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摘　 要:齿轮箱是一种机械传动装置,针对齿轮箱复合故障信号非线性、不平稳导致状态识别效果不佳的问题,提出了一种基于

多尺度韦伯色散熵图神经网络(WB-MDEGNN)的齿轮箱复合故障诊断方法。 首先,使用韦伯分布( Weibull
 

distribution,
 

WB)来

线性化、平稳化振动信号,得到更加敏锐的齿轮箱状态信息,然后用多尺度色散熵(multi-scale
 

dispersion
 

entropy,MDE)提取给定

序列的量化特征,并构建节点特征矩阵,其次使用 K-近邻算法(k-nearest
 

neighbor,KNN)提取节点特征的相关性,并构建边索引

矩阵,将节点特征矩阵与边索引矩阵组合来构建特征图,最后将特征图输入到图神经网络( graph
 

neural
 

networks,GNN)模型,来
进行分类识别。 结果表明,通过压电式加速度传感器采集 5 种状态的齿轮箱数据,对采集的数据使用本文提出的 WB-MDEGNN
模型进行复合故障分类识别,相较于现有其他齿轮箱故障诊断方法正确率可提高 6. 07% ~ 11. 69%,同时通过向原始数据中添

加不同信噪比的高斯白噪声和公开的数据集检验所提模型的准确度和泛化性,所提方法的复合故障诊断性能,准确度相差波动

区间介于 0. 97% ~ 3. 38%,泛化性检验可达 95%。 因此,该方法在处理信号非线性、不平稳导致状态识别效果不佳的问题上具

有较好的优越性,为齿轮箱的复合故障诊断提供了新的方法。
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Abstract:
 

A
 

gearbox
 

is
 

a
 

kind
 

of
 

mechanical
 

transmission
 

device.
 

Aiming
 

at
 

the
 

problem
 

of
 

poor
 

state
 

recognition
 

effect
 

caused
 

by
 

the
 

nonlinearity
 

and
 

instability
 

of
 

the
 

complex
 

fault
 

signal
 

of
 

the
 

gearbox,
 

a
 

gearbox
 

complex
 

fault
 

diagnosis
 

method
 

based
 

on
 

multi-scale
 

Weibull
 

dispersion
 

entropy
 

graph
 

neural
 

network
 

( WB-MDEGNN)
 

is
 

proposed.
 

Firstly,
 

the
 

Weibull
 

distribution
 

( WB)
 

is
 

used
 

to
 

linearize
 

and
 

stabilize
 

the
 

vibration
 

signal
 

to
 

obtain
 

more
 

acute
 

gearbox
 

state
 

information.
 

Then,
 

the
 

Multi-scale
 

dispersion
 

entropy
 

(MDE)
 

is
 

used
 

to
 

extract
 

the
 

quantization
 

features
 

of
 

the
 

given
 

sequence.
 

And
 

construct
 

the
 

node
 

feature
 

matrix.
 

Secondly,
 

use
 

the
 

k-
nearest

 

neighbor
 

(KNN)
 

algorithm
 

to
 

extract
 

the
 

correlation
 

of
 

node
 

features
 

and
 

construct
 

the
 

edge
 

index
 

matrix.
 

Combine
 

the
 

node
 

feature
 

matrix
 

with
 

the
 

edge
 

index
 

matrix
 

to
 

construct
 

the
 

feature
 

map.
 

Finally,
 

the
 

feature
 

maps
 

are
 

input
 

into
 

the
 

graph
 

neural
 

networks
 

(GNN)
 

model
 

for
 

classification
 

and
 

recognition.
 

