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Application of BP neural network with attention residual mechanism
in the diagnosis of coronary artery disease
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Abstract: Coronary artery disease (CAD), as one of typical heart diseases, threatens people’ s lives and health. However, due to its
complex influencing factors and its subtle initial symptoms, many patients miss the optimal treatment window for recovery. To enable
early diereses prevention so as to get most appropriate treatment, many machine learning methods have been widely applied in this field,
among which deep learning has been acknowledged as one of the cutting-edge techniques for CAD diagnosis. This paper develops a
tailored BP neural network, which integrates BP with an attention-residual-mechanism for CAD detection. In order to find the key factors
that contribute to CAD prediction, we fist investigate a feature selection strategy based on data visualization and using several statistical
methods on the commonly used cleveland heart disease dataset. Then, the attention-residual-mechanism informed BP network is
conducted for CAD detection. The amended BP network alleviates the gradient vanishing problem by using a residual structure and
captures deep dependencies between features through a multi-head attention mechanism, which can be used for dynamic allocation of
feature weights. Extensive experiments demonstrate the better performance of our method than existing machine learning algorithms. It
can achieve an accuracy of 97. 1% on Cleveland Heart Disease dataset, which verifies the effectiveness of our method in CAD diagnosis.

Keywords : coronary artery disease; deep learning; feature selection; BP neural network; residual structure; attention mechanism

W ke B . 2024-11-04 Received Date ; 2024-11-04
* LI H | B K S AT H (2022YFC3104600) | FE % A A FNE 34 (62001329) R EETT R 1115 H (24YDTPJC00740) | 1 7 44 7 441,
WF&H-R13 B (ZDYF2024SHFZ051) %5 B



59 1

FlE TR I FR L A BP M 22 28 7 T AR S kB 12 i v 14 10 - 193 -

0 35l

il

TEAR BN K% ( coronary artery disease, CAD) J&—Ff
B LAY , ELARZR BA AR Sk & A IR A AL, XE DL
lC LT 26 2 4 B IV R RORE 37, ek 3 Jhkoks AR A
L Z R0 R S8, HLAE &0 BB i 2 R 2 400
ARE, SR, 2950 K AERT, TR 3h ik & Az ok R Ak v A
SHURFH DAL REZ IR, 51 R H AL R G0 K E, ™
HEAFEL R AR A dr . BERGETE, O BB R 2B R
5% FIPET 1) B BRI 22— e oR 2 ok ol e A
SHCC LB A 1) EZF AT A O
o] H AR A RE RO 15, CAD LIRS W A TR VA T
HARBEZRYL,

RGBT IZ W Ik BB T AN AL LR,
H i F B E RIS bR 0 2R 244k, 7T B8 S BOR TR
B 2h M IS RAFAE 25 5, Rl BT AN T30 BB 4
IR A e R T HL AR A o 5 G o A B R e 1
T B A5 B B2 W w0, i Bl B N B A Do 5
CAD FHARIZ W AN TR , B 1k 35 43 B 3 PR bR 4 4
EIF R IG X EA 2R A R &R IRIZIE
e, 7R B 2R AT, FH A BE ST IR R, Bl AL G o 2
S S AR BT KA S A, B S BXE CAD By HL
S IR 2492 T 3 3 ) S o FRORE AL D DL i 3 B X CAD
HEFTHON , 76 25 £ R IR BE o MR (E o 0. 4 1, H)
VAR T UE B R A T19% A% T HE 56 2R R 749% 1 DL i 3 55
1 Blachnik 255 ] SVM B0 vk #4700 1L 45 95 95 12
TN, AER R T 80% . %85 o BE A2 Al T
H B B2 1 | S AL (SVM) 55 43 28 5l
ot e PR AE A 37 Ak B, 3 Xob R AIE 1) A1) R DG P i A7 28 T
SR AR B RIVE G B E R FEE—EA R,
JREEMFFE A, Luna 454 FH 2 AR SR AR A) AR DR AR 70 i
FH T 905 T, 5798 T 45 8 Logistic [ I A7
FIFEHLARAAE T T X AMI 22 MACE XU i T30 4y
{EPPAG T A, El-shafiey %' 3% F BEHLERAR S AR A 3
FER R T REOL AL 7 350k 64T CAD 12 Wi v 1) 5%
FRFIEFEEN , Al SR AT R B R T AL AR A 22
W4 3 Floy Ok X CAD $itdls 433, 7632 45 11 )5 575 Hh
5 88. 52% (M e L HERf . BEHLERAR D SRA 45 C 7R RR1IE
FHOCAR BA 7 10 AR — 8 DL 3 B ML AR 2 2] LR 25 4
g B8 S i e By EN A TR T, Bl b R
B o A 2R RRAE A CAD B s A7 0 LA
AT AT, TS5 R B B 2 45 15 T CAD
TIN5 IR B A A RO =, 3k 3 89. 89% Y TN NG B
{H CAD 2 Wit CNN 928 B35 FH T 2 RMGCE 0 () AR ik
2> RF A SR FH G — 2R AR B A7 A e R A, X L

