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摘　 要:利用激光诱导击穿光谱(laser-induced
 

breakdown
 

spectroscopy,
 

LIBS)技术对钻井岩屑元素进行分析不仅能够提供地下

地层信息,优化钻井过程,还能提高钻井的安全性和经济性。 受钻井复杂环境的影响,钻井岩屑 LIBS 普遍呈现较严重的基线漂

移现象,而现有基线校正方法容易造成基线低估或过度估计等问题。 为此,提出一种改进的自适应惩罚最小二乘法基线校正方

法,在非对称惩罚最小二乘算法基础上,引入 tanh 函数根据光谱信号的峰高自动调整权重矩阵,并利用光谱数据和估计基线的

差值和标准差设计了一种平滑参数自动调整策略,以平衡基线校正时光谱数据的平滑度与保真度之间的冲突。 在模拟光谱和

实际测量的钻井岩屑 LIBS 中进行了验证,结果表明,该方法在不同噪声程度的仿真光谱上具有更低的均方根误差值,在实测岩

屑 LIBS 上提高了元素的分析精度,Si、Ca、Mg、Al、Fe
 

5 种元素浓度预测的决定系数值分别达到了 0. 992
 

6、0. 993
 

0、0. 968
 

4、
0. 969

 

1、0. 977
 

4,均超过了 0. 96。 该方法可有效促进激光诱导击穿光谱技术在复杂油气环境下的钻井岩屑元素分析。
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Abstract:
 

The
 

analysis
 

of
 

elements
 

in
 

drilling
 

cuttings
 

using
 

laser-induced
 

breakdown
 

spectroscopy
 

( LIBS)
 

technology
 

can
 

not
 

only
 

provide
 

information
 

about
 

underground
 

formations,
 

optimize
 

the
 

drilling
 

process,
 

but
 

also
 

enhance
 

the
 

safety
 

and
 

economy
 

of
 

drilling.
 

Affected
 

by
 

the
 

complex
 

drilling
 

environment,
 

the
 

LIBS
 

of
 

drilling
 

cuttings
 

generally
 

exhibits
 

a
 

relatively
 

severe
 

baseline
 

drift
 

phenomenon,
 

while
 

the
 

existing
 

baseline
 

correction
 

methods
 

are
 

prone
 

to
 

issues
 

such
 

as
 

baseline
 

underestimation
 

or
 

overestimation.
 

Therefore,
 

an
 

improved
 

adaptive
 

penalized
 

least-squares
 

baseline
 

correction
 

method
 

is
 

proposed.
 

Based
 

on
 

the
 

asymmetric
 

penalized
 

least-squares
 

algorithm,
 

the
 

tanh
 

function
 

is
 

introduced
 

to
 

automatically
 

adjust
 

the
 

weight
 

matrix
 

according
 

to
 

the
 

peak
 

height
 

of
 

the
 

spectral
 

signal,
 

and
 

a
 

smooth
 

parameter
 

automatic
 

adjustment
 

strategy
 

is
 

designed
 

by
 

utilizing
 

the
 

difference
 

and
 

standard
 

deviation
 

between
 

the
 

spectral
 

data
 

and
 

the
 

estimated
 

baseline
 

to
 

balance
 

the
 

conflict
 

between
 

the
 

smoothness
 

and
 

fidelity
 

of
 

the
 

spectral
 

data
 

during
 

baseline
 

correction.
 

Verification
 

was
 

conducted
 

on
 

both
 

simulated
 

spectra
 

and
 

the
 

measured
 

LIBS
 

of
 

drilling
 

cuttings.
 

The
 

results
 

indicate
 

that
 

the
 

proposed
 

method
 

has
 

lower
 

root
 

mean
 

square
 

error
 

(RMSE)
 

values
 

on
 

simulated
 

spectra
 

with
 

different
 

noise
 

levels,
 

and
 

improves
 

the
 

quantitative
 

analysis
 

accuracy
 

of
 

elements
 

on
 

the
 

measured
 

LIBS
 

of
 

cuttings
 

with
 

the
 

R2
 

values
 

of
 

0. 992
 

6,
 

0. 993
 

0,
 

0. 968
 

4,
 

0. 969
 

1,
 

and
 

0. 977
 

4
 

for
 

five
 

elements,
 

namely
 

Si,
 

Ca,
 

Mg,
 

Al,
 

and
 

Fe,
 

respectively,
 

all
 

exceeding
 

0. 96.
 

