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摘　 要:在工业生产中,长时间和高强度的作业易导致人员疲劳,从而增加安全事故的风险。 已有研究表明,接触式生理特征能

有效表征疲劳状态,但在工业环境中采用接触式设备获取生理信号进行疲劳判别会干扰正常作业。 因此,基于监控视频的疲劳

判别成为更实际的选择,然而现有方法主要关注嘴部和眼部特征,未能全面反映疲劳状态。 为此,提出了基于视频的融合面部

外观与生理表征的无干扰式疲劳判别方法,通过双支路网络模型实现对作业人员疲劳判别。 首先,在视频中定位面部感兴趣区

域并进行子区域划分,通过提取皮肤反射光变化获取视频隐含的生理表征信息,进而构建生理时空图。 接着,搭建双支路三维

卷积网络分别提取面部外观和生理表征特征。 最后,将两者特征融合并输入全连接层,以映射最终的疲劳判别结果。 通过模拟

工业生产任务获取的疲劳数据集验证了所提方法的性能。 实验结果表明,基于视频的融合面部外观与生理表征的疲劳判别准

确率达到 88%,相较于现有技术具有更高的准确性和更强的现场适用性。
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Abstract:
 

In
 

industrial
 

production,
 

prolonged
 

and
 

high-intensity
 

operations
 

can
 

lead
 

to
 

worker
 

fatigue,
 

increasing
 

the
 

risk
 

of
 

safety
 

incidents.
 

Existing
 

research
 

has
 

shown
 

that
 

contact-based
 

physiological
 

features
 

can
 

effectively
 

represent
 

fatigue
 

status,
 

but
 

using
 

contact-based
 

instruments
 

to
 

monitor
 

fatigue
 

in
 

industrial
 

environments
 

interferes
 

with
 

operations.
 

Therefore,
 

fatigue
 

detection
 

based
 

on
 

surveillance
 

video
 

has
 

become
 

a
 

more
 

practical
 

choice.
 

Current
 

methods
 

mainly
 

focus
 

on
 

mouth
 

and
 

eye
 

features,
 

failing
 

to
 

comprehensively
 

reflect
 

fatigue
 

status.
 

To
 

address
 

this
 

issue,
 

we
 

propose
 

a
 

non-intrusive
 

fatigue
 

detection
 

method
 

that
 

integrates
 

facial
 

appearance
 

and
 

physiological
 

representation,
 

utilizing
 

a
 

video-based
 

dual-branch
 

network
 

model
 

for
 

monitoring
 

worker
 

fatigue.
 

First,
 

we
 

locate
 

the
 

facial
 

areas
 

of
 

interest
 

in
 

the
 

video
 

and
 

segment
 

these
 

areas.
 

By
 

extracting
 

changes
 

in
 

skin
 

reflectance
 

due
 

to
 

variations
 

in
 

capillary
 

blood
 

volume,
 

we
 

construct
 

a
 

physiological
 

spatiotemporal
 

map.
 

Next,
 

we
 

build
 

a
 

dual-branch
 

3D
 

convolutional
 

network
 

to
 

extract
 

facial
 

appearance
 

and
 

physiological
 

feature
 

representations
 

separately.
 

Finally,
 

we
 

fuse
 

these
 

features
 

and
 

input
 

them
 

into
 

a
 

fully
 

connected
 

layer
 

to
 

map
 

the
 

final
 

fatigue
 

detection
 

results.
 

