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融合共享参数的 YOLOv10n 钢材表面缺陷检测算法∗

杨本臣　 潘子睿　 王春艳　 金海波　
 

李世熙

(辽宁工程技术大学软件学院　 葫芦岛　 125105)

摘　 要:针对钢材表面缺陷检测中的精度低、易受背景干扰的问题,提出一种融合共享参数的 YOLOv10n 目标检测算法。 首先,
骨干网络引入改进的 FasterNet 轻量网络和通道优先卷积注意力机制,以提升骨干网络对多维信息的表征能力;其次,针对 C2f
模块感受野差的问题,基于部分卷积(PConv)设计了 PConv-C2f 模块;再次,采用小波池化,解决原算法中因上下采样机制引起

的图像高频信息混叠和易受背景干扰问题;最后,通过共享参数与动态分布技术融合,提出一种轻量级检测头,以减少模型的计

算复杂度并提高边界框预测的准确性。 改进算法在 NEU-DET 数据集上的平均精度均值(mAP)mAP@ 0. 5 达到 86. 3%,较原算

法提升 8. 1%,精确率(precision)达到 86. 8%,较原算法提高了 18. 7%。 通过消融、对比实验表明改进算法在钢材和金属材料表

面缺陷检测中均具有较好的性能表现,不仅满足了实际应用中对钢材表面缺陷进行高效、准确检测的需求,还显著提升了检测

的可靠性和实用性。
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Abstract:
 

With
 

an
 

aim
 

to
 

address
 

the
 

issues
 

of
 

low
 

precision
 

and
 

susceptibility
 

to
 

background
 

interference
 

in
 

steel
 

surface
 

defect
 

detection,
 

a
 

YOLOv10n
 

target
 

detection
 

algorithm
 

based
 

on
 

fusion
 

and
 

shared
 

parameters
 

is
 

proposed.
 

Firstly,
 

the
 

backbone
 

network
 

incorporates
 

the
 

enhanced
 

FasterNet
 

lightweight
 

network
 

and
 

the
 

channel-first
 

convolutional
 

attention
 

mechanism
 

to
 

enhance
 

the
 

capacity
 

of
 

the
 

backbone
 

network
 

in
 

representing
 

multidimensional
 

information.
 

Secondly,
 

the
 

PCONV-C2F
 

module
 

is
 

designed
 

based
 

on
 

partial
 

convolution
 

(PConv)
 

to
 

tackle
 

the
 

problem
 

of
 

the
 

disparity
 

in
 

the
 

sensitivity
 

field
 

of
 

the
 

C2f
 

module.
 

Thirdly,
 

wavelet
 

pooling
 

is
 

utilized
 

to
 

address
 

the
 

problem
 

of
 

aliasing
 

and
 

background
 

interference
 

resulting
 

from
 

the
 

up
 

and
 

down
 

sampling
 

mechanism
 

in
 

the
 

original
 

algorithm.
 

Finally,
 

a
 

lightweight
 

detection
 

head
 

is
 

put
 

forward
 

to
 

reduce
 

the
 

computational
 

complexity
 

of
 

the
 

model
 

and
 

enhance
 

the
 

accuracy
 

of
 

bounding
 

box
 

prediction
 

by
 

integrating
 

shared
 

parameters
 

with
 

dynamic
 

distribution
 

techniques.
 

The
 

mean
 

average
 

precision
 

(mAP)
 

mAP@ 0. 5
 

of
 

the
 

improved
 

algorithm
 

on
 

the
 

NEU-DET
 

dataset
 

attains
 

86. 3%,
 

which
 

is
 

8. 1%
 

higher
 

than
 

that
 

of
 

the
 

original
 

algorithm,
 

and
 

the
 

precision
 

reaches
 

86. 8%,
 

which
 

is
 

18. 7%
 

higher
 

than
 

that
 

of
 

the
 

original
 

algorithm.
 

