂时,能够提供

更高的检测精度。 通过引入动态感受野调整和权重分配

机制,SPPRFMA 模块能够高效地剔除光伏板缺陷检测中

复杂背景的噪声和无关信息,使模型专注于裂纹、隐裂等

细微缺陷。 优化后的特征融合方法不仅提升了模型在复

杂背景下的鲁棒性,还增强了模型对不同类型缺陷的适

应能力,从而显著提高了光伏板缺陷检测的准确性和稳

定性。

图 3　 SPPRFMA 网络结构

Fig. 3　 SPPRFMA
 

network
 

structure

2. 3　 MSF-FPN
　 　 在深度学习模型的目标检测中,浅层网络主要负责

处理图像的精细边缘和局部细节,从而提升目标的精确

定位;而深层网络则侧重于提取高层语义特征,帮助模型

更好地捕捉全局上下文信息,理解目标的整体轮廓和类

别。 为了充分整合不同层次的特征优势,特征金字塔网

络应运而生,并通过跨尺度的特征融合机制显著提升了

多目标检测的能力。 然而,传统 FPN 采用的自上而下和

自下而上的线性融合策略,在光伏板缺陷检测任务中存

在一定局限性。 光伏板缺陷通常具有多尺度、形态各异

的特征,且容易受到成像环境的影响。 传统融合策略既
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无法充分保留浅层网络对微小缺陷的敏感性,也无法有

效利用深层网络在处理复杂缺陷时的语义理解能力。 这

种特征融合的不足直接导致了模型在检测精度和鲁棒性

方面的欠佳,特别是在微裂纹、隐裂等细小缺陷的检测

中,常常出现特征信息丢失或误判,严重影响检测结果的

可靠性。 针对这一问题,本文改进了 MBA-FPN,并设计

了 MSF-FPN。 传统特征金字塔结构、MSF-FPN 的网络结

构如图 4、5 所示。

图 4　 传统特征金字塔网络结构

Fig. 4　 Traditional
 

feature
 

pyramid
 

network
 

structure

MSF-FPN 主要包括浅层辅助融合和深层辅助融合

两个部分。 浅层辅助融合将主干网络的同层特征、浅层

高分辨率细节与深层语义信息进行跨层级融合。 这种融

合方式在保留微小缺陷精准定位能力的同时,显著提升

了模型的空间表征能力,有效解决了 YOLOv8n 在光伏板

缺陷检测中因低对比度干扰和特征表达单一化而导致的

定位偏差问题,从而提高了光伏板缺陷检测的准确性和

目标定位的精确度。 浅层辅助融合公式如式(3) 所示。
其中, Pn-1、Pn、Pn+1 ∈ R(H×W×C) 为主干网络中不同分辨率

的特征映射、符号 U(·) 表示上采样、 C2F(·) 表示 C2F、
C(·) 表示使用卷积下采样。

P′n+1 = Concat(Pn+1,C(Pn))
P′n = Concat(Pn,C(Pn-1),U(C2F(P′n+1))
P′n-1 = Concat(Pn-1,C(Pn-2),U(C2F(P′n))

ì

î

í

ïï

ïï

(3)

深度辅助融合通过跨层梯度密集连接机制,驱动不

同层级的梯度信息与特征图进行深度交互,强化特征金

字塔的多尺度语义融合能力。 该设计利用梯度流的连续

性引导检测头捕获多样化的上下文信息,有效提升了光

伏板缺陷检测不同缺陷共存时的特征区分度,并弥补了

传统征融合方法因信息偏差导致的多尺度缺陷漏检问

题。 深度辅助融合公式如式(4) 所示。 其中,高分辨率

特征融合层为 P′n+1、浅层分辨率特征融合层为 P′n-1、同级

别特征融合层为 P′n 、同级主干特征映射为 Pn 、前一层

特征信息增强结果为 P″n-1。

P″n-1 = Concat(Pn-1,C2F(P′n-1),U(C2F(P′n)))
P″n = Concat(C(C2F(P′n-1)),C(C2F(P″n-1)),

Pn,C2F(P′n),U(C2F(P′n+1)))

P″n+1 = Concat(C(C2F(P′n)),C(C2F(P″n)),
Pn+1,C2F(P′n+1))