The
 

proposed
 

method
 

is
 

validated
 

using
 

a
 

fatigue
 

dataset
 

obtained
 

from
 

simulated
 

industrial
 

production
 

tasks.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

fatigue
 

detection
 

accuracy,
 

based
 

on
 

the
 

integration
 

of
 

facial
 

appearance
 

and
 

physiological
 

features
 

from
 

video,
 

reaches
 

88%,
 

offering
 

higher
 

accuracy
 

and
 

stronger
 

applicability
 

in
 

industrial
 

settings
 

compared
 

to
 

existing
 

technologies.
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0　 引　 言

　 　 工业生产中作业人员的身心状态与生产安全关系密

切。 持续长时间、高强度的重复性劳动容易引发作业人

员认知疲劳状态[1] ,直接影响到作业人员的反应速度和

决策能力。 作业人员疲劳作业可能导致操作失误,甚至

引发严重的安全事故。 因此,对作业人员进行疲劳判别

对于保障工业生产和保护生命安全十分重要。
目前,针对疲劳判别问题已有大量研究方法被提出,

主要集中于基于面部外观和基于接触式生理信息的方

法[2-3] 。 基于面部外观方法主要通过面部运动等参数,利
用计算机视觉算法判别疲劳状态[4-5] 。 Savas 等[6] 利用

OpenCV 和 Dlib 库提取面部运动,包括眨眼频率、打哈欠

次数、 嘴 巴 闭 合 度 和 眨 眼 次 数 等, 通 过 支 持 向 量

机(support
 

vector
 

mechine,SVM) 分类器判别疲劳状态。
Hou 等[7] 定位面部特征点计算嘴部和眼部的特征信息,
通过机器学习方法判别疲劳状态。 这些方法主要集中于

眼部和嘴部特征,忽略了生理信号特征和其他面部特征,
无法全面反映个体疲劳。

基于接触式生理信号的方法主要通过如脑电图、心
电图和皮肤电反应等不同生理参数的变化来检测疲劳状

态[8-9] 。 人体的心率、呼吸率、心率变异性等生理参数会

随人体的疲劳状态变化。 在针对驾驶疲劳的生理特征研

究中指出,随着疲劳增加,驾驶员均出现心率、呼吸率降

低,心率变异性整体张力增大的特点[10] 。 Ouyang 等[11]