The
 

ablation
 

and
 

comparison
 

experiments
 

demonstrate
 

that
 

the
 

improved
 

algorithm
 

exhibits
 

excellent
 

performance
 

in
 

the
 

surface
 

defect
 

detection
 

of
 

steel
 

and
 

metal
 

materials,
 

which
 

not
 

only
 

meets
 

the
 

requirement
 

for
 

efficient
 

and
 

accurate
 

detection
 

of
 

steel
 

surface
 

defects
 

in
 

practical
 

applications,
 

but
 

also
 

significantly
 

enhances
 

the
 

reliability
 

and
 

practicability
 

of
 

the
 

detection.
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0　 引　 言

　 　 随着钢铁工业的不断进步,钢铁作为国民经济的重

要支柱,对于国家的工业化和现代化进程起到了关键作

用。 在钢铁材料制造及应用阶段,由于轧制加工与焊接

处理等环节的工艺参数调控失当,金属基体在热循环应

力、机械摩擦作用及环境氧化效应多重因素影响下[1] ,易
引发表面裂纹、划痕及氧化层形成等质量问题。 这些微

观缺陷不仅会显著降低钢材的力学性能,也对服役可靠

性和安全性构成潜在威胁。 现行基于人工目视检验与出

钢端传感器监测的技术方案存在明显局限性,且在高温、
粉尘等复杂工况条件下监测装置易发生功能性失效[2] 。

深度学习为目标检测带来了巨大的突破,尤其在复

杂背景下识别和检测多种类别目标的能力上表现优异。
通用目标检测算法主要分为两类,一类是以 R-CNN[3] 为

基础的两阶段目标检测算法。 Ren 等[4] 在 R-CNN 算法

基础上加入特征图共享、端到端训练的理念提出 Fast
 

R-
CNN 算法,实现了在卷积特征图上直接分类和回归,显
著提高了检测速度。

钢材缺陷检测作为目标检测领域的关键应用之一,
当前面临着缺陷小而形态多样、易受背景噪声和光照变

化影响等挑战,使得检测任务尤为困难[5] 。 为了克服这

些难题,以 YOLO 系列、SSD[6] 、RetinaNet 为代表的单阶

段目标检测算法应需而生。 Kou 等[7] 在 YOLOv3 的基础

上引入了无锚点特征选择机制和密集卷积块,使得模型

在钢材缺陷检测任务中平均精度均值 ( mAP ) 达到了

72. 2%,显著提高了检测精度。 为了提升钢材表面缺陷

检测的准确性,Cheng 等[8] 提出了一种差异通道注意和

自适应空间特征融合的 RetinaNet 算法 DEA_Retinanet,
用于钢铁表面缺陷检测,在 NEU-DET 数据集上,该算法

的 mAP 达到了 78. 25%, 比原始的 RetinaNet 提高了

2. 92%。 Li 等[9] 将注意力机制模块引入 YOLOv4 的主干

网络中,有效提高网络模型的特征提取能力,为日常钢带

表面缺陷的检测提供了一种新的方法。 在保持检测精度

的基础上为减少模型计算量,Cheng 等[10] 提出了一种适

用于嵌入式设备的轻量型 YOLOv5 缺陷检测算法,模型

中大量引入深度可分离卷积,最终在降低参数的同时提

升了检测精度。 为实现对不同缺陷类别的有效识别,
Zhang 等[11] 结合部分卷积、可切换空洞卷积和数据增强

技术对 YOLOv7 进行改进,提出了 SSG-YOLOv7 算法。
随着双向跨尺度连接和加权特征融合的提出, Wang
等[12] 通过集成 BiFPN 概念并引入了动态大卷积核注意