It
 

can
 

effectively
 

promote
 

the
 

element
 

analysis
 

of
 

drilling
 

cuttings
 

in
 

complex
 

oil
 

and
 

gas
 

environments
 

using
 

laser-induced
 

breakdown
 

spectroscopy
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technology.
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0　 引　 言

　 　 岩屑元素定量分析在钻井过程中起着至关重要的作

用。 钻井岩屑是从地层中钻取的碎屑,分析其元素成分

可以提供地下地层的重要信息[1] ,帮助工程师优化钻井

策略和提高效率。 不同地层的矿物组成具有独特的元素

特征,分析这些特征有助于判断地层类型[2] 、选择合适的

钻井液和钻头,从而减少井壁塌方和设备磨损[3] 。 此外,
岩屑分析还可以揭示地层的孔隙度和渗透率,优化油气

勘探和开采计划,提高经济效益。 异常元素浓度变化还

能用于监测地质不稳定或污染问题[4] ,增强钻井的安全

性和经济性[5] 。
激 光 诱 导 击 穿 光 谱 ( laser-induced

 

breakdown
 

spectroscopy,LIBS)是一种元素检测技术,以其非接触、快
速、高灵敏度和多元素分析的特点,成为强大的分析工

具,在钻井工程中逐渐引起重视[6] 。 LIBS 通过高能激光

脉冲激发岩屑样本,使其表面产生等离子体,通过分析等

离子体发出的光谱来确定钻井岩屑的元素组,提供地下

地层的详细信息。 然而,LIBS 的分析结果受多种因素影

响,包括样品的物理状态和化学成分、激光脉冲的能量和

频率、环境条件的稳定性,以及光谱仪的灵敏度和分辨率

等[7-8] 。 这些因素直接影响到等离子体的形成和稳定性,
进而影响光谱的信噪比和峰形特征,从而影响到元素的

检测限、定量分析的精度[9] ,最终影响到钻井岩屑样品中

元素种类和浓度的准确性和可靠性评估。
通过有效的基线校正方法[10-14] ,可以消除光谱中由

于仪器本身或环境干扰引起的背景信号,如连续背景光、
大气吸收和其他光谱仪系统的噪声[15] ,较大程度地提高

LIBS 技术在不同应用领域中的实用性和应用价值,提供

更加精确、可靠的元素分析结果。 偏最小二乘法( partial
 

least
 

squares,
 

PLS)因其在处理高维数据时的高效性,以
及对异常值和噪声的出色鲁棒性而备受研究者的青睐。
PLS 通过采用 Whittaker 平滑策略,初步确定基线,并为

位于基线之上的数据点赋予较低的权重,通过迭代不断

优化,直至达到所需的精确度,从而有效地消除光谱数据

中的背景干扰。 但不同的权重函数和权重策略极大地影

响了基线校正的性能,因此,近年来在这一领域出现了许

多研究。 Boelens 等[16] 最先提出了非对称(惩罚)最小二

乘法
 

(asymmetric
 

( penalised)
 

least
 

squares,
 

AsLS)
 