结合由疲劳监测试验获得建筑工人的心率变异性数

据(由心电信号计算得到)和皮肤电信号,利用 SVM 模型

对疲劳状态进行判别。 而基于接触式生理信息的疲劳检

测方法由于需要专用的测量设备,有时还会干扰作业人

员的正常工作,并不适用实际生产场景[12] 。 研究发现可

以从面部视频的裸露皮肤区提取得到生理信息,包括心

率、呼吸率、心率变异性等生理参数[13] 。 Niu 等[14-15] 通过

视频信息建立面部时空图捕捉人体生理信息。 因此,前
期研究成果表明,通过视频同时获取面部外观和生理信

息的多模态表征具有可行性。
随着深度学习在各个领域的应用,研究者们提出基

于三维卷积神经网络模型从视频序列中提取时空特征,
如 Resnet-3D[16] 、C3D[17] 、S3D[18] 等方法,虽然这些方法

在动作识别等领域获得了较好精度和性能,但并非针对

工业生产场景进行疲劳判别设计,因此无法直接应用于

疲劳判别。 此外,它们的参数量较大,对计算资源要求

高,对于边缘设备的实时应用具有局限性。
针对上述问题,本文提出了一种融合面部外观与生

理表征的作业人员认知疲劳判别方法。 该方法基于视频

设计了一种双支路网络模型,将面部外观与生理时空图

相结合,用于疲劳特征的学习。 为充分考虑疲劳状态的

时间特性,采用三维卷积网络捕捉时间维度上的特征信

息。 实验结果表明,面部外观与生理表征的融合能够实

现不同模态之间的优势互补,疲劳检测的准确率达到

88%。 同时在与其他方法的比较中,本方法兼顾了精度

和时间复杂度。 因此,本文方法在工业生产中具有良好

的应用前景,可有效实现认知疲劳状态的检测与判别。

1　 原理和方法

　 　 鉴于工业生产中常用的传感设备主要为监控设备,
本文研究基于视频提取面部外观和生理表征两种模态特

征。 通过双支路网络提取疲劳特征,并融合这些特征进

行疲劳判别。 总体框架如图
 

1
 

所示。 该模型包含 3 个功

能模块:提取面部感兴趣区域获得面部外观信息;面部感

兴趣区域子区域划分,通过像素平均构建生理表征时空

图;使用双支路三维卷积网络进行多模态特征提取,最终

融合特征后输入全连接层映射进行疲劳判别。

图 1　 方法总框架图

Fig. 1　 Framework
 

of
 

method
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1. 1　 面部感兴趣区域提取

　 　 人体的疲劳状态主要体现在眼睛、嘴巴等面部特征

中,体现为眼睛睁开的幅度变小、闭眼、打哈欠、面部肌肉

松弛等现象。 因此本文使用 Mediapipe 多媒体框架[19] 进

行人脸感兴趣区域的定位提取,去除背景噪声。 该算法

通过神经网络模型从视频帧中获得人脸边界框,包括人

脸起始点的横纵坐标以及边界框的宽度和高度。 面部感

兴趣区域提取过程如图 2 所示。

图 2　 感兴趣区域提取流程

Fig. 2　 Region
 

of
 

interest
 

extraction
 

flowchart

人体疲劳状态往往是逐渐变化的,不会出现突变现

象,因此为了有效捕捉视频中人脸外观的动态变化,同时

避免重复样本的引入,本研究每隔 t 秒提取单帧面部感

兴趣区域用于表征外观信息。 该提取方法不仅有效减少

了相邻帧之间的高度相关性,也降低了模型在训练过程

中的冗余信息,增强了特征学习的效率。
1. 2　 生理表征时空图构建

　 　 皮肤反射光强度受到血管中血液体积和血氧饱和度

的影响。 当心脏搏动时,血液流入血管,导致皮肤下血容

量的变化,从而改变反射光的强度,在视频中体现为皮肤

的微弱颜色变化,原理如图 3 所示。 王宇等[13] 的研究表

明,可以从视频中定位人脸裸漏皮肤区域进行生理测量,
获取如心率、脉搏波等生理信号。 人脸不同区域包含的

生理信号有差异,例如脸颊及额头区域包含更强烈的生

理信号。 为了捕捉生理信号的空间信息和时间信息,通
过对人脸外观感兴趣区域划分子区域获得多个生理信号

组成时空图,提取流程如图 1 中生理表征时空构建模块。
考虑到人体头部一般呈椭圆形,在矩形框定的人脸

区域的四角一般包含背景或头发等非皮肤区域,因此首

先将选定的脸部区域分为 M × N 块子区域,并舍弃四角

子区域,最终获得 n块感兴趣子区域。 第 i个感兴趣子区

域中提取的 RGB 三通道的远程生理信号记作:

fi( t) =
∑ x,y∈Ri

P(x,y,t)

| R i |
(1)

式中: fi(·) ∈Rc 表示第 i个感兴趣区域提取得到的远程

生理信号; c 表示视频的 RGB 三颜色通道; P(x,y,t) 表

示属于第 i 个感兴趣区域 t 时刻的像素点值; | R i | 表示

第 i 个感兴趣区域的总像素点数。 通过对像素值取平均

值可以去除相机产生的噪声影响。 为了统一尺度,将每

个信号进行归一化:

fi ′( t) =
fi( t) -f

-

i( t)
std( fi( t))

(2)

式中: f
-

i( t) 表示信号平均值; std( f( t) i) 表示信号的标

准差。 进一步使用三阶巴特沃斯带通滤波器对信号进行

滤波,频率范围为 0. 667 ~ 4
 

Hz,并通过线性最小二乘法

拟合的结果进行去趋势化处理。 将 n 个子区域获取得到

的信号排列起来,可以为每个人脸视频序列形成一个时

空表示图:

F =

f1′( t0) f1′( t0 + 1) …… f1′( t0 + T)
f2′( t0) f2′( t0 + 1) … f2′( t0 + T)

︙ ︙ ⋱ ︙
fn′( t0) fn′( t0 + 1) … fn′( t0 + T)