力机制 LSK-attention 重建了 YOLOv8s 的颈部结构,有效

提高了模型对小目标的特征提取能力。
YOLOv10[13] 在继承 YOLOv8 实时性能的基础上,通

过引入更复杂的网络结构和强化训练策略,显著提升了

模型的检测精度和鲁棒性。 自 YOLOv10 提出之后,其在

缺陷检测领域受到了广泛关注,已开展了大量相关研究。
Tian 等[14] 提出了增强型 YOLOv10 框架的端到端检测模

型,这一小目标检测算法专门设计用于快速、精确地检测

大片水域中的死亡鱼类,然而,该检测算法并不适用于钢

材缺陷检测的场景。 YOLOv10n 作为 YOLOv10 的轻量化

版本,在进一步减少模型参数量和计算量的同时,仍保持

了较高的检测精度,非常适用于工业相机和 5G 模组等实

际应用。 然而,对于钢材表面缺陷检测需满足至少 64
 

fps
的速度和 85%以上的精度标准,而以上算法尚未达到这

些要求。
当前,YOLO 系列在目标检测领域的网络架构日趋

复杂,但在小目标检测方面,性能提升并不显著。 相反,
由于网络结构的复杂性增加,模型可能会因过度学习无

关信息而损害检测效果。 本文针对钢材表面缺陷检测时

易受 背 景 影 响 出 现 误 检、 漏 检 的 情 况, 提 出 改 进

YOLOv10n 的目标检测算法。 本文在 Backbone 部分首先

引用改进的 FasterNet 轻量网络,其次引用通道优先卷积

注意力机制,增强骨干网络在复杂场景中的细节特征识

别能力。 在 Neck 部分设计了 PConv-C2f 模块,此改进有

效扩大了模型的感受野,尤其在检测微小或模糊缺陷时

表现更为出色,并采用小波池化解决原算法中因上下采

样机制引起的图像高频信息混叠和易受背景干扰问题。
在 Head 部分提出一种轻量级检测头 ( detect-efficient,
DE),共享参数策略不仅减少了检测头的参数量,在降低

存储和计算成本,提升推理效率的同时,还提升了模型在

多尺度目标检测中的精准度。

1　 YOLOv10 算法

　 　 YOLOv10 算法是一种高效的目标检测模型,旨在各

种复杂场景中实现快速而准确的目标检测。 YOLOv10
由 Backbone、Neck 和 Head

 

3 个部分组成。 YOLOv10 算

法结构如图 1 所示。
YOLOv10n 在前一代的基础上进行了优化,集成了

多种先进技术和模块,以适应不断增长的检测需求。 该

模型主要由 Backbone、Neck 和 Head3 个部分组成,这一

结构设计旨在提升目标检测的性能与效率。
在 Backbone 部分引入了 SCDown 和 C2fCIB 模块提

出了改进的 CSPNet( cross
 

stage
 

partial
 

network) [15] 结构。
通过 SCDown 模块将空间维度的下采样和通道维度的下

采样解耦,在降低计算成本的同时,最大限度地保留了特

征信息。 C2fCIB 模块采用紧凑的倒置块结构,利用高效

的深度卷积进行空间信息的混合,并通过低成本的点卷

积完成通道间的融合操作,优化了特征提取和融合过程,
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图 1　 YOLOv10 算法结构

Fig. 1　 YOLOv10
 

algorithm
 

structure
 

diagram

提升 了 模 型 的 效 率 和 性 能。 此 外, 还 额 外 引 入 了

PSA(Pyramid
 

Squeeze
 

Attention)模块,有效捕捉图像的上

下文信息,从而提高了在复杂场景下的检测精度,显著增

强了特征提取能力;Neck 部分采用了特征金字塔结构,
能够有效整合来自不同层的特征图,从而捕捉更丰富的

上下文信息;Head 部分使用交并比( IoU)损失函数来优

化检测框的精确性,使得模型在处理重叠目标时表现更

为优越。

2　 改进的 YOLOv10n 算法

　 　 融合共享参数的 YOLOv10n 目标检测算法主要做出

以下改进。 首先,在 Backbone 部分引用改进的 FasterNet
轻量网络和通道优先卷积注意力机制;其次,在 Neck 部

分设计 PConv-C2f 模并采用小波池化;最后,在 Head 部

分提出一种轻量级检测头。 改进后的 YOLOv10n 算法结

构如图 2 所示,其中红色边框标注的部分为本模型的改

进部分。
2. 1　 轻量级检测头

　 　 轻量级检测头主要采用了创新的参数共享设计与动

态分布 Focal
 

Loss(DFL)技术,旨在提升模型在处理不平

衡数据集时的适应性和性能表现。 轻量级检测头的 3 个

关键模块,如图 3 所示。

1)
 

共享参数

回归与分类任务均通过采用轻量级检测头中的 2 个

3×3 共享卷积层实现多尺度感知,有效降低了模型的复

杂度,减少了计算量和存储需求,同时避免了冗余计算。
与 V10Detect 相比,这种设计使模型参数量减少约 50%,
降低了训练和推理时的内存占用。 共享参数设计如

式(1)所示。
stemi = Sequential(Conv(C i,C i,3),Conv(C i,C i,3))

(1)
式中:stem 为共享参数设计模型;Sequential 表示将 2 个具

有 3×3 卷积核进行线性堆叠;C i 表示输入和输出的通道

数相同。
2)

 

回归和分类分支设计

该部分继承了 YOLOv10 的 v10detect 检测头的设计

精髓,分别配置了回归和分类两个分支,以实现目标边界

框和类别预测的独立优化。 在回归分支中,模型将回归

最大值 reg_max 的 4 倍作为输出通道数,并通过 1 × 1 卷

积层进行坐标回归,如式(2) 所示。 分类分支则采用 nc
输出,其卷积操作如式(3)所示。

cv2 i = Conv2d(C i,4 × reg_max,1) (2)
式中: Conv2d(C i,4 × reg_max,1) 表示 1×1 卷积层,适用