ì

î

í

ï
ï
ïï

ï
ï
ïï

(4)

图 5　 MSF-FPN 网络结构

Fig. 5　 MSF-FPN
 

network
 

structure

综上所述,MSF-FPN 通过浅层辅助融合和深度辅助

融合,既保留了丰富的定位细节,又增强了空间表征能

力,同时提升了特征信息的交互性。 这一创新架构成功

解决了传统模型在光伏板陷检测中存在的多尺度特征融

合不足、细节信息丢失等关键问题,从而大幅提高了检测

精度和模型鲁棒性。

3　 损失函数改进

3. 1　 Focaler-PIoU
　 　 为了提高光伏板电致光缺陷检测的定位精度和鲁棒

性,本文将传统的 CIoU 损失函数替换为 PIoU 损失函数,
并引入 Focaler-IoU 的思想,设计了 Focaler-PIoU 损失函

数。 PIoU 损失函数通过像素级别的 IoU 计算,能够更准

确地衡量定向边界框的重叠度,特别适用于高纵横比和

复杂背景下的目标检测任务。 Focaler-IoU 则通过线性区

间映射的方式,调整不同回归样本的关注度,解决了样本

难易分布不均的问题。 将两者结合,Focaler-PIoU 损失函

数能够在优化边界框回归的同时,增强对难样本的关注,
提高模型在复杂环境下的检测性能。

PIoU 通过提出一个自适应的惩罚因子 P,动态调整

边界框的回归路径。 惩罚因子 P 的公式如式(5)所示。

P = (
dw1

wgt

+
dw2

wgt

+
dh1

hgt

+
dh2

hgt
) / 4 (5)

式中: dw1、dw2、dh1、dh2 分别表示预测框与目标框对应边

之间距离的绝对值;wgt 和 hgt 表示目标框的高度和宽度。



　 第 8 期 基于 YOLO-RMFP 的光伏板缺陷检测方法研究 ·183　　 ·

由于惩罚因子 P 的分母仅取决于目标框的大小,而与锚

框和目标框的最小外接框无关,因此,在损失函数使用惩

罚因子 P 不会导致锚框扩展。 基于罚因子 P,进一步提

出了 适 用 于 边 界 框 回 归 的 惩 罚 函 数, 其 公 式 如

式(6) ~ (8)所示。 该函数能够根据锚框自适应生成相

应的梯度,从而降低低质量锚框的影响、加速中等质量锚

框的回归速度、稳定高质量锚框的优化过程,并优化资源

分配,从而提高了模型对光伏板缺陷检测的整体检测

精度。

f(x) = 1 - e -x2
(6)

PIoU = IoU - f(P), - 1 ≤ PIoU ≤ 1 (7)
LPIoU = 1 - PIoU = LIoU + f(p),0 ≤ LPIoU ≤ 2 (8)
随后,在 PIoU 的基础上,通过引入 Focaler-IoU 思想

调整光伏板缺陷样本的难易权重,使模型更加聚焦于光

伏板的复杂缺陷,从而提高检测精度。 Focaler-IoU 公式

如式(9)所示,其中,[d,u]∈[0,1]。 通过调整 d 和 u 的

数值,模型对困难样本赋予更高权重,同时降低易检测样

本的损失权重,从而使模型在训练时更专注于困难样本。
因此 Focaler-PIoU

 

通过线性区间映射方法将 IoU focaler 融

合到
 

PIoU
 

中,以提升目标检测中的误差回归效果,从而

提高光伏板电致光缺陷检测的整体检测精度。 Focaler-
PIoU 公式如式(10)所示。

IoU focaler =

0, IoU < d
IoU - d
u - d

, d ≪ IoU ≪ U

1, IoU > u

ì

î

í

ï
ï

ï
ï

(9)

LFocaler -PIoU = LPIoU + IoU - IoU focaler (10)
综上 所 述, Focaler-PIoU 在 PIoU 的 基 础 上 引 入