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

(3)
式中: F ∈ Rn,T,c 表示面部视频的时空图; t0 表示视频的

开始帧; T 表示提取视频总帧数。 通过时空图,能够清晰

地观察到不同脸部区域在时间序列上的信号强度变化,
从而识别出人体相关生理特征信息[14-15] 。 同时一张时空

图中包含 T 帧脸部视频的时间信息和空间信息,既有助

于网络学习生理特征,也有利于减少网络的时间复杂度。

图 3　 基于视频的生理测量原理示意图

Fig. 3　 Schematic
 

diagram
 

of
 

video-based
　 　 　 physiological

 

measurement

1. 3　 双支路网络结构

　 　 本文提出基于面部外观和生理表征的双分支网络结

构,外观支路网络的输入为 A input ∈ RN1,h,w,c ,表示 N1 帧

人脸视频帧堆叠,其中 h、w 表示图像高度和宽度,c 表示

RGB 三颜色通道。 作为外观支路的补充信息,生理表征
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网络支路的输入为 F input ∈ RN2,n·(60 / t),t·fps,c ,表示 N2 帧时

空图堆叠,其中 n 表示面部感兴趣区域子区域数量,t 表
示视频帧采样间隔,fps 表示视频每秒帧数,c 表示 RGB
三颜色通道。 通过时空图的堆叠,模型能够获取更丰富

的时序表达和特征表达,不仅补充了外观支路网络的生

理时空信息,也让网络不仅仅局限于单帧数据,从而增强

疲劳判别的准确性。
本文采用三维卷积网络进行时空特征提取,以扩展

二维卷积神经网络在时间维度上的卷积能力,示意图如

图 4 所示。 卷积输入输出特征图尺寸之间的关系为:

H′ = H + 2p - f
s

+ 1 (4)

W′ = W + 2p - f
s

+ 1 (5)

C′ = C + 2p - f
s

+ 1 (6)

式中:H、W、C 表示输入特征图尺寸; H′、W′、C′ 表示输出

尺寸图尺寸;p 表示填充维度;f 表示卷积核大小;s 表示

步长。 三维卷积模型能够有效识别图像在时间序列中的

变化,从而增强对上下文信息的感知能力。 通过共享卷

积核的方式,可以显著减少模型的参数数量,降低计算复

杂度,并提高训练效率。 特征处理过程中,采用最大池化

层和自适应平均池化层进行特征降维,同时保留全局信

息。 转置卷积用于特征上采样,优化对应的模态生成

特征。

图 4　 三维卷积示意图

Fig. 4　 Three-dimensional
 

convolution
 

diagram

在该网络结构中,外观支路和生理表征支路分别提

取特征后进行融合,最终通过全连接层输出融合特征。
使用

 

sigmoid
 

激活函数实现疲劳判别。 此外,采用二元交

叉熵损失函数作为模型的损失计算标准:

Loss = - 1
m∑

m

i = 1
[y i log(p i) + (1 - y i)log(1 - p i)]

(7)
式中: m 表示样本数量; y i 表示第 i 个样本的真实标签;
p i 表示预测第 i 个样本为正类的概率。

2　 数据采集与评价指标

2. 1　 疲劳激发试验采集数据集

　 　 卡罗林斯卡嗜睡量表( Karolinska
 

sleepiness
 

scale,
KSS)是一种用于评估个体主观睡意程度的量表[20] ,广泛

应用于睡眠研究、疲劳监测以及驾驶安全等领域。 其评

分范围通常为 1 ~ 10,每个分数对应一个疲劳状态描述,
如表 1 所示,研究将 KSS 量表作为主观疲劳标签。

表 1　 KSS 量值对应的疲劳状态描述

Table
 

1　 Descriptions
 

of
 

fatigue
 

states
corresponding

 