于边界框的坐标回归。
cv3 i = Conv2d(C i,nc,1) (3)
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图 2　 改进后的 YOLOv10n 网络结构

Fig. 2　 Improved
 

YOLOv10n
 

network
 

structure
 

diagram

图 3　 轻量级检测头结构

Fig. 3　 Detect_Efficient
 

structure
 

diagram

式中:nc 为类别数量。 此设计使得检测头能够独立处理

分类和回归任务,减少特征冲突。
3)

 

DFL
由于小目标像素占比低且信息较少,类别分布不均

衡,导致模型易出现误检漏检,尤其是在类别分布不均衡

的情况下。 为此设计 DFL 模块,如式(4)所示。

DFL =
DFL(reg_max), reg_max > 1
Identity, 其他{ (4)

式中:reg_max 表示 DFL 的通道数;Identity 表示恒等函

数。 当通道数大于 1 时,启用 DFL 层以提升回归效果。
设计的 DFL 模块,在计算损失时根据类别的分布情

况自适应调整各类目标的损失分配,对难检测的类别赋

予更高的权重,从而使模型对小目标的特征更加敏感,提
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高边界框预测的准确性。 设计方式即使在复杂背景或目

标密集的场景中,也能保持对小目标较高的检测精度。
通过参数共享设计,轻量级检测头能够有效减少模

型的参数数量,从而减轻计算负担,提高模型的训练效

率。 DFL 技术使得模型在面对样本不均衡的情况时,能
够更加关注那些稀有类别的样本,从而增强了对小类别

的检测能力和准确性。
2. 2　 PConv-C2f 模块

　 　 为了解决传统神经网络在速度和准确性之间难以平

衡的问题,在 Neck 部分设计了 PConv-C2f 模块,结合

PConv 设计的 PConv
 

Block 模块替换了 C2f 模块中的瓶

颈残差模块( Bottleneck)。 PConv 仅对输入通道 X 中的

1 / 4 部分 X1 进行卷积操作,剩余 3 / 4 的通道 X2 保持不

变,如式(5)、(6)所示,这样不仅保留通道信息,还有效

减少冗余计算。 再将 Y1 和 X2 进行通道维度的拼接,得
到拼接后的特征图 Y2,如式(7)所示。

X = X1 + X2 (5)

Y1 = Conv3 × 3(X1) ∈ R
H×W×

Cout
4 (6)

Y2 = Concat(Y1,X2) ∈ RH×W×Cout (7)

其中, X ∈ RH×W×Cin,X1 ∈ R
H×W×

Cin
4 ,X2 ∈ R

H×W×
3Cin

4 ;h、
w 为特征图的高和宽;k 为卷积核大小。

此外,PConv 输出后的特征图 Y2 通过 1×1 卷积扩展

至原通道数的两倍,并结合 PConv 层未处理的通道,进一

步减少通道信息的损失。 最终,采用了 1 × 1 卷积来替换

原算法中的 3 × 3 卷积,将特征图的通道数恢复至原始规

模,确保了捷径分支与骨干路径的输出维度一致,并有效

避免了信息的丢失。 Bottleneck 与 PConv
 

Block 结构对比

如图 4 所示。

图 4　 Bottleneck 与 PConv
 

Block 结构图对比

Fig. 4　 Bottleneck
 

and
 

PConv
 

Block
structure

 

chart
 

are
 

compared

PConv 仅选择首端或末端连续的 cp 通道进行特征图

计算,这种设计不仅减少了计算复杂度,还降低了内存访

问量。 假设输入特征图的通道数为 c,而选择的部分通道

数为 cp,那么 PConv-C2f 模块的浮点运算次数
 

( FLOPs)
为 h × w × k2 × c2

p 。 内存访问需求量为 h × w × 2cp +k
2 ×

c2
p ≈ h × w × 2cp 当 PConv 中参与计算的通道数的典型比

例为 r = cp / c = 1 / 4,PConv 的 FLOPs 仅为常规卷积的 1 /
16,同时内存访问量也减少到常规卷积的 1 / 4。

PConv-C2f 模块相较于 C2f 模块在提升检测精度的

同时,大幅降低了模型的计算开销,并扩大模型的感

受野。
2. 3　 小波池化采样

　 　 为解决小目标检测中常见的混叠问题以及小目标边

缘信息丢失问题。 Neck 部分引用小波池化[16] ( Wavelet
 

Pooling)替换原有普通上下采样,小波池化依赖于小波变

换定理[17] ,并使用离散小波变换(DWT)和反离散小波变

换(IDWT)实现。
Wavelet

 