The
 

results
 

show
 

that
 

by
 

collecting
 

gearbox
 

data
 

in
 

five
 

states
 

through
 

piezoelectric
 

acceleration
 

sensors
 

and
 

using
 

the
 

WB-MDEGNN
 

model
 

proposed
 

in
 

this
 

paper
 

for
 

complex
 

fault
 

classification
 

and
 

identification
 

of
 

the
 

collected
 

data,
 

the
 

accuracy
 

rate
 

can
 

be
 

increased
 

by
 

6. 07% ~ 11. 69%
 

compared
 

with
 

other
 

existing
 

gearbox
 

fault
 

diagnosis
 

methods.
 

Meanwhile,
 

the
 

accuracy
 

and
 

generalization
 

of
 

the
 

model
 

proposed
 

in
 

this
 

paper
 

are
 

tested
 

by
 

adding
 

Gaussian
 

white
 

noise
 

with
 

different
 

signal-to-noise
 

ratios
 

to
 

the
 

original
 

data
 

and
 

public
 

datasets.
 

The
 

complex
 

fault
 

diagnosis
 

performance
 

of
 

the
 

proposed
 

method,
 

the
 

accuracy
 

difference
 

fluctuation
 

range
 

is
 

between
 

0. 97%
 

and
 

3. 38%,
 

and
 

the
 

generalization
 

test
 

can
 

reach
 

95%.
 

Therefore,
 

this
 

method
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has
 

better
 

superiority
 

in
 

dealing
 

with
 

the
 

problem
 

of
 

poor
 

state
 

recognition
 

effect
 

caused
 

by
 

signal
 

nonlinearity
 

and
 

instability,
 

providing
 

a
 

new
 

method
 

for
 

the
 

complex
 

fault
 

diagnosis
 

of
 

gearboxes.
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0　 引　 言

　 　 齿轮箱当中包含大量齿轮和轴承部件,是一种动力

传动装置,作用是通过多组齿轮与轴承构成的传动链保

证不同转速的部件互相匹配和高效传递功率。 主要为发

动机起动系统、滑油系统、燃油控制系统和电力系统等提

供动力传输[1] 。
由于齿轮箱传动链相互交织、工作环境恶劣、传递功

率大、可靠性要求高,出现复合故障是不可难免的。 因此

对其部件的健康监测和智能故障诊断是复合故障诊断中

亟待解决的问题。 以深度学习为代表的健康监测和智能

故障诊断具有重要意义,智能故障诊断在提高设备可靠

性、降低维护成本、提高生产效率和确保安全性方面具有

显著优势[2] 。 赵晓平等[3] 提出改进孪生网络在小样本轴

承故障诊断的方法。 康玉祥等[4] 提出一种深度残差对冲

网络在滚动轴承故障诊断中的应用方法。
复合故障在实际运行过程中经常出现,这和部件所

处的工作环境恶劣,以及监测检修不及时有关。 王爽

等[5] 提出了加权多尺度卷积稀疏表示用于分离振动信号

中的周期性故障冲击特征,从而实现复合故障诊断。 李

巍华等[6] 提出一种非完备数据驱动的装备复合故障智能

解耦方法。 张家军等[7] 提出了一种迭代增强变分模态提

取的复合故障诊断新方法。 陆志杰等[8] 探讨了变分模态

分解(VMD)在诊断早期微弱故障和复合故障等方面的

不足之处。
虽然现有的复合故障诊断方法已经取得了不错的效

果,但仍旧存在一定的局限性。 1)信号故障特征提取不

准确。 复合故障信号本身是非常微弱的,且非线性,相较

于单一故障而言,复合故障信号往往更加复杂。 简单的

信号分析不能准确的表示复合故障信息。 2)
 

传统的信

号分解方法,只能对单个或少数复合故障进行分析,不能

对多个复合故障进行分类识别。 在实际的运行过程中,
出现的复合故障类型是多种多样的,针对单一复合故障

的信号分解方法不能有很好的泛化性。 3)
 