to
 

KSS
 

scores

KSS 量值 疲劳状态描述

1 极度警醒

2 非常警醒

3 警醒

4 比较警醒

5 不太警醒,也无困意

6 有一点困意倾向

7 有困意,但是不需要努力保持清醒

8 有困意,需要一定的努力保持清醒

9 非常困倦,需要极大努力保持清醒

10 极度困倦,无法保持清醒

　 　 奇异球(oddball)实验范式常用于心理认知科学领域

事件相关电位( event-related
 

potential,ERP) 实验范式之

一,常被用于研究注意力和认知过程[21] 。 经典的 Oddball
范式为在一项实验中,随机呈现作用于同一感觉通道的

两种刺激———标准刺激和偏离刺激。 在该范式中,通过

被试对靶刺激的反应来观察大脑对异常事件的处理过

程。 当被试处于疲劳状态时,身体反应将变得迟钝,持续

性注意力变差。 这些状态变化将客观反映为对靶刺激的

反应时间延长,甚至直接忽略靶刺激,并且准确率也有所

下降。 因此反应时间及准确率指标可以作为疲劳程度的

客观测量。
疲劳激发试验基于视觉通道刺激的 oddball 范式,可

以有效诱发和测量被试者在长时间高度认知任务中产生

的疲劳状态。 试验数据采集示意图如图 5 所示。 本文所

设计的 oddball 范式界面包含 5 个方块以及对应的 5 个

校正按钮。 在正常界面中,5 个方块均为绿色,即标准刺

激,此时被试无需作出反应;而在异常界面中,5 个方块

中有 1 个方块变为红色,即为靶刺激,此时要求被试者快

速点击红色方块下的校正按钮。 频繁转换注意力的任务

会不断消耗被试者的认知,逐步引发认知疲劳。 本文研

究设置每个界面持续时间为 2
 

s,正常界面与异常界面的

出现次数之比为 4 ∶ 1。 一次完整的 oddball 范式实验持

续 10
 

min,每次试验连续进行 3 次,总时长为 30
 

min。 这
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种渐进式的任务负荷设计贴近实际作业环境中的认知需 求,能够有效诱发和测量被试者产生的认知疲劳。

图 5　 试验数据采集示意图

Fig. 5　 Diagram
 

of
 

experimental
 

data
 

collection

　 　 为了更贴近实际作业环境的易疲劳时间段,研究安

排了上午 ( 9:00 ~ 12:00)、中午 ( 12:00 ~ 14:00) 和傍

晚(16:00 ~ 18:00)3 个时间段进行试验。 试验过程中将

记录被试者每次异常反应的时间、误反应次数和漏反应

次数,作为客观的疲劳标签,反映注意力下降、反应减慢

等认知疲劳状态。 在被试者进行模拟操作的同时,使用

网络摄像头(海康威视 USB 摄像头)获取他们的面部视

频数据。 在每次 oddball 范式试验后被试者填写一次

KSS 量表,作为主观疲劳标签。
本文招募了 36 名志愿者被试者参与疲劳检测试验,

其中包括 7 名女性和 29 名男性,年龄分布在 22 ~ 35 岁。
在试验开始前,所有被试者均签署了书面知情同意书。
研究将一位被试者在一次 oddball 试验范式中采集的数