Pooling 使用基于二维小波变换的小波池化

方法,小波池化是将离散小波变换应用于输入 X ,将反离

散小波变换仅应用于低频分量,以构建下采样输出 X∗ 。
池化过程如图 5 所示。

图 5　 小波池化结构

Fig. 5　 Wavelet
 

pooling
 

structure
 

diagram

改进算法中引入的小波池化技术在下采样过程中,
通过小波分解保留低频信息并过滤高频信息,从而增强

细节还原和抗噪能力。
2. 4　 Fasternet 骨干网络

　 　 钢材表面的微小缺陷在特征提取时容易被忽略,同
时可能引入大量背景噪声或非缺陷特征。 此外,随着神

经网络深度的提升,特征图通道数的增加导致了冗余信

息的累积,这不仅拖慢了模型的检测速度,还可能降低检

测的可靠性。 为了解决这一问题,Chen 等[18] 在提出的

FasterNet 网络中通过引入一种部分卷积,有效减少冗余

信息,并提高小目标检测中的特征提取效率。 FasterNet
网络结构如图 6 所示。

本文模型在 Backbone 部分引入了改进的 FasterNet
网络,将嵌入维度从 192 降至 64,路径丢弃率调整为

2%。 这一调整显著减少了参数量和计算资源消耗,尤其

在检测钢材表面小缺陷时,可提高特征提取效率。 同时,
适度的路径丢弃率有效降低了过拟合风险,避免了高丢

弃率带来的训练不稳定。
2. 5　 通道优先卷积注意力机制

　 　 为优化特征通道间的信息交互,以增强模型的特征

识别能力。 在 Backbone 中引入通道优先卷积注意力模
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图 6　 Fasternet 网络结构

Fig. 6　 Fasternet
 

network
 

structure
 

diagram

块(CPCA) [19] 。 CPCA 通过全局聚合和权重学习聚焦关

键特征,来提高检测准确性。 它通过重标定输入特征优

化小目标识别,并结合通道和空间注意力提升模型对显

　 　 　

著特征的捕捉能力。 通道优先卷积注意力机制整体结构

如图 7 所示。

图 7　 通道优先卷积注意力机制模块

Fig. 7　 Channel
 

priority
 

convolution
 

attention
 

mechanism
 

module

　 　 对比标准卷积,标准卷积的计算复杂度是 Dk
2 × M ×

N × D f × D f′ 其中 DK 为卷积核大小, M 为输入通道数, N
为输出通道数, D f 为特征图的空间维度。 而深度可分离

卷积的计算复杂度是 Dk
2 × M × D f × D f′ + M × N × D f ×

D f′ 通过这种分解,计算量减少了约
1
N

+ 1
DK

2 倍,对于常

见的 3 × 3 卷积,计算量减少接近 9 倍,降低了模型计

算量。

3　 实验结果与分析

　 　 为验证改进算法的有效性,本文利用东北大学开源

的 NEU-DET 钢材表面缺陷数据集进行了训练和测试。
3. 1　 数据集

　 　 该数据集包含冶金工业中 6 类典型表面缺陷,具体

涵盖表面裂纹(crazing,
 

Cr)、非金属夹杂(inclusion,
 

In)、
氧化斑块( patches,

 

Pa)、点蚀麻面( pitted_surface,
 

Ps)、
轧制氧 化 皮 压 入 ( rolled-in _ scale,

 

Rs ) 以 及 机 械 划

痕(scratches,
 

Sc),每类缺陷包含 300 幅 200×200
 

pixels
分辨率的工业检测图像,样本总量达 1

 

800 幅。 数据集

按 8 ∶ 1 ∶ 1 比例划分训练集(1
 

440 幅)、验证集(180 幅)
和测试集(180 幅),确保模型评估的统计学有效性

 [20] 。
各类缺陷如图 8 所示,具有显著形貌特征差异。
1)

 

Cr 缺陷通常呈现线性分布,有时会形成 Y 形结

构,主要与轧制方向一致,偶尔也会出现在横向或其他

方向。
2)

 

