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Abstract: The analysis of elements in drilling cuttings using laser-induced breakdown spectroscopy ( LIBS) technology can not only
provide information about underground formations, optimize the drilling process, but also enhance the safety and economy of drilling.
Affected by the complex drilling environment, the LIBS of drilling cuttings generally exhibits a relatively severe baseline drift
phenomenon, while the existing baseline correction methods are prone to issues such as baseline underestimation or overestimation.
Therefore, an improved adaptive penalized least-squares baseline correction method is proposed. Based on the asymmetric penalized
least-squares algorithm, the tanh function is introduced to automatically adjust the weight matrix according to the peak height of the
spectral signal, and a smooth parameter automatic adjustment strategy is designed by utilizing the difference and standard deviation
between the spectral data and the estimated baseline to balance the conflict between the smoothness and fidelity of the spectral data
during baseline correction. Verification was conducted on both simulated spectra and the measured LIBS of drilling cuttings. The results
indicate that the proposed method has lower root mean square error (RMSE) values on simulated spectra with different noise levels, and
improves the quantitative analysis accuracy of elements on the measured LIBS of cuttings with the R* values of 0.992 6, 0.993 0,
0.968 4, 0.969 1, and 0. 977 4 for five elements, namely Si, Ca, Mg, Al, and Fe, respectively, all exceeding 0. 96. It can effectively

promote the element analysis of drilling cuttings in complex oil and gas environments using laser-induced breakdown spectroscopy
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Fig. 1 Flow chart of the IAPLS baseline correction algorithm
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Fig. 8 Spectra of cuttings samples

x4 HoEREREERNERSKSH Ca,Si.Mg Al Fe 5 MITTENEIRKESE
Table 4 GB numbers ( National Standard codes) and certified concentrations of Ca, Si, Mg, Al, and Fe

in selected rock chip reference materials (%)
FE S Si Ca Mg Al Fe
GBWO07152 34.765 4 0.239 4 0.0325 7.8113 0.3237
GBWO07153 30.216 9 0.054 3 0.021 7 10. 118 8 0.226 0
GBWO07733 30.011 2 0.100 0 0.036 1 13.4159 0.322 4
GBW07734 30.086 0 0.050 0 0.021 1 13.378 8 0.309 2
GBWO07735 34.718 6 0.1929 0.028 9 8.404 1 0.142 9
GBWO07114 0.289 3 21.442 8 13.080 0 0.052 9 0.028 0
GBWO07136 3.850 0 23.621 4 10. 800 0 0.052 9 0.039 9
GBWEQ070157 3.9293 20. 521 4 11.856 0 0.635 2 0.3325
GBWEQ070158 0.872 6 21.5857 12.5100 0.108 5 0.170 8
GBWE070159 1.008 O 21.5357 12.546 0 0.1323 0.173 6
GBWE070160 2.436 0 21.071 4 12.258 0 0.373 7 0.249 9
GBWO07103 33.987 3 1.107 1 0.252 0 7.094 1 1.498 0
GBW07104 28.289 3 3.714 2 1.0320 8.560 5 3.430 0
GBWO07105 20.832 0 6.292 8 4.662 0 7.3217 9.380 0
GBWO07109 25.424 0 0.992 8 0.390 0 9.381 1 5.184 6
GBWO7110 29.428 0 1.764 2 0.504 0 8.5235 3.304 7
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Fig.9 Estimated baselines and correction results of the measured LIBS spectral data of drilling cuttings

DN Z 18] AR P I (S T (0, 1) BHZIE T 1
EWREZE RS PR R, IRZEVFN 5 b SO 1 5
P L5 T L A 22 S | 3575 AR R 2 UL/ QR A Y 15
TDkS RE MRy, PRE R RA XA (10) PR,

N
z (5 _5’1')2
i=1

21 (v, =7’
Ko i IR REA TS NI EAEA Ry, WA
AR ARSEBRVR BEAE 5 y, S ¢ I AR AR T R B 5
KN AR LR B A P E

SR 4 Fh LA E T, R D /) —3fe ]
A7 8% Ca Si Mg Al Fe %5 5 FoC Rk AT T &
G307, HARSC R BB Oy R iR 2= 3R 5 R, SR T
FEAALIER) PLS FEAUAH LE , B2 1F J5 /9 PLS AR fig
YA T, BB LA E W] AR AR RS FE . TAPLS
JrEE45 3 i R® A1 RMSE {8 B %A T airPLS | asLS #il
arPLS, BB A R0 2 B S bR i il S 4k, 48 R 't i o
e B 22 [) B 2 MR DG, 2 o 3R R R RGBS

R =1 (10)

Ca Mg, Al Fe 5 FOCER WM R* EHHIEB] T
0.992 6.0.993 0.,0. 968 4.0.969 1.0.977 4,

3 & i

ARSCHE T — P Y 3 AR BN ek SRR
My %, 70 A X AR FE T fe /N 3L Al L, 51 A tanh
PRSCR A1 5 5 19 0 w55 11 3 ) 48 AR 4 o, 5 A O
TR G T SRR A 25 (AR E 22 V0T T — FPoF 1 240
] Bl PR M | LA A 3 2 4 T o 6% B B S
PREEEZ IR ph2e . BLRDETE S0 g 45 R, A SOy
AEARRIME R IO R LG 0T, B8 A 2 BRI GIE 4
T A SR A A MR 7 | T R 2 B A O T T Y SRR AR A
S E Al L airPLS  arPLS 1 asPLS J5 B 3545 1 0 S 1k
BE. TENH TR A B EOLE S & e sc i b, FIUTH
7 K airPLS  arPLS I asPLS J5 B X% 52 LIBS ik
HEATIELR AL IE S5, 2R A o /Dy — 3 o 1000 6 25 )8 v
Ca.Si Mg Al il Fe JCE i, SCHRZERFM R A



5% 8 HCHE Y B 3E N AT R/ N e R A TE T T A I E Ot s 2 - 239 -
x5 RROATEREAGTEESTRAEEZRERTENEE SRR
Table 5 Quantitative analysis performance of partial least squares regression
combined with different baseline correction methods
PLS Si Ca Mg Al Fe

Method R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE

original 0.932 4 3.3189 0.957 4 2.957 4 0.911 6 0.724 7 0.767 7 2.0333 0.758 2 0.940 6

airPLS 0.975 6 2.542 7 0.988 8 2.506 5 0.962 8 0.561 1 0.903 2 1.696 5 0.889 7 0.796 0

arPLS 0.9753 2.581 4 0.980 4 2.770 6 0.947 1 0.6116 0.908 2 1.661 4 0.885 2 0.809 9

asPLS 0.952 1 3.099 5 0.979 6 2.8558 0.9259 0.642 3 0.9333 1.6320 0.964 9 0.780 7

TAPLS 0.992 6 2.238 2 0.993 0 2.268 8 0.968 4 0.527 3 0.969 1 1.518 3 0.977 4 0.743 1
Ik T A TS LIBS JGig AL IE S 5 Fc R Wk breakdown spectroscopy [ J 1. Optics letters, 2021,
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