据作为一个样本,共采集 309 人次的视频疲劳数据,初始

疲劳分布如图 6 所示。

图 6　 初始疲劳等级分布

Fig. 6　 Initial
 

fatigue
 

grade
 

distribution

由于 KSS 量表为主观评价量表存在个体差异,例如

部分被试可能会高估或低估自身的疲劳状态。 因此,在
确定疲劳状态标签之前,本研究首先结合客观测量结果

对 KSS 量表自评值进行校正对齐。 首先,基于被试者在

模拟操作中的异常反应时间均值和漏反应次数两种数

据,采用孤立森林算法来刻画不同 KSS 量表自评值所对

应样本异常情况。 孤立森林算法为每个样本提供异常得

分,根据异常得分可以识别出最需要调整 KSS 量表自评

值的样本。 本文将异常得分排名前 5%的样本标记为

KSS 自评值异常样本。
采用 K 均值聚类方法对所有样本进行聚类,得到 10

个样本簇(对应 KSS 量值 1 ~ 10)。 然后计算每个量值在

各个簇中出现的频率,将每个簇内最常见的 KSS 量值作

为该簇内所有样本的“最可能” KSS 量值标签。 之后,将
标记的异常样本的 KSS 自评值与估计的“最可能”KSS 量

值进行比对,若两者不一致,则将自评值修正为“最可能”
KSS 量值。 修正后疲劳等级分布如图 7 所示,疲劳等级控

制在中间较为常见的范围,没有疲劳极端值 1 和 10,更能

反映出作业过程中普遍存在的疲劳程度变化,因为完全没

有疲劳或完全耗竭的情况在实际作业环境中较为罕见。

图 7　 修正后疲劳等级分布

Fig. 7　 Corrected
 

fatigue
 

grade
 

distribution

2. 2　 评价指标

　 　 研 究 采 用 包 括 准 确 率 ( accuracy )、 查 准

率(precision)、查全率(recall)和 F1 分数等多种指标对所

提疲劳判别模型的性能进行评价,公式如式(8) ~ (11)
所示。
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Accuracy = TP + TN
TP + FP + TN + FN

× 100% (8)

Precision = TP
TP + FP

× 100% (9)

Recall = TP
TP + FN

× 100% (10)

F1 = 2Precision × Recall
(Precision + Recall)

× 100% (11)

式中:TP( true
 

positives) 为正确检测为“疲劳状态” 的样

本数目;TN( true
 

negatives) 表示正确检测为“非疲劳状

态”的样本数目;FP( false
 

positives)为错误检测为“疲劳

状态”的样本;FN(false
 

negatives)则为错误检测为“非疲

劳状态”的样本数目。

3　 实验与结果

3. 1　 参数设置

　 　 本文疲劳标签的划分阈值选择为 5,修正后的疲劳

等级>5 视为“疲劳状态”,≤5 视为“非疲劳状态”。 考虑

到数据样本量较小不利于模型训练,容易导致模型快速

过拟合,从而产生错误预测偏向。 本研究采用添加高斯

噪声方法对原视频样本进行数据增强,数据集由原本的

309 例样本扩充 1 倍,至 618 例样本。 本研究将数据增强

后的样本集随机按 4 ∶ 1 比例划分为训练集和测试集。
训练双支路模型的迭代次数设置为 100 次,批大小为 16,
选择自适应矩估计(adaptive

 