In 缺陷通常在钢材表面表现为深度各异的非金

属夹杂物,这些夹杂物多以点状、条状或块状的形式存

在,颜色通常为暗红、暗黄或灰白[5] 。
3)

 

Pa 缺陷通常在钢材表面表现为片状或大面积分
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布的斑块,某些角度下会显现出辐射状的特征。
4)

 

Ps 缺陷为局部粗糙的凹凸表面,密度不均,严重

时有橘皮般的纹理。
5)

 

Rs 缺陷通常呈斑点、鱼鳞状、条状或块状图案,
不规则分布于物体表面,深浅不一。

6)
 

Sc 缺陷表面有纵向或横向的划痕,长度、深度和

宽度不尽相同,颜色通常为灰白。

图 8　 NEU-DET 数据集缺陷类型

Fig. 8　 NEU-DET
 

data
 

set
 

defect
 

type

本文应用该数据集分别进行了消融实验与对比实

验,以验证改进模块与改进算法的有效性。
3. 2　 实验环境与参数设置

　 　 实验系统搭建采用异构计算架构,硬件平台由以下

组件构成:计算单元采用 NVIDIA
 

RTX
 

2080
 

Ti
 

GPU(显

存容量 11
 

GB),中央处理器搭载 Intel
 

Xeon
 

Platinum
 

8255C
 

12 虚拟核心处理器(基准频率 2. 50
 

GHz),系统内

存 30
 

GB。 软件栈构建于 Ubuntu
 

20. 04
 

LTS 操作系统,
编程环境采用 Python

 

3. 8 解释器,深度学习框架选用

PyTorch
 

1. 10. 0 版本,并基于 CUDA
 

11. 3 并行计算架构

实现 GPU 加速。 核心训练参数经网格搜索优化后确定:
输入层接收 640×640 分辨率图像,初始学习率配置为 1×
10-2,动量参数设置为 0. 937 以平滑梯度更新,L2 正则化

系数调整为 5×10-4,边界框交并比判定阈值保持 0. 5,批
次规模设为 16,模型经 200 轮迭代完成参数更新。 该配

置方案通过软硬件协同优化,在提升模型收敛效率与训

练稳定性的同时,有效避免了显存溢出等常见计算问题。
3. 3　 实验评测标准

　 　 本文采用了 5 种评价指标来对模型进行评估,分别

　 　 　 　 　

是 mAP、精确率( precision,
 

P),着重评估误检缺陷对检

测系统的影响、召回率(recall,
 

R),重点监测漏检缺陷带

来的工业风险、帧率吞吐量( FPS),通过计算单 GPU 环

境下处理 1
 

024×1
 

024 分辨率图像的推理速度,评估模型

在工业在线检测系统中的部署可行性。 目标检测中常用

mAP 来评价模型的性能,公式如下:

mAP =
∑

n

i = 0
AP( i)

n
(8)

AP = ∫1

0
p(R)dR (9)

式中:n 为图像的种类;i 为检测次数;AP 为单一类别的

识别 平 均 准 确 率; 本 文 设 置 n = 6[5] 。 本 文 使 用

mAP@ 0. 5,设 IoU 为 0. 5,计算每类图片的 AP,再对所有

种类取平均值[21] 。
P 表示模型检测的准确程度,在被分类为正例的样

本中有多少是真实正例。 R 表示正样本中模型检测的程

度,在所有实际正例中,正确识别为正例的比例。 公式

如下:

P = TP
TP + FP

(10)

R = TP
TP + FN

(11)

式中:TP 为正检率;FP 为误检率;FN 为负样本被检测为

正样本的个数[5] 。
FPS 表示模型每秒检测图片数量,公式如下:
FPS = Framenum / ElapsedTime (12)

式中:Framenum 表示检测图片数量;ElapsedTime 表示模

型检测的时间。
3. 4　 消融实验

　 　 为了验证所提出方法在钢材表面的检测性能,设计

了一系列消融实验,以评估改进点的有效性。 实验结果

如表 1 所示。

表 1　 改进点消融实验

Table
 

1　 Improved
 

point
 

ablation
 

experiments

实验编号 YOLOv10 Fasternet CPCA 小波池化 PConv-C2f
Detect_
Efficient

P / % R / % mAP@ 0. 5 / %

1 √ - - - - - 68. 1 73. 5 78. 2
2 √ √ - - - - 76 67. 1 80. 5
3 √ √ √ - - - 83. 4 72. 9 81. 9
4 √ √ √ √ - - 86. 8 72. 9 82. 2
5 √ √ √ √ √ - 80. 9 77. 9 83. 2
6 √ √ √ √ √ √ 86. 8 84. 2 86. 3