IoU focaler ,使得模型在高效处理边界框回归任务的同时,能
够给予小目标和难以检测的目标更多关注。 这一改进不

仅显著增强了模型对复杂样本的检测能力,提升了检测

精度,还减少了简易样本对训练过程的干扰,提升了光伏

板电致光缺陷检测的整体性能。

4　 实验结果与分析

4. 1　 实验配置

　 　 本文实验在 Pytorch2. 1. 0+CUDA12. 5 深度学习框架

进行实验,实验的软件和硬件参如表 1 所示。 本文实验

采用的实验参数如表 2 所示。

表 1　 软件和硬件参数

Table
 

1　 Software
 

and
 

hardware
 

parameters
名称 参数

操作系统 Windows11
GPU NVIDIA

 

GeForce
 

RTX
 

3070
 

Ti
处理器 12th

 

Gen
 

Intel(R)
 

Core(TM)
 

i9-12900H
 

2. 50
 

GHz
内存 32

 

GB
Python 3. 9. 1

表 2　 实验参数

Table
 

2　 Experimental
 

parameters
参数名称 参数设置

Epochs 150
Batchsize 2

imgsz 640
lr0 0. 01
lrf 0. 01

4. 2　 数据集预处理

　 　 实验使用的是自建的光伏板内部缺陷数据集,数据

由红外摄像机拍摄,涵盖 4 种缺陷类型:裂纹、黑芯、断栅

和粗线。 初始数据集共包含 782 张图像,如图
 

6 所示。
为增加样本数量,本文通过旋转、添加噪声等数据增强方

法将数据集扩展至 3
 

150 张。 实验中,将数据集按 8 ∶
1 ∶ 1 的比例随机划分为训练集、测试集和验证集,分别

为 2
 

520、315 和 315 张。

图 6　 数据集缺陷类型

Fig. 6　 Dataset
 

defect
 

types
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4. 3　 评价指标

　 　 为验证本文提出的算法在光伏板缺陷检测的可行性。
实验结果主要以 mAP@ 0. 5 作为检测指标。 mAP@ 0. 5 指

的是阈值在 0. 5 以上的平均检测精度均值。 mAP 的计

算公式如下:

mAP =
∑

Num(class)

n = 1
AP(n)

TP + TN + FP + FN
(11)

AP = TP + TN
TP + TN + FP + FN

(12)

式中:AP 表示平均检测精度;TP 代表目标检测模型中可

以正确检测出缺陷的预测框数量;TN 表示负样本数量;
FP 为目标检测中检测错误的预框数量;FN 表示未能检

测目标的预测框数量。
4. 4　 对比实验

　 　 为验证模型的改进效果,在相同配置和数据集条件

下,将 YOLO-RMFP 算法与其他常见的目标检测算法进

行了对比。 本文选择了二阶段目标检测算法 Faster
 

R-
CNN、 Mask

 

R-CNN, 以 及 YOLO 系 列 的 YOLOv5s、
YOLOv7-tiny、YOLOv8n、YOLOv10n 进行对比实验,结果

如图 7 和表 3 所示。 由图
 

7 和表 3 可知,YOLO-RMFP 的

mAP@ 0. 5 达到了
 

94. 2%,是所有对比模型中平均检测

精度最高的,相较其他模型分别提高了 8. 2%、7. 6%、
7. 6%、5. 8%、9. 5%、3. 1% 和 8. 5%。 尽管

 

YOLO-RFMP
的帧率达到了 201. 4

 

fps,略低于某些轻量级模型,如
 

YOLOv8n
 

和
 

YOLOv5s,但在精度与推理速度的平衡上展

现出了卓越的性能。 凭借其适中的计算量,该模型在性

能与效率之间实现了理想的平衡,非常适合那些既要求

高精度又要求高速度的应用场景。 综合考虑检测速度和

精度两个方面,本文算法在光伏板缺陷检测中的整体性

能最优,不仅准确率较高,还能实现实时检测。
4. 5　 消融实验

　 　 为 验 证
 

YOLO-RMFP
 

算 法 的 有 效 性, 首 先 对

图 7　 不同目标检测模型的
 

mAP@ 0. 5 对比结果

Fig. 7　 mAP@ 0. 5
 

comparison
 

results
 

of
different

 

object
 

detection
 

models

　 　 　 　 　

表 3　 对比实验

Table
 

3　 Comparative
 

experiments
模型 mAP@ 0. 5 / % 帧率 / fps 计算量 / GFLOPS

Faster
 

R-CNN 86. 0 52. 3 134
Mask

 