moment
 

estimation,Adam)作

为优化器,学习率设置为 0. 001。
3. 2　 视频帧采样间隔选取

　 　 本文每隔 t 秒抽取一帧脸部图像作为外观信息以减

少相邻视频帧之间存在的高度相关性带来的冗余信息,
时空图则由采样间隔 t 秒内的视频生成,对应 t 秒提取的

生理信息。 为了探究不同视频帧采样间隔对疲劳判别的

影响,研究分别测试了 t = 5、10、15
 

s 的疲劳判别网络性

能。 其中 t = 5
 

s 时所提方法的疲劳判别性能最好。 这是

由于采样间隔越短人脸外观信息的时间粒度越小,能够

抓取面部外观的细微变化,而 t = 20
 

s 时疲劳判别性能最

差,准确率仅为 80%。 进一步测试不同采样时间模型的

训练时长,在配备 NVIDIA
 

GeForce
 

RTX
 

3090
 

GPU 的电

脑上训练结果如表 2 所示。 其中 t = 5
 

s 时的训练时长接

近 t = 10
 

s 时训练时长的 2 倍,但准确率只比 t = 10
 

s 时

提升了 1%,查准率提升了 2%。 因此综合时间复杂度和

模型判别准确率, t = 10
 

s 是最合适的采样时间。
3. 3　 疲劳判别模型性能比较

　 　 比较了本文方法与基于视频帧的端到端三维神经网

络模型(Resnet-3D、C3D、S3D)的参数量。 对比模型的输

入与本文提出方法相同,训练 100 轮次,结果如表 3 所

示。 结果表明,本研究提出的模型具有最小的参数量,模
型计算效率高、内存消耗少,对于边缘计算设备的实时应

用友好。

表 2　 不同视频帧采样间隔结果

Table
 

2　 Results
 

of
 

different
 

video
 

frame
 

sampling
 

intervals
间隔

时间 / s
准确率 / % 查准率 / % 查全率 / %

F1
分数 / %

训练时间 /
min

5 89 94 88 91 36
10 88 92 88 90 20
15 80 96 74 84 13

表 3　 不同深度网络模型参数量

Table
 

3　 Parameters
 

of
 

different
 

deep
 

network
 

models
方法 参数量 / ×109

Resnet-3D 0. 236
C3D 0. 748
S3D 0. 029

本文方法 0. 006

　 　 为了进一步比较不同模型在疲劳判别中的准确率,
首先基于面部运动提取与疲劳相关特征,包括眼睑闭合

持续时间百分比、眼睛横纵比以及嘴巴横纵比[6] 。 在对

特征进行归一化处理后,采用多种分类学习方法进行疲

劳判别,结果如表 4 所示。 结果表明基于面部运动特征

的方法的准确率均低于 70%,其中表现最优的随机森林

分类方法的准确率分别为 69%。 尽管大多数方法的召回

率较高,SVM 分类方法的召回率达到 100%,但其准确率

和精确率较低。 这表明,尽管模型能够识别出大部分疲

劳样本,但也存在将非疲劳样本误判为疲劳样本的情况,
显示出模型对训练数据的疲劳样本出现了过拟合现象。
在所比较的 3 种深度学习方法中,Resnet-3D 模型表现最

佳,疲劳判别准确率达到 76%。 相比之下,本文提出的基

于面部外观和生理表征的双支路模型实现了 88%的疲劳

判别准确率,优于其他对比方法的性能。
所有对比方法和采样时间为 10

 

s 的双支路网络模型

测试结果形成的受试者操作特征 ( receiver
 

operating
 

characteristic,ROC) 曲线如图 8 所示。 双支路模型的

ROC 曲线下面积( area
 

under
 

curve, AUC) 值为最大值

0. 88,而其他方法的 AUC 值均小于 0. 80,说明双支路模

型对疲劳状态和非疲劳状态样本的区分能力最强,可以

应用于作业人员的认知疲劳判别。
3. 4　 基于外观和生理网络结构消融实验

　 　 为了探究生理表征支路是否能够从时空图中提取出

生理特征,利用该支路进行远程心率估计。 实验将训练

集和测试集按 4 ∶ 1 的比例随机划分,并训练 100 轮次。
结果显示,估计心率与真实心率之间的平均误差为-1. 64
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每分钟每拍( beats
 

per
 

minutes,bpm),平均绝对误差为

9. 79
 

bpm,均在可接受的范围内。 该结果验证了生理表

征支路在从时空图中提取生理信息方面的有效性。 相比

手工设计的特征提取方法,基于深度学习的生理表征支

路能够自动学习面部时空图中蕴含的微弱生理特征,减
少环境噪声对生理信号的干扰,提高了特征提取的准确

性和泛化能力。

表 4　 对比方法结果

Table
 

4　 Results
 

of
 

comparison
 

method (%)
特征类别 模型 准确率 查准率 查全率 F1 分数

基于面部运动特征[6]

SVM 66 66 100 80
XGBoost 60 66 80 73
决策树 66 72 83 77

随机森林 69 69 98 81
梯度提升机 66 67 95 79

K 近邻 68 72 83 77
朴素贝叶斯 63 66 93 77
多层感知机 66 67 98 79

基于视频帧
Resnet-3D[16] 76 83 81 82

C3D[17] 61 100 61 76
S3D[18] 71 74 78 76

基于面部外观和生理表征 本文方法( t= 10
 

s) 88 92 88 90

图 8　 不同疲劳判别方法 ROC 曲线

Fig. 8　 Receiver
 

operating
 

characteristic
 

curves
 

of
different

 