　 　 由表 1 可知,在 NEU-DET 数据集上改进模块在钢材

表面缺陷检测中的性能均有显著提升。 在骨干网络中引

入改 进 的 FasterNet 网 络 后, mAP 由 78. 2% 提 升 至

80. 5%,P 从 68. 1%提高至 76%,这表明重建后的骨干网

络有效增强了缺陷特征的提取能力。 在嵌入通道优先卷

积注意力机制后,mAP 进一步提升至 81. 9%,P 提高至
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83. 4%,显示出该机制在提升模型对缺陷特征图像全局

特征信息的提取能力方面的有效性。 此外,采用小波池

化替代上下采样后,mAP 由 81. 9%提升至 82. 2%,P 从

83. 4%提高至 86. 8%,表明小波池化更好地保留了高频

信息,减少了信息丢失和背景干扰。 替换 PConv-C2f 结

构后,依托 Pconv 的优势,mAP 提升至 83. 2%,显著增强

了算法对钢材表面缺陷的检测能力,R 也得到明显提升。
最后引入以共享参数为基础的轻量级检测头,通过优化

特征交互和融合机制,使 mAP 提高 3. 1%,R 提升 6. 3%,
P 提升 5. 9%。 这种设计减少了参数量,降低了复杂度,
同时增强了分类与定位的协同作用,提升了对不同尺度

目标的检测能力,显著改善了检测性能。 综上所述,本文

提出的各种改进方法在钢材表面检测方面具有积极

效应。
图 9 所示为改进算法对 6 种缺陷检测效果的对比情

况。 图 9 依次为原始图像、基于原始算法的检测结果以

及改进算法的检测结果。 通过观察图 9 可以发现,在裂

纹、麻点、压入氧化铁皮和划痕的检测中,改进算法能够识

别出原 YOLOv10n 未能检测到的缺陷。 在杂质、斑块检测

中,改进算法不仅检测更加准确,还能同时识别出斑块与

杂质缺陷。 可见,本研究中所提出的改进算法在针对不同

类型的缺陷检测任务中,均呈现出了优异的检测性能。

图 9　 改进算法效果

Fig. 9　 Improved
 

algorithm
 

renderings

3. 5　 不同数据集算法对比

　 　 基于多材料缺陷检测的对比研究需求,本实验选取

Aluminum_ssd 与 GC10-DET 两个工业检测基准库进行跨

域验证。 其中,Aluminum_ssd 数据集聚焦汽车轻量化部

件制造缺陷,包含 1
 

400 幅高分辨率工业图像,涵盖 4 大

类铝材表面异常:机械擦伤(表面磨痕深度>20
 

μm)、塑
性皱曲(冷作硬化区厚度变异系数≥15%)、表面污染物

沉积(颗粒尺寸 50 ~ 200
 

μm)及微孔洞缺陷(孔径分布符

合 Weibull 模型) [22] 。 GC10-DET 数据集则针对压力容器

用钢表面质量检测,包含 2
 

292 幅符合 EN
 

10308 标准的

检测图像,其 10 类缺陷包含月牙型冷隔缺陷(铸造工艺

参数失当导致的熔融金属融合不良)、水渍氧化斑(相对

湿度>60%环境下形成的 FeO( OH) ·nH2O 沉积)、油性

介质残留(动态接触角>120°的疏水性污染)、轧制腰折

缺陷(与轧辊形变曲率呈正相关)等典型工业缺陷形貌。
两数据集中的图像采集于光照充足、低干扰的结构化环

境,符合工业场景下的检测工况[22] 。 实验结果如表 2、3
所示。

表 2　 Aluminum_ssd 金属缺陷数据集对比实验

Table
 

2　 Comparative
 

experiment
 

of
Aluminum_ssd

 

metal
 

defect
 

data
 

set

算法 mAP@ 0. 5 / % P / % R / % 模型大小 / MB
YOLOv10n 88. 3 84. 5 80. 5 5. 8
改进算法 96. 2 96. 8 92. 2 17. 5

