¥39% 98 HL T 5 AR 2 4R Vol.39 No.8
- 178 - JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENTATION 2025 4 8 J

DOLI: 10. 13382/j. jemi. B2407948

£ T YOLO-RMFP B AR HRER 4 40 0 77 i 8 52

F ® MEE K &R OEAR
(LT TRBORR ARG TR #8  125105)

& E AR R ELE B AR /N R 25 5 K A8 $2 4 T —Fh 3T YOLOv8n HYBCE AR YOLO-RMFP, 1 %%, 1 sk
Z RS RN 5 EE B IS S $e T —FhERSZ BB G- BT AU BT 3R AR [R] RUBE IR AT DR e s a2 R
BEE DL S B R SRR S M BE R IR B2, IR W a2 BTIR A 1 B D ML) 5 s ) 4 I AL RS R 2 ) 1
AR IR X 22 ROBERFIE A B R 07 BNt B8 2R FRAIE X0 G B AR R A 5 2% 5 5 T RE RS A AR I BRIR 7 O e i 5 e 1, i — 20 1
SRSCARARBBA /N EHFR AR RS 2 . 285 K YOLOv8n =T M 4% rh R [R) 43 B A RRAE WS 5 W0tk I 1 22 RO RHIE AL & 4 755
ARG A, PR T AR EAR B A s B | LSBT 4T P AR AR B O 30 B AR A R RE . B, 7E PToU 3R -
T 1o P AR BB RE A E 2 (AR, 32 HAR ECLAORE B , A5 50 M T ORI SRR AR RSP () AT, 3 e T Rl S0 %o LU SE 56 ()
LERRH] YOLO-RMFP [ £5A 7 (A IKS B mAP@ 0. 5 Fll mAP@ 0. 5:0. 95 (B /0 W3R 3. 1% 1 6. 5% A e B F1 43 [8] 543 5]
$ETHT 4.2%H 3. 5% , W T ICARMRBRBER I A ITAL ZEK

KR RGBS ; B ARSI ; YOLOVSn ; X PR AT B IHLH] s 2 ROl & & 735 M 4%

FE S %S TMI14.4;TN919. 5 SCERARIZED: A ERtrEFER RN, 520.20

Research on photovoltaic panel defect detection method based on YOLO-RMFP

Li Ying SunYuxin Zhang Qiang Wang Ganyuan

(Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China)

Abstract: To address the challenge of small and highly variable defect sizes in photovoltaic panels, an improved YOLOv8n-based model
named YOLO-RMFP is proposed. First, by integrating an efficient multi-scale attention mechanism with receptive field attention, a
Receptive Field Mixed Attention mechanism is introduced. This mechanism enables the model to focus on features at multiple scales
while addressing the parameter-sharing limitations of conventional multi-scale attention, thereby enhancing the detection accuracy for tiny
defects in photovoltaic panels. Second, the Receptive Field Mixed Attention mechanism is integrated with the Spatial Pyramid Pooling
module to enhance the model’ s capability to capture multi-scale features and focus on complex regions. This integration improves the
model’ s ability to suppress noise in complex backgrounds, thereby further boosting the detection precision of small defects in photovoltaic
panels. Then, feature maps of different resolutions from the YOLOv8n backbone are fused with an improved multi-scale feature fusion
pyramid network. This enhances the interaction of feature information, enabling more comprehensive feature extraction and improving
overall detection performance. Finally, based on the PIOU loss function, the model adjusts the weightings of defect samples according to
their detection difficulty. This improves the localization accuracy and effectively mitigates the problem of sample imbalance in
photovoltaic defect detection. Results from ablation and comparative experiments show that the YOLO-RMFP model improves detection
accuracy, with mAP@ 0.5 and mAP@ 0. 5:0. 95 increasing by 3. 1% and 6. 5%, respectively. Precision and recall are also enhanced
by 4.2% and 3.5%, respectively. These results demonstrate that the proposed model meets the performance requirements for

photovoltaic panel defect detection.
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Fig. 1  YOLO-RMFP network model structure
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Table 3 Comparative experiments
A mAP@ 0. 5/% Wi/ fps 15/ GFLOPS

Faster R-CNN 86.0 52.3 134
Mask R-CNN 86.6 48. 1 187
YOLOvSs 88.8 208. 1 8.7
YOLOv7-tiny 84.7 103.8 13.2
YOLOv8n 91.1 211.1 8. 1
YOLOv10n 85.7 205.7 8.4
YOLO-RFMP 94.2 201. 4 9.9
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Table 4 Ablation experiments
SPPRFMA  MSF-FPN  Focaler-Plou  mAP@0.5/% mAP@0.5:0.95/% BAEIE/% {5/ % KEE/ fps 15 8/GFLOPS
91.1 62.8 87.3 88. 4 211.1 8.1
Vv 91.9 64.9 88. 4 88.9 203.4 8.7
vV 92.3 63. 4 88.5 89.0 198.3 9.1
Vv 91.4 63. 1 91.6 83.9 223.3 8.1
Vv vV 93.5 65. 1 90. 7 89.1 194.6 9.9
VvV 92.2 64.6 87.5 89.0 205.7 8.7
VvV Vv 92.7 65.3 88.5 87.9 203.5 8.9
Vv VvV 94.2 69.3 90. 8 92.6 201.4 9.9
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