并将

其应用于光谱信号基线校正,通过将平滑参数与非对称

加权相结合,实现了频谱拟合基线的灵活调整。 Zhang
等[17] 提 出 了 自 适 应 迭 代 重 加 权 惩 罚 最 小 二 乘

法
 

(adaptive
 

iterative
 

reweighted
 

penalised
 

least
 

squares,
 

airPLS),自适应迭代重加权过程与
 

AsLS
 

方法类似,通过

基于信号和修正基线之间的差异分配权重,使得算法的

收敛速度显著提高,具有很强的实用性,成为目前最流行

的惩罚最小二乘基线校正算法。 同时,He 等[18] 通过向

AsLS 目标函数添加一阶导数约束项,提出了一种改进的

非对称最小二乘法 ( improved
 

asymmetric
 

least
 

squares,
 

IASLS)来校正基线,使其可预测性性能进一步提高。
Baek 等[19] 提出了一种非对称重加权惩罚最小二乘平滑

方 法 ( asymmetric
 

reweighted
 

penalised
 

least
 

squares,
 

arPLS),通过引入广义逻辑函数自适应获得权重,可适用

于不同的噪声环境。 Zhang 等[20] 提出一种自适应平滑参

数惩 罚 最 小 二 乘 法 ( adaptive
 

smoothing
 

parameter
 

penalised
 

least
 

squares,
 

asPLS) 的基线校正方法,通过在

峰区设置较大的平滑参数,在无峰区设置较小的平滑参

数,实现了平滑参数的自动调整。 虽然该方法能够获得

较好的效果,但是 asPLS 方法引入了新的参数,增加了复

杂度。 Li 等[21] 提出了一种自适应扩展高斯峰值导数重

新加权惩罚最小二乘法( adaptive
 

extended
 

Gaussian
 

peak
 

derivative
 

reweighted
 

penalised
 

least
 

squares,agdPLS)来消

除光谱中的基线漂移,该方法将扩展高斯峰添加到光谱

中,在迭代过程中添加光谱和基线差异的导数项,并自适

应调整惩罚系数。 Dong 等[22] 设计了一种改进的非对称

最小二乘平滑 ( optimized
 

asymmetric
 

least
 

squares,
 

O-
ALS)算法,根据被测光谱的二阶凹点个数选择合适的平

滑因子,基于估计基线和测量频谱之间的差异,在每次迭

代中自适应地优化非对称惩罚因子。 这些基线校正方法

通过优化和改进偏最小二乘算法的权重参数,能够在一

定程度上提升基线校正算法的性能,但却忽略了平衡参

数 λ 对于校正性能的影响。
在钻井现场, 由于地质条件和操作环境的复杂

性[23] ,钻井岩屑的激光诱导击穿光谱常常会出现较大的

基线漂移。 而现有基线校正方法大多应用于拉曼光谱,
极少数应用于激光诱导击穿光谱,特别是钻井岩屑方面。
因此,本文提出一种针对钻井岩屑激光诱导击穿光谱的

改进自适应惩罚最小二乘法基线校正方法,其核心思想

是利用已知的光谱数据和估计基线的差值和标准差,通
过迭代改变 tanh 函数构建新的权重更新策略,并设计了

新的自动调整平滑参数的方法,来自适应调整平滑参数

和权重,以提升激光诱导击穿光谱基线校正的性能。 为

了验证该方法在不同基线上的有效性和通用性,在模拟

光谱和实际测量的激光诱导击穿光谱中,将所提出的方

法与 airPLS、arPLS 和 asPLS 进行了比较,预测了钻井岩
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屑中的 Ca、Si、Mg、Al 和 Fe
 

5 种元素的浓度,并比较了不

同方法处理后特征谱线强度与元素浓度之间的相关系

数,通过模拟实验和定量实验验证了该方法的有效性和

实际适用性。

1　 自适应惩罚最小二乘法基线校正算法

1. 1　 惩罚最小二乘法

　 　 设原始信号是长度为 N 的数据序列 y = (y1,y2,…,
yN),用一平滑序列 z = ( z1,z2,…,zN) 表示待估计的基线。
该算法通过最小化以下目标函数将原始序列 y 平滑为平

滑序列 z :
S( z) = (y - z) T(y - z) + λzTDTDz (1)

式中: D 为二阶差分矩阵。

D =

1 - 2 1 0 … 0 0 0
0 1 - 2 1 … 0 0 0
︙ ︙ ︙ ︙ ⋱ ︙ ︙ ︙
0 0 0 0 … 1 - 2 1

( ) (2)

其中,( y - z) T ( y - z) 表示 z 对数据 y 的保真度,
λzTDTDz 表示 z 的光滑度。 保真度和光滑度之间的平衡

由平滑参数 λ控制。 λ越大, z越平滑,对于原始信号 y的
保真度就越低。 为了平衡这二者间的冲突,为每个点引

入一个权重 w i ,构造权重矩阵 W = diag(w1,w2,…,wN)
来获得平滑的基线。 因此,式(1) 中的目标函数变为如

下形式:
S( z) = (y - z) TW(y - z) + λzTDTDz (3)
令偏导数为 0,得到最小化方程的解为:
z = (W + λDTD) -1Wy (4)
在 AsLS 方法中,引入不对称参数 p 来分配权重 w i,

如式(5) 所示,并推荐设置 p 在 0. 001 ~ 0. 01 之间。 而平

滑参数 λ 一般取很大的值,其范围为 102 ~ 109。 由于优

化目标是凸函数,迭代过程会很快收敛。

w i =
p,y i > zi
1 - p,y i ≤ zi

{ (5)

在该算法中,权重 w i 根据 y i 与 zi 之间的关系进行赋

值:当光谱信号高于估计基线时,认为其属于光谱信号部

分,给较小的权重 p ;当光谱信号低于估计基线时,认为

其属于基线部分,给较大的权重 1 - p 。 由于 p 值为事先

给定的,对于长度为 N 的光谱数据,尤其是包含不同信号

峰高度的数据,如重叠峰区域,这种固定的权重分配可能

不太合理。
1. 2　 改进算法原理

　 　 针对上述存在的问题,提出了一种改进的自适应惩

罚最小二乘法基线校正算法( improved
 

adaptive
 

penalty
 

least
 

squares,
 

IAPLS),设计新的自动调整平滑参数的方

法且不增加新的参数,并基于 tanh 函数重新给出了权重

更新策略,避免实际应用于激光诱导击穿光谱是产生基

线高估或低估现象。
本文算法的核心思想是利用已知的光谱数据和估计

基线的差值来自适应的调整平滑参数 λ 和权重。 将权重

矩阵 W 初始设置为全 1 矩阵,然后给平滑参数 λ 一个初

始值,求解式(4)得到初始基线 z。 而在迭代过程中,权
重 w i 可以通过式(6)自动更新。

w i =
(tanh(σ d -

) + 1) / 2,y i ≤ zi
(tanh( - d i / σ d -

) + 1) / 2,y i > zi
{ (6)