methods
 

for
 

fatigue
 

detection

　 　 进一步将所提出的双支路策略模型和消融的单支路

策略模型在测试集上进行对比测试,视频帧采样间隔设

置为 10
 

s,各项评价指标结果如表 5 所示。 可以看出,采
用双支路网络模型的疲劳判别整体性能优于单支路模

型,得到的准确率为 88%, 精确率为 92%, 召回率为

88%,F1 分数为 90%。 由实验结果表明结合面部外观和

生理时空图的双支路网络在疲劳判别任务中具有较高的

准确性和可靠性。 相较于双支路网络,仅使用面部外观

支路的分类结果表现良好,准确率为 85%,而生理表征单

支路的性能则明显低于前者,准确率为 73%。 该结果表

明,由于生理信息与疲劳相关性的复杂性和生理信息的

多变性导致单独依赖面部视频的生理时空图进行分类存

在一定的局限性。 但是通过融合视频帧面部外观和生理

时空图信息能够提升疲劳状态判别的准确率。 因此,双
支路网络的融合策略显著增强了模型对疲劳状态的判别

能力。

表 5　 3 种策略模型疲劳判别结果

Table
 

5　 Fatigue
 

discrimination
 

results
of

 

three
 

strategy
 

models (%)

策略 准确率 查准率 查全率 F1 分数

外观+生理双支路 88 92 88 90
外观单支路 85 87 87 87

生理信号单支路 73 83 71 76

　 　 3 种策略模型的混淆矩阵如图 9 所示。 基于面部外

观的单支路模型预测疲劳状态样本相较于预测非疲劳样

本效果更好,基于生理的单支路模型预测非疲劳样本时

相较于预测疲劳样本效果更好。 但基于面部外观和生理

表征的双支路模型在两类样本上的划分结果都优于单支

路策略模型,表现出更好的疲劳判别效果。
3. 5　 k 折交叉验证

　 　 为了进一步验证模型的稳定性和泛化能力,研究采

用 k 折交叉验证法。 训练集被划分为 k 折,其中前 k-1
折用于模型训练,最后 1 折作为验证集。 研究设置为 5
折交叉验证,每一折验证集的结果如表 6 所示。 通过多

次训练和验证,结果表明模型在不同子数据集上具有较

高准确率,说明本文提出的方法具有稳定性和泛化性,能
够适用于工业场景中的认知疲劳评估。
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图 9　 混淆矩阵

Fig. 9　 Confusion
 

matrix

表 6　 5 折交叉验证结果

Table
 

6　 5
 

fold
 

cross
 

validation
 

results
第 1 折 第 2 折 第 3 折 第 4 折 第 5 折 平均值

准确率 / % 81 84 81 94 80 84

4　 结　 论

　 　 本文提出了一种基于面部视频的作业人员疲劳判别

方法,将面部外观和生理表征相融合,以提高判别的准确

性和适用性。 通过双支路网络模型进行多模态特征学

习,分别处理视频帧和生理时空图,从而充分提取不同模

态的信息。 设计的三维卷积网络能够有效捕捉面部视频

序列中的时间和空间特征,为疲劳判别提供更全面的特

征表示。 通过模拟工业生产任务激发认知疲劳试验获取

的数据集进行实验验证。 结果表明,本文方法在认知疲

劳判别中的准确率达到 88%,实现高准确率和无干扰的

疲劳判别。 与现有先进方法相比,本文研究提高了疲劳

判别准确率并节省了计算资源。 同时,本文方法无需额

外生理传感器设备,为工业场景下的作业人员提供了一

种高效、可靠的疲劳监测方案。
然而,研究仍存在一定的局限性。 验证数据集主要

来源于模拟实验,而非真实现场环境。 因此,需要在后续

研究进行工业生产场景适配,采集多样化的数据集,以增

强模型的适应性和泛化能力。 同时,本文仅集中于疲劳

与非疲劳状态的二分类判别,未对疲劳程度进行细分评

估。 未来的研究将致力于探索疲劳程度的判别,以提供

更为全面的疲劳监测解决方案。
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