基本的机器

学习方法在处理非线性和高维数据时,难以捕捉复合故

障模式。 传统方法通常依赖人工特征提取,需要专家根

据经验选择和提取特征。 传统的复合故障诊断相较于以

深度学习为代表的智能故障诊断存在明显不足。
针对以上研究中的问题,本文提出了一种基于多尺

度韦伯色散熵( multi-scale
 

Weibull
 

distribution
 

dispersion
 

entropy,
 

WB-MDE)与图神经网络( graph
 

neural
 

networks,

GNN)相结合的齿轮箱复合故障诊断方法。 首先,使用韦

伯分布(Weibull
 

distribution,
 

WB)来线性化、平稳化振动

信号,得到更加敏锐的齿轮箱状态信息,然后用多尺度色

散熵( multi-scale
 

dispersion
 

entropy,MDE)提取给定序列

的量化特征,并构建节点特征矩阵,其次使用 K-近邻算

法(k-nearest
 

neighbor,KNN) 提取节点特征的相关性,并
构建边索引矩阵,将节点特征矩阵与边索引矩阵组合来

构建特征图,最后将特征图输入到图神经网络模型,来进

行分类识别。 本文拟通过实验进行验证,与现有其他齿

轮箱故障模型对比,并添加不同信噪比的数据以及公开

数据集检测,其在抗噪性和泛化性上的表现。

1　 原理

1. 1　 WB-MDE
　 　 WB-MDE 在非线性问题中拥有全局搜索和较好的精

度,分布具有多样性,可以拟合不平稳的模型。 将色散

熵[9] 扩展到多个时间尺度,以便在时间尺度不确定时提

供额外的观察视角。
WB-MDE 可以从不同尺度的角度提取数据特征,这

对于处理复杂系统中的多层次、不同尺度的行为非常重

要。 对于复合故障诊断,不同尺度的信息涉及从宏观到

微观的不同动态,而采用多尺度的方式有助于捕捉这些

层次之间的关联。 同时不同尺度的处理有助于缓解噪声

的干扰和避免过拟合,尤其是在故障数据的时序特征复

杂且容易受到干扰的情况下。 韦伯色散熵是一种基于信

号的复杂度和不确定性量度的工具,能够捕捉信号的随

机性、非线性和不规则性。 在故障诊断中,信号通常具有

高度非线性特征,能够更好地描述这种复杂性。
对于长度为 N 的时间序列 N:X = {x1,x2,…,xN},先

将它通过韦伯分布积累分布函数映射到 y = {y1,y2,…,
yN}, 即:

y j = ∫
xj

-∞

β
ηβ t

β-1e
- t

η( )
β

dt (1)

式中: j = 1,2,…,N ;β 是形状参数;η 是缩放因子。 再将

y 映射到[1,2,…c]的范围之内,即:
zcj = round(c·y j + 0. 5) (2)

式中:round 是取整函数;c 是类别数目。 计算嵌入向量

zm,c
i ,即:

zm,c
i = { zci ,z

c
i +d,…,zci +(m-1)d} (3)

式中: i = 1,2,…,N - (m - 1)d ,d 是延迟时间。
计算色散模式,每个 zm,c

i 都可以映射到色散模式



·246　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

π v0v1…vm-1
,也就是 zci +d = v1,…,zci +(m-1)d = vm-1z

c
i = v0,

 

由于时

间序列有 m 个点,每种模式都可以取 1 ~ c 之间的整数,
所以时间序列 zm,c

i 有 cm 种色散模式。
计算每种色散模式出现的可能性,即:
p(π v0v1…vm-1

) =

Number i i ≤ N - (m - 1)d,zm,c
i hastypeπ v0v1…vm- 1

{ }

N - (m - 1)d
(4)

式中:m 是嵌入维度; Number{ i | i ≤ N - (m - 1)d,
zm,c
i hastypeπ v0v1…vm- 1

} 是指 zm,c
i 映射到 π v0v1…vm-1

的数量。
对于一个长度为 n 的时间序列 u = {u1,u2,…,un} ,尺度

因子为 的粗粒化序列:

x j = 1 ∑
j

b = ( j -1) +1
ub,1 ≤ j ≤ L[ ] = N (5)