式中: d 是原始信号 y 和拟合基线信号 z 之间的差值; d -

由 d的负元素组成; σ d -
是 d - 的标准差。 给定标准差,在

光谱数据与估计基线的差值 d < 0 的部分,即 y i < zi 时,
此时基线可能处于高估状态,随着标准差的增大,权重也

会增大,使得在下一次迭代时拉低基线;当标准差为 0
时,权重处在 0. 5 左右,因此具有去噪效果,估计基线不

会被噪声拉低;而当 d > 0 时,此时可能处于有峰的地

方,随着 d 的增加,权重逐渐变小,故有峰处基线不会被

抬高。
同时,平滑参数 λ 根据式(7)进行自动调整。
λ = max(abs(y i - zi)) × σ d -

(7)
式中: σ d -

是 d - 的标准差。 将式(7)代入式(4)就可以实

现平滑参数的自动更新调整且不增加额外的未知参数,
同时也能使得拟合的基线 z 更接近所有区域的基线。 迭

代达到最大迭代次数或满足以下终止条件时停止。
| d | < 0. 001 × y (8)

1. 3　 算法实现

　 　 IAPLS 基线校正算法的步骤如下:
步骤 1)载入需要进行基线拟合估计的原始光谱数

据 y ,设置初始平滑参数 λ ,范围为 102 ~ 109;
步骤 2)对权重进行初始化 w0 = [1,1,…,1] ,则权

重矩阵 W 是一个稀疏对角矩阵, W = diag(w1,w2,…,
wN),N 为光谱数据点个数;

步骤 3)将初始权重矩阵W0 代入式(4),计算初始估

计基线, z0 = (W0 + λDTD) -1W0y;
步骤 4)判断是否满足迭代终止条件,若不满足转步

骤 5),否则转步骤 8);
步骤 5)计算 LIBS 数据和估计基线之间的差值信号

d = y - z ,计算每个点的差值信号的绝对值,得到最大值,
取差值信号的负值部分 d - ,并计算标准差 σd -

;
步骤 6)将最大值和标准差 σd -

代入式(7),得到更

新后的平滑参数 λ;
步骤 7)将差值信号 d 和标准差 σd -

代入式(6),使
用 tanh 函数对权重进行迭代得到更新后的 W ,将更新后

的 W 和更新后平滑参数 λ 的重新代入式(4),得到新的
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估计基线;
步骤 8)迭代终止,用原始光谱减去最终的估计基线

即可实现 LIBS 数据的基线校正。
综上所述,可以得到本文基线校正算法流程如图 1

所示。

图 1　 IAPLS 基线校正算法流程

Fig. 1　 Flow
 

chart
 

of
 

the
 

IAPLS
 

baseline
 

correction
 

algorithm

2　 实验结果及分析

2. 1　 模拟 LIBS 光谱仿真实验

　 　 1)模拟数据

本文模拟光谱数据由模拟谱峰信号、模拟基线和随

机噪声 3 部分组成。 模拟光谱的产生过程如下:首先,随
机确定峰的数量和位置,以便可以表达各种峰,峰的数量

设置在 5 ~ 50 之间;其次,在一定范围内随机选择和宽

度,在本文实验中,峰的宽度设置在 0. 025 ~ 1
 

nm 之间,
峰的高度设置在 5 ~ 21 之间,使用汉宁窗对光谱峰进行

建模;最后,由于频谱基线容易出现线性和非线性漂移,
使用锚点和插值法对基线进行建模,能够更好的模拟出

漂移的基线,将锚点的数量设置在 2 ~ 8 之间,通过三次

样条插值法生成长度为 1
 

000 的基线。
通过基线、光谱峰和附加的高斯白噪声叠加形成最

终的模拟光谱。 使用这种方式能够生成更加复杂的基

线,更适用于测试基线校正算法的有效性。 图 2 所示分

别为随机生成的两种不同基线分别在 10、20
 

dB 两种信

噪比(signal-to-noise
 

ratio,
 

SNR)情况下的模拟光谱。

图 2　 两种不同基线类型两种不同信噪比的模拟光谱

Fig. 2　 Simulated
 

spectra
 

with
 

two
 

different
 

baseline
 

types
 

and
 

two
 

different
 

signal-to-noise
 

ratios
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　 　 2)方法对比与结果讨论

为了更好的评估所提出的方法,利用 airPLS、arPLS
和 asPLS 方法和本文提出的算法 IAPLS 进行比较。 采用

真实基线和估计基线的均方根误差( RMSE)来比较方法

的性能。 RMSE 计算公式如下:

RMSE =
∑

N

i = 1
(b i -b i

^
) 2

N
(9)

式中: b 是真实基线; b̂ 是估计基线; N 表示光谱数据点

数。 均方根误差的值越小,说明基线校正的准确性越高。
图 3 所示为 4 种方法在 4 个模拟光谱上的均方根误差与

平滑参数 λ 的变化关系。 可以看出,在 4 个模拟光谱上,

在平滑参数 λ 遵循的选取原则范围内,本文提出的算法

IAPLS 对不同基线、不同噪声均具有较小的 RMSE 值,且
变化较小,表明本文算法提出的方法具有很强的自适应

能力。
选取 RMSE 最小值对应的 λ 作为最优平滑参数,用

作 airPLS、arPLS 和 asPLS 方法的最优参数,用作后续实

验验证。 选取 4 种方法的 RMSE 变化最小范围内对应的

λ 值作为最优 λ 值范围,如表 1 所示,可见,airPLS、arPLS
和 asPLS 方法对不同基线、不同噪声所对应的最优 λ 值

范围不同,应用于不同类型的光谱,所需的参数难以确

定,而本文方法对不同基线、不同噪声所对应的最优 λ 值

范围相同,说明本文方法具有较强的鲁棒性。

图 3　 4 种方法在 4 个模拟光谱上的 RMSE 与平滑参数 λ 的变化关系

Fig. 3　 The
 

variation
 

relationships
 

between
 

RMSE
 

and
 

smoothing
 

parameter
 

λ
 

of
 

the
 

four
 

methods
 

on
 

the
 

four
 

simulated
 

spectra

表 1　 4 种方法在 4 个模拟光谱的平滑参数 λ 最优值范围

Table
 

1　 The
 

optimal
 

value
 

ranges
 

of
 

λ
 

for
 

the
 

four
 

methods
 

on
 

the
 

four
 

simulated
 

spectra
方法 模拟光谱 I 模拟光谱 II 模拟光谱 III 模拟光谱 IV

airPLS 102 ~ 103 103 ~ 104 102 ~ 103 104 ~ 105

arPLS 105 ~ 106 104 ~ 105 104 ~ 105 105 ~ 106

asPLS 106 ~ 107 106 ~ 107 106 ~ 107 105 ~ 106

IAPLS 106 ~ 107 106 ~ 107 106 ~ 107 106 ~ 107

　 　 图 4 所示为 4 种方法在模拟光谱 III、模拟光谱 IV 下

的估计基线及 200 ~ 600
 

nm 范围内的局部放大图。 对比

图 4(a)和(c)可以看出,当噪声较大时,airPLS 方法得到

的估计基线偏离真实基线的程度最大,这与其权重函数
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设置相关,没有考虑到噪声的影响;从局部放大图可以观

察到,arPLS 在有峰处会产生抬升的基线,容易导致校正

后峰的强度变弱,而 asPLS 的估计基线低于真实基线,均
受到噪声的明显影响。 与 airPLS、arPLS 和 asPLS 方法相

比,本文提出的方法在两种信噪比下均具有较好的效果,

产生的估计基线几乎与真实基线重合。 4 种基线校正方

法在 4 个模拟光谱上的 RMSE 值如表 2 所示,本文提出

的 IAPLS 算法均具有最小的 RMSE 值,表明本文算法具

有最好的基线拟合效果。

图 4　 4 种方法对模拟光谱 III、模拟光谱 IV 的估计基线

Fig. 4　 The
 

estimated
 

baselines
 

of
 

simulated
 

Spectrum
 

III
 

and
 

simulated
 

Spectrum
 

IV
 

by
 

the
 

four
 

methods

表 2　 模拟光谱上 4 种方法的 RMSE 值

Table
 

2　 RMSE
 

values
 

of
 

the
 

simulated
 

spectra
 

by
 

the
 

four
 

methods
方法 模拟光谱 I 模拟光谱 II 模拟光谱 III 模拟光谱 IV

airPLS 1. 110
 

6 0. 294
 

3 0. 801
 

3 0. 267
 

3
asPLS 0. 120

 