R-CNN 86. 6 48. 1 187
YOLOv5s 88. 8 208. 1 8. 7

YOLOv7-tiny 84. 7 103. 8 13. 2
YOLOv8n 91. 1 211. 1 8. 1
YOLOv10n 85. 7 205. 7 8. 4

YOLO-RFMP 94. 2 201. 4 9. 9
 

SPPRFMA 模块、 MSF-FPN
 

特征金字塔结构和
 

Focaler-
PIoU

 

损失函数进行了消融实验。 通过 mAP、计算量和检

测速度等评估指标,分析各模块在原有模型中的引入对

性能的影响,实验结果如表 4 所示。

表 4　 消融实验

Table
 

4　 Ablation
 

experiments
SPPRFMA MSF-FPN Focaler-PIou mAP@ 0. 5 / % mAP@ 0. 5:0. 95 / % 召回率 / % 精度 / % 检测速度 / fps 计算量 / GFLOPS

91. 1 62. 8 87. 3 88. 4 211. 1 8. 1
√ 91. 9 64. 9 88. 4 88. 9 203. 4 8. 7

√ 92. 3 63. 4 88. 5 89. 0 198. 3 9. 1
√ 91. 4 63. 1 91. 6 83. 9 223. 3 8. 1

√ √ 93. 5 65. 1 90. 7 89. 1 194. 6 9. 9
√ √ 92. 2 64. 6 87. 5 89. 0 205. 7 8. 7

√ √ 92. 7 65. 3 88. 5 87. 9 203. 5 8. 9
√ √ √ 94. 2 69. 3 90. 8 92. 6 201. 4 9. 9

　 　 当单独启用
 

SPPRFMA
 

模块时,模型的 mAP @ 0. 5
和 mAP@ 0. 5:0. 95 分别达到 91. 9%和 64. 9%,召回率提

升至
 

88. 4%,检测精度小幅上升至
 

88. 9%,但检测速度

下降至
 

203. 4
 

fps,计算量增加至
 

8. 7
 

GFLOPS。 这表明,
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SPPF
 

模块结合
 

RFMA
 

注意力机制后,增强了模型的特

征捕捉能力。 单独启用
 

MSF-FPN
 

特征金字塔结构时,
mAP @ 0. 5 和 mAP @ 0. 5: 95 分别提升至

 

92. 3% 和

63. 4%,召回率和检测精度提升至
 

88. 5%
 

和
 

89. 0%,但
检测速度下降至 198. 3

 

FPS,计算量增加至
 

9. 1
 

GFLOPS。
这表明

 

MSF-FPN
 

在特征融合方面效果显著,使模型可以

获得更丰富的信息和更强的表达能力。 当使用
 

Focaler-
PIoU

 

损失函数时,mAP@ 0. 5 和 mAP@ 0. 5:0. 95 提升至
 

91. 4%和 63. 1%,召回率显著提高至
 

91. 6%,检测速度上

升至 223. 3
 

fps,计算量保持不变,但检测精度下降至
 

83. 9%。 该结果表明,Focaler-PIoU
 

模块增强了模型对困

难样本的检测能力,削弱了简易样本对模型的影响,但可

能会导致模型过度关注困难样本,从而牺牲了简单样本

的准确性,使得模型的检测精度略有下降。
在启 用 全 部 模 块 后, 光 伏 板 缺 陷 检 测 模 型 的

mAP@ 0. 5 和 mAP@ 0. 5:0. 95 提升了 3. 1%和 6. 5%,召
回率及检测精度分别提升至 90. 8%与 92. 6%,检测速度

下降了 9. 7
 

fps,计算量增加了 1. 8
 

GFLOPS。 综上所述,
虽然 YOLO-RMFP

 

算法针对光伏板缺陷的检测速度略有

下降并增加了一部分计算量,但检测 mAP@ 0. 5、mAP@
0. 50:0. 95 召回率和检测精度显著提升,有效实现了光

伏板缺陷检测的实时性和实用性。
4. 6　 检测结果可视化对比

　 　 为了验证 YOLO-RMFP 模型的实际检测效果,随机

抽取 4 类光伏板缺陷图片进行检测, 同时和 初 始

YOLOv8n 模型的检测结果进行对比,结果如图
 

8 所示。

图 8　 改进前后检测效果对比

Fig. 8　 Comparison
 

of
 

detection
 

results
 

before
 

and
 

after
 

improvement

　 　 通过对比两种模型的检测结果,原始模型和
 

YOLO-
RMFP

 