式中:L 是数据长度,计算每个尺度因子 下的粗粒化序

列的 WB-MDE 的值。

MDispEn(x,m,c,d, ,β,η) = - ∑
cm

π = 1
p(π v0v1…vm- 1

) ·

ln(p(π v0v1…vm- 1
)) (6)

1. 2　 WB-MDE 特征图

　 　 WB-MDE 可以增强图结构数据的表达能力,GNN 通

常处理结构化的图数据,而 WB-MDE 提取的是信号中的

全局和局部特征信息,这对于 GNN 络的节点和边特征具

有补充作用。 WB-MDE 可以为 GNN 提供更具区分力和

判别性的输入数据。 同时可以提升 GNN 的性能,GNN
需要从输入图结构数据中学习隐含的关系,WB-MDE 能

够提取信号中的高阶统计信息,丰富了输入特征,从而帮

助 GNN 更好地学习复杂的关系和模式。
KNN[10]用于构建特征图时,通过计算节点样本之间

的距离,找出每个样本的最近邻节点,并据此构建图结

构。 对于数据集中的每个样本 S i ,计算它与其他样本 S j

的欧氏距离,即:

OD(S i,S j) = ∑ n

h = 1
(S i(h) - S j(h)) 2 (7)

式中: S i(h) 和 S j(h) 分别表示样本 S i 和 S j 的第 h 个特

征;n 为样本的特征维度。 对于每一个样本 S i ,找到与其

距离最近的 K 个样本并构建邻接矩阵 A ij 即:

A ij =
1
0{ (8)

式中: A ij 的值为 1 表示 S j 是 S i 的 K 近邻之一,否则 A ij 的

值为 0。 根据邻接矩阵 A ij 构建结构图 G,将每个样本作

为一个节点,邻接矩阵中的 1 表示节点边的存在,从而构

建特征图 TG。
1. 3　 GNN
　 　 GNN 是一种能够直接处理图结构数据的深度学习

模型[11] 。 GNN 的基本原理是通过图卷积操作在图的节

　 　 　

点及其邻居之间传播和聚合信息。 核心操作是图卷积,
通过节点特征和邻居节点特征的聚合来更新节点表示。
图卷积表示为:

H( l +1) = σ( D̂ - 1 / 2ÂD̂ - 1 / 2H( l)W( l) ) (9)