6 0. 043
 

1 0. 156
 

7 0. 051
 

1
arPLS 0. 089

 

5 0. 072
 

1 0. 054
 

3 0. 040
 

0
IAPLS 0. 055

 

0 0. 033
 

3 0. 046
 

8 0. 023
 

3

　 　 为了进一步测试本文算法对不同噪声情况下光谱的

适应性,图 5 所示为本文算法与 airPLS、arPLS 和 asPLS
算法在不同信噪比下的 RMSE 变化情况。 可以看出,
airPLS 算法在低信噪比下效果较差,具有较高的误差,
asPLS、arPLS 及本文算法效果依次提高。 本文提出的

IAPLS 算法,具有更低的 RMSE 变化,均方根误差平稳的

保持在较小范围内(0. 015
 

3,0. 163
 

9)。 因此,本文算法

对不同噪声下光谱的适应性更强,具有较好的噪声消除

效果。
将本文提出的自适应调整平滑参数方法和权重分配

方案应用于 4 个模拟光谱,得到迭代过程中的 λ 变化情

况如表 3 所示。 可以看出,权重只需迭代两次就达到迭

代停止条件,每一次迭代所产生的 λ 值都在表 1 中最优

λ 值范围内,且平滑参数值在迭代过程中具有较大的变

化,并不是单一的值,说明本文方法能够根据光谱数据自

适应调整平滑参数。
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图 5　 4 种方法不同噪声下模拟光谱的 RMSE 变化情况

Fig. 5　 The
 

variation
 

of
 

RMSE
 

values
 

of
 

the
 

four
 

methods
on

 

the
 

simulated
 

spectra
 

under
 

different
 

noises

表 3　 算法迭代过程中平滑参数 λ 变化情况

Table
 

3　 The
 

variation
 

of
 

the
 

smoothing
 

parameter
 

λ
during

 

algorithm
 

iteration
 

process
模拟光谱 I 模拟光谱 II 模拟光谱 III 模拟光谱 IV

第 1 次迭代 4
 

694
 

755. 8 2
 

784
 

533. 8 2
 

014
 

967. 8 3
 

347
 

124. 1
第 2 次迭代 3

 

623
 

815. 7 1
 

319
 

599. 9 963
 

582. 4 2
 

410
 

570. 4

2. 2　 钻井岩屑 LIBS 光谱分析实验

　 　 1)实验数据

本文搭建了岩屑样品 LIBS 采集实验平台,如图 6 所

示,系统由电磁粉碎机、手动压片机、LIBS 光谱仪组成。
本文所用电磁粉碎机为 DF-4 电磁制样粉碎机,利用电磁

吸力原理,驱动料管迅速将物料打碎成细微状态,工作电

压为 220
 

V,工作电流为 6
 

A,碎料时间 0 ~ 5
 

min,进料粒

度≤15
 

mm,出料粒度 200 目。 采用 HY-12 手动压片机,
额定压力 36

 

MPa,极限压力 45
 

MPa。 采用艾立本公司的

LIBS 光谱仪,该光谱仪的激光源为叠阵端泵 AQE 激光器

作为岩屑样品的激发光源,其触发模式为外触发,工作频

率为 10
 

Hz,泵浦电流脉宽为 300
 

μs,限制电流为 85
 

A,
输出电压为 30

 

V,单次触发时间设置为 500
 

ms,触发次

数设置为 30 次。 光谱仪为 4 通道光纤光谱仪,波长范围

为 179. 993 ~ 986. 903
 

nm,积分时间为 5
 

ms,光谱分辨率

为 0. 12
 

nm,延迟时间为 0
 

ns。 样品被放置在自动控制样

品步进位移的平台支撑位置上,通过计算机设定运动轨

迹,使激光能够在每次作用时命中样品表面的不同位置,
通过多次打点取均值,从而在一定程度上减小背景噪声

对结果的干扰。

图 6　 实验系统

Fig. 6　 The
 

experiment
 

system

　 　 采样时,在常温常压环境下,首先取适量干燥岩屑物

质放入粉碎机,电磁研磨 2
 

min,将其研磨为 200
 

μm 粒径

的岩屑粉末,然后取约 3
 

g 岩屑粉末放入直径为 30
 

mm
的模具中,利用手动压片机在 10

 

MPa 下压制成圆饼,使

样品表面平整,再将制成的圆饼放入 LIBS 光谱仪中,取
30 个检测点的光谱数据平均值作为一个样本的原始光

谱数据,以进一步减少样品不均匀性对实验的影响。 图

7 所示为经过不同处理后得到的岩屑样本图片。

图 7　 不同处理过程的岩屑样本图片

Fig. 7　 The
 

images
 

of
 

the
 

sample
 

with
 

different
 

processes
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　 　 国家标准岩屑样品及钻井岩屑样品均通过上述流程