R RAFRICR

BP 25 [ 265/ kg — b MY (o 2 P 4 A5 | 4%
GEAHATIRIEY R A — 4R s 1 2 2 | oG s
F A, HEAZIE MBS HAR H 2 A R
SIAARL M pREICR 4 i BB A % Bl (0L G e g, T
PL A Sl i A 27 > RRIE S CAD SR 45 2R Z 1] /Y
I Oe R (HAE S BP i 28 0 4% - S5 06 15 T A
fiE, O R AL AL G, HAE 2 )2 M Z S50 s kil
A B0 BE R INTRAFAE R FE VA 2% | 3o 4005 55 190 2 3 Ak ) i ™
o, OAARTR bR [, AR SO P R 2 94 A i kR 4
I 2 S i A LA B RS 4 77 2 A B R 2 ) 4
o SRR G M 2% 1 SO S, DLBS 2 I HE W 7 A
BN i TR 2 IO 45 A 85 T 2 () 230, 330 o e i 5 FH 42 T4
PFRFIEAS B TCPUEEE  BEAMAS SO 223k 1 2 L
AT 22N R Sk [ I A 4 e i =2 ) 1 52 A 52 EAE
35015 > R TB] A AR 5C 5G 2 0 3l 2870 Bl R iR A 1 s A5
BRI AR O R 1 2 > RE 7, 32 9 i A MU0 TR 2 G Bk
DI A R FNZ A RE T o e, A SGE 1 X CAD
Bl rRRIE A TR A 18 8 5K o34 AT T LA, T b
HWEL B RIRFIE S CAD A 58 22 8] Y AH GV | 1 1 52
M) SEE PR B0 ok i £ 78 1 S BEE PRL 1, B Dy I 6 T R A A A
PRt SRR B X520 CAD 0k 1Y O 8 1ok H
Al T 5522 HLHIIY BP M 4Ry CAD 21
TR, Sy 1 50k T R AR Y B A R AR S R R
TEBES A U1z 07 1 S AR R 22 i 12 v 180 B
BOyE S 36475256 7E UCL ‘B ™ Heart Disease Data Set HH
HoAth 3 A O ECHE £ 1 EAT BRI 8 2 Xof e 5256 LA
Ko 5 AT HLAS 5 TS WA 2 I B DL 25 A T X PP Ak A
BIPERE BB A RYROR