式中: H( l) 表示第 l 层的节点特征矩阵; Â 表示特征图的

邻接矩阵 A ij 加上自环矩阵,确保节点信息在聚合过程中

保留自己的特征; D̂ 是 Â 的度矩阵, D̂ = ∑ j
A ij;W

( l) 是

第 l 层的可训练权重矩阵; σ 是激活函数。
1. 4　 WB-MDEGNN 故障诊断流程

　 　 本文首先通过实验采集装置获取齿轮箱各种故障状

态的振动信号数据,WB-MDE 对获取的数据进行特征提

取,并构建特征矩阵,然后通过 KNN 算法获取邻接矩阵,
K 近邻算法用于构建特征图时,通过计算样本之间的距

离,找出每个样本的最近邻样本,并据此构建图结构。 提

取多尺度韦伯色散熵的特征得到样本的特征,借此构建

出样本节点的特征矩阵,通过 KNN 算法,计算每个样本

节点间的海明距离,K 近邻取值为 10,构建邻接矩阵,邻
接矩阵中的 1 表示节点边的存在,结合样本节点的特征

矩阵得到样本的特征图,以其中一个样本为例,其特征图

如图 1 所示。

图 1　 特征图

Fig. 1　 Graph
 

of
 

feature

较小的 K 值会使得同类样本节点间联系隔断,使预

测样本节点的预测错误概率更大,较大的 K 值能够减小

干扰信号的影响,但会使不同类别之间的界限变得模糊,
所以根据一个样本节点存在 10 个特征,令 K = 10。 将得

到的特征图传递给多尺度韦伯色散熵图神经网络模型,
其结构如图 2 所示。

图 2 中模型包含有两个卷积层,一个激活模块,一个

正则化模块,一个全连接模块。 2
 

500 个特征图首先通过

卷积层,获得特征图的特征,再通过激活模块,避免了梯

度爆炸和梯度消失问题,再借助正则化模块,防止模型在

训练数据上过度拟合,最后通过全连接模块,进行分类识

别。 本文的诊断流程如图 3 所示。
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图 2　 多尺度韦伯色散熵图神经网络模型

Fig. 2　 Multi-scale
 

Weibull
 

dispersion
 

entropy
 

diagram
diagram

 

of
 

neural
 

network
 

model

图 3　 故障诊断流程

Fig. 3　 Fault
 

diagnosis
 

flow
 

chart

故障诊断主要流程如下:1)通过实验平台采集齿轮

箱五种状态的振动数据;2)通过 WB-MDE 对振动数据提

取多域特征,并构建特征矩阵;3)使用 KNN 算法构建邻

接矩阵,结合特征矩阵构建特征图,并把数据集划分为测

试数据集和训练数据集;4)使用训练数据集训练 GNN 模

型,通过对模型进行参数优化,判断优化后的模型是否满

足终止条件,若满足条件,则输出最优模型,否则返回训

练;5)使用测试数据集输入最优模型,输出识别结果。

2　 齿轮箱实验

2. 1　 实验数据采集平台搭建

　 　 为了验证本文提出的方法有效性,搭建了齿轮箱复

合故障实验平台。 齿轮箱复合故障实验平台由 5 大部分

组成,分别为齿轮箱(型号:JZQ250
 

山东淄博鑫远机械有

限公司)、变频器( 型号:VFD9000-G5R5 / P7R5-T4
 

浙江

欣拓新能源有限公司)、信号采集卡(型号:YE6231C
 

江

苏联能电子技术有限公司)、电机(型号:YE3-10012-4
 

浙

江锦速电机有限公司)、传感器(型号:CAYD051V
 

江苏

联能电子技术有限公司),实验平台如图 4 所示。

图 4　 实验数据采集平台

Fig. 4　 Experimental
 

data
 

acquisition
 

platform

2. 2　 实验设计

　 　 故障设置如下:滚动体与外圈复合故障、滚动体与内

圈复合故障、内圈与外圈复合故障、滚动体与保持架复合

故障、齿轮箱正常状态,一共 5 种运行状态,故障设置的

具体参数如表 1 所示。

表 1　 故障设置具体参数表

Table
 

1　 Fault
 

setting
 

parameters
 

table
复合故障类型 故障部件 参数

滚动体与外圈复合故障
滚动体 故障点直径 0. 45

 

mm,深度 0. 45
 

mm
外圈 外圈沟道故障缝隙宽度 0. 95

 

mm,深度 0. 45
 

mm

滚动体与内圈复合故障
滚动体 故障点直径 0. 45

 

mm,深度 0. 45
 

mm
内圈 内圈沟道故障缝隙宽度 0. 95

 

mm,深度 0. 45
 

mm

内圈与外圈复合故障
内圈 内圈沟道故障缝隙宽度 0. 95

 

mm,深度 0. 45
 

mm
外圈 外圈沟道故障缝隙宽度 0. 95

 

mm,深度 0. 45
 

mm

滚动体与保持架复合故障
滚动体 故障点直径 0. 45

 

mm,深度 0. 45
 

mm
保持架 保持架断裂

正常

　 　 轴承型号为深沟球轴承 6406 开式,复合故障位置如

图 5 所示。
图 5(a)为滚动体与内圈复合故障;图 5( b)为滚动

体与外圈复合故障;图 5( c) 为滚动体与保持架复合故
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图 5　 故障轴承位置