采集获得光谱数据,其中,99 个国标岩屑样品的光谱图

如图 8 所示,图 8( b) 为图 8( a) 中国标样品 GBW07114

的光谱图,可以观察到明显的基线漂移现象。 表 4 为部

分岩屑标准样品的国标编号和 Ca、Si、Mg、Al、Fe
 

5 种元

素的真实浓度含量。

图 8　 岩屑样品光谱图

Fig. 8　 Spectra
 

of
 

cuttings
 

samples

表 4　 部分岩屑标准样品的国标编号和 Ca、Si、Mg、Al、Fe
 

5 种元素的真实浓度含量

Table
 

4　 GB
 

numbers
 

(National
 

Standard
 

codes)
 

and
 

certified
 

concentrations
 

of
 

Ca,
 

Si,
 

Mg,
 

Al,
 

and
 

Fe
 

in
 

selected
 

rock
 

chip
 

reference
 

materials (%)
样品编号 Si Ca Mg Al Fe

GBW07152 34. 765
 

4 0. 239
 

4 0. 032
 

5 7. 811
 

3 0. 323
 

7
GBW07153 30. 216

 

9 0. 054
 

3 0. 021
 

7 10. 118
 

8 0. 226
 

0
GBW07733 30. 011

 

2 0. 100
 

0 0. 036
 

1 13. 415
 

9 0. 322
 

4
GBW07734 30. 086

 

0 0. 050
 

0 0. 021
 

1 13. 378
 

8 0. 309
 

2
GBW07735 34. 718

 

6 0. 192
 

9 0. 028
 

9 8. 404
 

1 0. 142
 

9
GBW07114 0. 289

 

3 21. 442
 

8 13. 080
 

0 0. 052
 

9 0. 028
 

0
GBW07136 3. 850

 

0 23. 621
 

4 10. 800
 

0 0. 052
 

9 0. 039
 

9
GBWE070157 3. 929

 

3 20. 521
 

4 11. 856
 

0 0. 635
 

2 0. 332
 

5
GBWE070158 0. 872

 

6 21. 585
 

7 12. 510
 

0 0. 108
 

5 0. 170
 

8
GBWE070159 1. 008

 

0 21. 535
 

7 12. 546
 

0 0. 132
 

3 0. 173
 

6
GBWE070160 2. 436

 

0 21. 071
 

4 12. 258
 

0 0. 373
 

7 0. 249
 

9
GBW07103 33. 987

 

3 1. 107
 

1 0. 252
 

0 7. 094
 

1 1. 498
 

0
GBW07104 28. 289

 

3 3. 714
 

2 1. 032
 

0 8. 560
 

5 3. 430
 

0
GBW07105 20. 832

 

0 6. 292
 

8 4. 662
 

0 7. 321
 

7 9. 380
 

0
GBW07109 25. 424

 

0 0. 992
 

8 0. 390
 

0 9. 381
 

1 5. 184
 

6
GBW07110 29. 428

 

0 1. 764
 

2 0. 504
 

0 8. 523
 

5 3. 304
 

7

　 　 2)钻井岩屑 LIBS 光谱基线校正

应用上述 4 种方法对采集的所有岩屑 LIBS 光谱进

行了基线校正,图 9 所示为图 8(b)所示光谱基线校正情

况。 可见,4 种方法均成功实现 LIBS 光谱的基线校正。
从局部放大图看,airPLS 方法生成的基线明显低于原始

光谱数据且偏离幅度较大,存在低估基线的现象,这与模

拟实验结果一致;arPLS 和 asPLS 方法在有峰处容易产生

类似谱峰的基线,存在基线过度估计的现象,容易导致有

效信息的丢失;本文方法产生了较为稳定的基线,在无峰

处可有效去除噪声的影响,在有峰处紧密跟随光谱的下

部轮廓,保证了拟合曲线的稳定和平滑。
为验证本文算法对钻井岩屑 LIBS 光谱定量分析的

影响,在 99 个钻井岩屑标准物质的 LIBS 光谱数据集上

建立了偏最小二乘回归分析模型[24] ,以预测不同岩屑样

品中 Ca、Si、Mg、Al、Fe 等元素的含量。 光谱数据集分为

训练集和测试集两组,训练集 ∶ 测试集 = 4 ∶ 1。 为了评

价模型的性能,采用决定系数 R2 和 RMSE 两个指标评估

定量分析模型性能,其中决定系数表示的是实际值与预
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图 9　 钻井岩屑实测 LIBS 光谱数据估计基线与校正结果