　 　 基于表 2 的实验数据,针对 Aluminum_ssd 金属缺陷

数据集,改进算法的平均精确度提升了 7. 9%。 同时,
Precision 和 Recall 也有显著提升。 这反映出了改进算法

在检测金属缺陷方面仍然具有良好的性能。
表 3　 GC10-DET 钢材表面缺陷数据集

Table
 

3　 GC10-DET
 

steel
 

surface
 

defect
 

data
 

set

算法 mAP@ 0. 5 / % P / % R / % 模型大小 / MB
YOLOv10n 80. 2 73. 5 71. 5 5. 8
改进算法 88. 4 86. 6 80. 2 17. 5

　 　 根据表 3 的实验结果,在 GC10-DET 钢材表面缺陷

数据集上,本文改进的算法相较于原始算法尽管模型大
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小有所增加,但平均精确度、精确率、召回率具有提高,尤
其在加入了以共享参数为基础的轻量级检测头后平均精

度得到大幅度提升。
实验结果表明,改进后的算法在多个不同的数据集

上展现了卓越的适应性和鲁棒性。
3. 6　 现有算法对比实验

　 　 为了验证改进算法在钢材表面检测方面的性能,本
文将其与现有目标检测算法在 NEU-DET 数据集上进行

了对比分析。 算法包括 R-CNN、 Faster-RCNN、 Retina-
Net、YOLOv3、YOLOv4、YOLOv5s、YOLOv7-tiny、YOLOv8n
和 YOLOv10n,对比结果如表 4 所示。 结果表明,R-CNN

和 Faster-RCNN 两阶段目标检测算法的 mAP 较低存在

大量误检、漏检的情况。 Retina-Net 作为单阶段目标检测

代表更符合小目标检测的要求但在 Cr 这种易受背景干

扰的缺陷时检测能力明显下降。 YOLO 系列中 YOLOv8n
在多类别检测上表现稳定,整体 mAP @ 0. 5 达到 81. 3%
但仍未达到实际应用中钢材检测的要求。 本研究提出的

改进算法由于对 YOLOv10n 的 3 个部分均做出了优化,
进一步提升了整体 mAP@ 0. 5 到了 86. 3%,尤其是 Pa 和

Ps 两类缺陷的检测精度,分别达到 97. 6%和 98. 2%。 这

表明改进算法在检测精度和应用可靠性上展现了明显优

势,更适合在工业场景中进行高效目标检测。

表 4　 不同算法在 NEU-DET 测试集上的 AP 与 mAP 对比

Table
 

4　 Comparison
 

of
 

AP
 

and
 

mAP
 

of
 

different
 

algorithms
 

on
 

the
 

NEU-DET
 

test
 

set (%)

算法 mAP@ 0. 5
AP

Cr In Pa Ps Rs Sc
R-CNN 68. 1 12. 5 64. 1 29. 6 74 45 57. 1

Faster-RCNN 77. 4 48. 2 71. 7 77. 2 86. 6 67. 4 83. 5
Retina-Net 78. 25 50. 2 68. 1 73. 8 84. 8 71. 4 85. 3
YOLOv3 75. 3 59. 8 64 89. 7 93. 2 60. 9 84. 3
YOLOv4 67. 8 34. 7 76. 8 87. 4 76. 5 50. 3 81. 6
YOLOv5s 73. 6 53. 5 61. 4 87. 7 93. 1 63. 5 83. 3

YOLOv7-tiny 66. 4 39 86. 6 79. 2 66. 8 55. 9 71. 3
YOLOv8n 81. 3 79. 8 74. 6 90. 3 94. 5 63. 8 84. 7

YOLOv10n 78. 2 60 72. 7 85. 2 96. 7 65. 4 89. 0
改进算法 86. 3 76. 2 80. 5 97. 6 98. 2 75. 2 89. 3

4　 结　 论

　 　 为解决钢材表面缺陷检测中精度低、易受背景干扰

的难题, 改进算法在 backbone 部分引入了优化后的

FasterNet 轻量网络和 CPCA 注意力机制,Neck 部分设计

了 PConv-C2f 模块并引入小波池化,Head 部分提出了以

共享参数为基础的轻量级检测头。 改进后的 YOLOv10n
算法使前景特征点能更全面地捕捉整个物体,而背景特

征点集中于富含语义信息的区域,解决了深度增加带来

的冗余信息和小目标检测中的混叠问题。 改进后特征提

取的有效性显著提升,在钢材表面缺陷检测方面,其检测

精度和召回率均超越了当前的算法。 未来研究将进一步

优化模型参数量以提高推理速度,进一步轻量化以减少

计算资源消耗、提升小样本数据下的泛化能力和复杂背

景中细微缺陷的识别能力。
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