Fig. 5　 Faulty
 

bearing
 

position

障;图 5(d)为内圈与外圈复合故障。
实验中,变频器调节电流频率设置为 30

 

Hz,与之对

应的电机转速为 900
 

r / min。 在齿轮箱输入轴的轴承座

上方放置一个加速度传感器用来采集故障状态的振动加

速度信号,采样频率为 12
 

kHZ,采样时长为 1
 

min。 每种

状态设置 500 组样本,每个样本 1
 

024 个点数,测试集与

训练集的比例为 2 ∶ 8。
2. 3　 实验流程

　 　 通过齿轮箱复合故障数据采集实验,为故障诊断和

预防提供数据支持。 故障诊断设备(传感器、数据采集

器)、目标设备(齿轮箱)、实验工具。 检查故障诊断设备

和目标设备的工作状态,确保其正常运行。 确保所需软

件和驱动程序已经安装并可以正常运行。 使用适当的接

口和电缆将传感器与目标设备等连接起来。 确保连接牢

固,信号传输正常,避免周围环境的干扰。
启动数据采集设备和相应的软件程序。 设置数据采

集参数,确保数据采集设备和软件正确连接到传感器和

目标设备。 启动目标设备,同步启动数据采集设备,开始

采集故障诊断数据。 使用数据采集软件,实时显示和记

录采集的数据。

3　 结果分析

3. 1　 WB-MDE 参数敏感性分析

　 　 根据韦伯分布的概率密度函数图像,实验中形状参

数 β 设置为 0. 5、1. 0、1. 5、2. 0、2. 5、3. 0,缩放因子 η 设置

为 25、50、75、100、125。 其函数图像如图 6 所示。

图 6　 WB 的概率密度函数图

Fig. 6　 Plot
 

of
 

probability
 

density
 

function
 

of
 

WB

图 6(a)、(b)分别表示不同形状参数 β 和缩放因子

η 的概率密度函数图,可以看出,形状参数 β 决定了图像

曲度的弯曲方向,缩放因子 η 对图像进行压缩,其值越

大,图像越扁平,其值越小,图像越陡峭。 不同韦伯分布

参数的多尺度韦伯色散熵提取特征,特征提取结果的箱

线图如图 7 所示。
图 7(a) ~ (h)分别对应形状参数和缩放因子为 50-

0. 5、50-1、50-1. 5、50-2、50-2. 5、50-3、75-3、100-3,图 7( f)
提取的特征较其他组来说效果明显,通过以上图像对比,
缩放因子越大,同一状态数据就会越分散,个体的搜索步

长就会越大,过大的搜索步长可能会越过最优分类状态,
导致识别结果错误,正确率低下,从而影响状态识别的精

度;缩放因子越小,同一状态数据就会越集中,可以帮助

分类器减小分类搜索,加快分类的收敛,但是缩放因子过

小会导致分类陷入局部最优状态,正确率低下。
3. 2　 WB-MDEGNN 模型的结果分析

　 　 K 近邻算法用于构建特征图时,计算每个样本节点

间的海明距离,K 近邻取值为 10,构建邻接矩阵,邻接矩

阵中的 1 表示节点边的存在,结合样本节点的特征矩阵

得到样本的特征图。 将得到的特征图传递给多尺度韦伯

色散熵图神经网络模型,模型参数如表 2 所示。
本文采用深度学习框架

 

Pytorch
 

构建模型,使用有一

张内存为
 

12
 

GB 的 RTX4070Ti
 

处理器的工作站进行模

型训练。 训练优化器为 Adam,学习率设置为 0. 001,权
重衰减为 0. 000

 