Fig. 9　 Estimated
 

baselines
 

and
 

correction
 

results
 

of
 

the
 

measured
 

LIBS
 

spectral
 

data
 

of
 

drilling
 

cuttings

测值之间的相关性,该值参考范围为(0,1),越接近于 1
意味着该模型的拟合优度越高。 误差评价指标反映了实

际值与预测值的差异,均方根误差数值越小代表模型预

测精度越高,决定系数公式如式(10)所示。

R2 = 1 -
∑

N

i = 1
(y i -ŷ i)

2

∑
N

i = 1
(y i -y- i)

2
(10)

式中: i为测量样本序号; N为测量样本数量; y i 为第 i个

测量样本实际浓度值; ŷ i 为第 i 个测量样本预测浓度;y-

为 N 个样本真实浓度的均值。
分别采用 4 种基线校正方法后,利用偏最小二乘回

归方法对 Ca、Si、Mg、Al、Fe 等 5 种元素浓度进行了定量

分析,其相关系数和均方根误差如表 5 所示。 与未进行

基线校正的 PLS 模型相比,基线校正后的 PLS 模型性能

均有所提高,说明基线校正可以提高模型的精度。 IAPLS
方法得到的 R2 和 RMSE 值明显优于 airPLS、 asLS 和

arPLS,能够有效去除实际岩屑光谱基线,提高光谱强度

与浓度之间的线性相关性,提高元素浓度预测精度,Si、

Ca、Mg、Al、Fe
 

5 种元素浓度预测的 R2 值分别达到了

0. 992
 

6、0. 993
 

0、0. 968
 

4、0. 969
 

1、0. 977
 

4。

3　 结　 论

　 　 本文提出了一种改进的自适应惩罚最小二乘法基线

校正方法,在非对称惩罚最小二乘法基础上,引入 tanh
函数根据光谱信号的峰高自动调整权重矩阵,并利用光

谱数据和估计基线的差值和标准差设计了一种平滑参数

自动调整策略,以平衡基线校正时光谱数据的平滑度与

保真度之间的冲突。 模拟光谱的实验结果表明,本文方

法在不同噪声及不同基线情况下,能有效去除使光谱抬

高的基线和部分噪声,而不会出现较为严重的基线低估

或高估,比 airPLS、arPLS 和 asPLS 方法获得了更好的性

能。 在应用于钻井岩屑激光诱导击穿光谱实验中,利用

该方法及 airPLS、arPLS 和 asPLS 方法对实测 LIBS 光谱

进行基线校正后,采用偏最小二乘法预测钻井岩屑中

Ca、Si、Mg、Al 和 Fe 元素含量。 实验结果表明,采用本文
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　 　 　 表 5　 偏最小二乘回归方法结合不同基线校正方法的定量分析效果

Table
 

5　 Quantitative
 

analysis
 

performance
 

of
 

partial
 

least
 

squares
 

regression
combined

 

with
 

different
 

baseline
 

correction
 

methods
PLS Si Ca Mg Al Fe

Method R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
original 0. 932

 

4 3. 318
 

9 0. 957
 

4 2. 957
 

4 0. 911
 

6 0. 724
 

7 0. 767
 

7 2. 033
 

3 0. 758
 

2 0. 940
 

6
airPLS 0. 975

 

6 2. 542
 

7 0. 988
 

8 2. 506
 

5 0. 962
 

8 0. 561
 

1 0. 903
 

2 1. 696
 

5 0. 889
 

7 0. 796
 

0
arPLS 0. 975

 

3 2. 581
 

4 0. 980
 

4 2. 770
 

6 0. 947
 

1 0. 611
 

6 0. 908
 

2 1. 661
 

4 0. 885
 

2 0. 809
 

9
asPLS 0. 952

 

1 3. 099
 

5 0. 979
 

6 2. 855
 

8 0. 925
 

9 0. 642
 

3 0. 933
 

3 1. 632
 

0 0. 964
 

9 0. 780
 

7
IAPLS 0. 992

 

6 2. 238
 

2 0. 993
 

0 2. 268
 

8 0. 968
 

4 0. 527
 

3 0. 969
 

1 1. 518
 

3 0. 977
 

4 0. 743
 

1

方法进行钻井岩屑 LIBS 光谱基线校正后,5 种元素浓度

预测的相关系数均高于 0. 96。 本文方法显著提高了钻

井岩屑元素预测浓度的准确性,可有效促进激光诱导击

穿光谱技术在复杂油气环境下的钻井岩屑元素分析。
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