1 CAD #iETmAbiE

L1 BEEHR

FEAN R 22O IR AR R IR T UCT Mlgnsy ) Bl
JE R BT IR A HAE I 1 303 44 BEE Y CAD A
AE s, EIZERE T B E AR B A 76 4>
JEE  {E 3K 6 o P P AR B D A B R PR A T 5t 5
BYAEH H S5 B S CAD MR A WA i C R, I HAE
X 76 /> JE 1 T o3 B B A R R AR T B0 2
FNZRRRCR , AN E SR, BT ERE, 3% 5C
MR 2-7] g | B ARRAE & 1 S R AR DR B T TR B
35 76 AN JRVE P BRI AEEL B 13 DMRFIEJEPER 1A HAR
AR, ik HARAE 4 0 AR Cage) JPET (sex) YR
25 ( chest pain type, cp) . & Il JE ( resting blood
pressure, trestbps ) | Ifl 75 B [ B% 7K S ( serum cholesterol
level, chol) %5 i Il B ( fasting blood sugar, fbs) . #t 8.0



- 194 - LSRR R e o

539 &

H, 5145 SR (resting electrocardiogram result, restecg) |5 K
> ( maximum heart rate achieved, thalach) .iZ 35|
D2 (exercise-induced angina, exang) BB A X TR
Bl i) ST K ik ( exercise-induced ST depression,
oldpeak ) B s ST BB R (maximum slope of the ST
segment, slope) FEEAR Bl K 52 B9 Ot €0 Y 32 1l A 4K
H ( coronary artery, ca) . Hi i %7 1L 22 Y ( thalassemia
type, thal) Fl CAD J& A7) HA5R7AE i (prediction of the

presence of heart disease , target) "',

1.2 HiEfAE

FEE MGG CAD 85, cp FIFELE 4 A BRR(H,
thal FIFFAE 2 A ERRAE, HATRTI 7054 166,192,287
302.87.266, A 1 ALBEIXSEGRIEAE 5 HI Ty 0, {2
T cp A thal #7050 38508, A T By 1k 0 45 76 A BEECHR
K I T8 1Y O i % M AR 32 Ry A AR ), A kAR G
fith (one-hot encoding) it 5 XK FiL kX — [R) &, {1 4, 43
FEAE N1, 2, 3, A]mF, 2 gl A A b BUS R TR
) 26 s B B I UK B [ 1, 0, 0, 0] .[0, 1, 0,
0].[0,0,1,0].[0,0,0, 1], 3k, #IFEH 0 AR
FAEFR A0, 0, 0, 0], G 7 HERBI A 0 Fny B
B B T 5E 0 B 4 SR 09 i M N AZ 52, thal HiA
FEFE normal . fixed | reversible 23 W 1.2 .3 #E47 & e,
target $8H5 A CAD AR CAD 435I 1 #1047
B, SRR G — B Bt B A T BORR E AR R AT bR R Ak
B, gk T B S Y R P A A5 R R R AR A R R 1
Fs

F1 HEREZFHIEEHENRERR

Table 1 Description of feature attribute of samples
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Table 2 Performance comparison of different

feature selection methods

FEEE R T i I 1 B R 1 HET R/ %
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Fig.3 Comparison of the gender ration between the entire

dataset sample and the CAD patient subset
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Fig.7 The structure of BP neural network informed with

attention and residual mechanisms
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AR SCKE BN FEAE 48 din £ 5% 22 8 #E ( residual
adjustment ) HEATEME AR W (x) ZEFE BRSNS T B4
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MultiHead(Q ,K,V) = Concat(Att, ,Att, ,Att,) W’

(4)
Ao, WO R PR AR I Ane, Aut, Aue, 510N 3
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i B DA BN 4 22 2] A RRIE JE MR SC R L 8 L IR ST
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Bty , WAFBCE T 8 GB [ RAM, Jf7£i% CP ¥ F 2k
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Attention,(Q,,K,;,V,) = Softmax(
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KL .
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PEA e
TP
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F1 734K
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changing along with epochs
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Table 3 Sample distribution of the validation dataset
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355 JE WA B 149 51 200
it 115 8 123
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Table 4 The performance comparison of different

methods on variant datasets (%)
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Table 5 Comparison of our method with existing methods

on the Cleveland heart disease dataset
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