05,迭代次数为 2
 

000 批量设置为 20,损



　 第 9 期 多尺度韦伯色散熵图神经网络的齿轮箱复合故障诊断研究 ·249　　 ·

图 7　 不同参数 WB-MDE 的 BOX 图

Fig. 7　 BOX
 

diagram
 

of
 

different
 

parameters
 

of
 

WB-MDE

失函数为交叉熵损失函数。 训练过程中的损失值如图 8
所示。

表 2　 模型的具体参数

Table
 

2　 The
 

detailed
 

parameter
 

of
 

the
 

model

模块 参数

特征图 5×500 个节点 10 个特征

卷积模块 1 输入维度 10 输出维度 60
激活模块 Relu 函数 维度 60

正则化模块 Dropout 弃置率 0. 8 维度 60
卷积模块 2 输入维度 60 输出维度 10
全连接模块 softmax 输入维度 10 输出维度 5

　 　 通过图 8 可以发现,模型有很好的收敛性,且在训练

到 500 次时,模型的性能就达到了稳定状态,每种状态设

置 500 组样本,测试集与训练集的比例为 2 ∶ 8,每类复合

故障测试样本结果如图 9 所示。

图 8　 训练损失值图

Fig. 8　 Training
 

loss
 

value
 

graph

图 9　 测试样本结果

Fig. 9　 Test
 

sample
 

result
 

graph

从图 9 可以看出,WB-MDEGNN 模型的最终识别效

果测试正确率能达到 98. 6%,通过 10 次实验,最低测试

正确率为 97. 38%,平均测试正确率为 98. 41%。
3. 3　 不同模型的结果分析

　 　 为了验证 WB-MDE 提取特征的有效性,通过与多尺

度模糊熵(multiscale
 

fuzzy
 

entropy,MFE) [12] 、多尺度排列

熵( multiscale
 

permutation
 

entropy,MPE) [13] 、MDE[14] 、多

尺度样本熵(multiscale
 

sample
 

entropy,MSE) [15] 提取的特

征进行对比,使用无监督学习方式,对不同方式提取的特

征向量进行降维,t-SNE 的参数设置:嵌入式空间的维度

m= 3,混乱度 p= 30,学习率 lr= 1
 

000,优化的最大迭代次

数 nt= 100,没有进展的最大迭代次数 np = 30。 不同方法

提取的特征结果,如图 10 所示。
图 10(a) ~ (e)分别对应多尺度模糊熵、多尺度排列

熵、多尺度分布熵、多尺度韦伯色散熵,图 10( e)对应缩

放因子 η= 50,形状参数 β = 3,嵌入维度 m = 3,延迟时间

t= 1,类别数目 c= 5,尺度因子 scale= 10,从无监督学习的

结果来看,其效果是最好的,从图 10 可以看出,齿轮箱的

5 种状态只有少部分是混叠,大部分能够区分开。 其他 4
种方法提取的特征,通过无监督学习之后,齿轮箱的 5 种

故障状态并不能很好的区分开来,大部分是混叠的,只有

少部分可以区分开来。 为证明所提 WB-MDEGNN 模型
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图 10　 不同特征的 T-SNE 图