模型均成功检测出所有裂纹、黑芯和断栅缺陷,未
出现漏检情况。 然而,在粗线缺陷的检测中,YOLOv8n

 

模型存在漏检。 YOLO-RMFP
 

模型在裂纹、断栅和粗线 3
类缺陷的检测精度上均优于

 

YOLOv8n
 

模型 2% ~ 25%,
而在黑芯缺陷的检测精度上,两者表现相当。 表明改进

后的模型在光伏板电致光缺陷检测中具有更高的精确度

和稳定性,尤其在处理复杂或细小缺陷时,能够更好地提

升检测性能并减少漏检现象,从而增强了对多种缺陷类

型的适应性和鲁棒性。
4. 7　 鲁棒性测试

 

　 　 在实际应用中,光伏板的电致光缺陷检测任务通常

受到环境光照不均、设备噪声和表面污染等因素的影响。
这些干扰因素会降低图像质量,模糊细节或导致局部区

域的遮挡,从而显著增加光伏板缺陷检测的复杂性。 因

此,检测算法的鲁棒性测试至关重要,以确保其有效性。
在噪声、图像旋转和对比度增强等多种外部干扰条

件下,YOLO-RMFP 与 YOLOv8n 在光伏板缺陷检测中的

性能对比如图 9 所示。 实验结果表明,在复杂环境下,
YOLO-RMFP 在光伏板缺陷检测任务中优于 YOLOv8n。
在对比度增强、噪声增加、翻转和旋转 90° 等干扰下,
YOLO-RMFP 在裂纹缺陷检测中的精度分别比 YOLOv8n
高出 14%、 30%、 17% 和 2%。 而在断栅缺陷检测中,
YOLO-RMFP 的性能提升幅度在 10% ~ 30%,且 YOLOv8n
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出现了漏检现象。 YOLO-RMFP 在检测准确性和稳定性

方面展现出明显优势,特别是在图像质量受到干扰的情

况下,仍能保持较高的缺陷识别精度。 这些结果突显了

YOLO-RMFP 在应对复杂环境干扰时的卓越鲁棒性和可

靠性,进一步证明了其在挑战性条件下维持高检测准确

性的能力。

图 9　 鲁棒性测试结果对比

Fig. 9　 Comparison
 

of
 

robustness
 

testing
 

results

5　 结　 论

　 　 针对光伏板电致光检测中小目标难以捕捉、多尺度

特征融合不足及回归定位精度不高所导致的检测精度下

降和漏检率增高问题,本文在 YOLOv8n 模型基础上从结

构与损失函数两方面进行优化,提出了 YOLO-RMFP 检

测模型。 在优化结构方面,首先将改进的 RFMA 模块融

入 YOLOv8n 模型的 SPPF 模块,增强了光伏板电致光检

测小目标和局部特征的特征提取能力,并提升了模型对

复杂区域的关注度。 随后,在模型的 Neck 部分,采用

MSF-FPN,通过浅层特征辅助深层语义实现多尺度信息

的高效融合,解决了光伏板缺陷检测中细节丢失和尺度

不匹配问题。 针对损失函数方面,最后,在损失函数优化

方面,本文用 Focaler-PIoU 替代传统 CIoU,通过优化了光

伏板缺陷检测任务中的资源分配和回归过程,提高了模

型对光伏板内部缺陷小目标的检测效率和精度。 根据实

验结果表明,改进后的 YOLO-RMFP 光伏板缺陷检测模

型的 mAP @ 0. 5 和 mAP @ 0. 5:0. 95 达到了 94. 2% 和

69. 3%,精准度达到了 92. 6%,召回率达到了 90. 8%。
尽管该模型在精度和召回率方面取得了良好表现,

其检测速度虽满足实际需求,但仍存在进一步优化空间。
未来的研究应重点提升模型的推理速度并降低计算复杂

度,以实现更高的实时性与部署灵活性,进一步提升模型

在光伏板缺陷检测的实际应用价值。
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