Fig. 10　 T-SNE
 

diagrams
 

with
 

different
 

features

比其他故障诊断模型拥有优越性,与一下模型进行对比。
1)侯召国等[16] 提出了一种加权融合多通道数据与

深度迁移模型的齿轮箱故障诊断方法,解决齿轮箱故障

识别精度波动大、数据利用率低、可靠性低及故障诊断模

型在多工况下泛化能力不足等问题。
2)张亚洲等[17] 提出一种基于多传感器数据融合的

SA-DACNN ( self
 

attention-dynamic
 

adaptive
 

convolutional
 

neural
 

network)齿轮箱故障诊断方法,解决由于自身品质

和环境的影响导致难以监控齿轮箱整体运行状况的

问题。
3)王进花等[18] 提出了一种基于自校正辅助分类器

生成对抗网络( self-correcting
 

auxiliary
 

classifier
 

generative
 

adversarial
 

network,SCACGAN) 的齿轮箱故障诊断方法,
解决故障样本缺乏多样性,且质量较差,导致诊断准确度

不高的问题。
4)邵浙梁等[19] 提出一种改进的注意力机制和一种

基于注意力机制的软阈值激活函数,在此基础上,构建基

于改进注意力机制的卷积神经网络故障诊断模型,解决

实际工况中齿轮箱振动信号复杂多变,导致齿轮箱故障

诊断方法存在诊断精度不高、训练收敛性能差等问题。
为减少随机性对实验结果造成的影响,每种模型进

行时 10 次实验,取平均值作为最终结果,试验结果如表 3
所示。

表 3　 不同模型的测试正确率表

Table
 

3　 Test
 

accuracy
 

table
 

of
 

different
 

models (%)
分类器 测试平均正确率 最大正确率 最小正确率

加权融合多通道数据与

深度迁移模型
92. 34 93. 05 88. 67

SA-DACNN 87. 81 89. 16 85. 76
SCACGAN 86. 72 87. 07 85. 32

改进注意力机制的卷积

神经网络模型
90. 01 92. 54 88. 08

WB-MDEGNN 98. 41 98. 6 97. 38

　 　 由表 3 可以看出,所提出
 

WB-MDEGNN 模型取得了

最高的准确为 98. 6%,相较于现有其它齿轮箱故障诊断

方法正确率可提高 6. 07% ~ 11. 69%,说明了所提方法的

有效性,相较于深度迁移模型可提升 5. 55%、加权多数据

融合模型可提升 9. 44%、 生成对抗网络模型可提升

11. 53%、卷积神经网络模型可提升 6. 06%,因此该模型

能够对齿轮箱复合故障信号进行充分的故障信息挖掘,
获取更敏锐的齿轮箱运行状态信息,提高原始数据的利

用率和模型的稳定性。

4　 抗噪性和泛化性检验

4. 1　 抗噪性检验

　 　 在齿轮箱实际的工作环境中,由于条件恶劣,环境复

杂,不同设备之间存在连接,一定存在噪声。 为了与实际

的齿轮箱工作环境相贴近,检验本文所提方法的抗噪性,
在齿轮箱原始振动数据中添加不同信噪比( SNR)的高斯

白噪声。

SNR = 10lg
ps

pn
(10)

式中: ps 为原始信号的能量; pn 为噪声信号的能量。 对

于 5 种齿轮箱状态原始数据和添加高斯白噪声之后的差

异数据,以其中的一组为例,如图 11 所示。
图 11(a) ~ ( e) 的信噪比分别为- 6、- 3、0、3、6

 

dB。
从图 11 可以观察到,信噪比越大,原始数据与添加噪声

之后的差值越小,相反,信噪比越小,原始数据与添加噪

声之后的差值越大。 但是观察图像可知,添加高斯白噪

声之后的图像变化趋势和原始数据保持着相似,因此可

以保持数据的真实性。 将数据带入模型对齿轮箱的复合

故障状态进行识别对比,取 10 次实验平均值作为最终结
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图 11　 不同信噪比的差异图

Fig. 11　 Difference
 

plots
 

for
 

different
 

SNRS

果,对比结果如表 4 所示。
表 4　 不同信噪比测试正确率表

Table
 

4　 Different
 

SNR
 

test
 

accuracy
 

table
信噪比 / dB 测试平均正确率 / % 最大正确率 / % 最小正确率 / %

6 97. 11 97. 60 96. 06
3 97. 44 97. 61 96. 23
0 98. 41 98. 60 97. 38

-3 95. 71 96. 56 95. 13
-6 95. 03 95. 77 94. 94

　 　 由表 4 可以看出,信噪比为-3、-6
 

dB 时,平均测试

正确率的值略低于信噪比为 3、6
 

dB 时的情况,这是因为

高斯白噪声信号与原始信号的比值过高,但是从最终的

测试正确率来讲,本文所提的方法仍能达到 94. 94%
以上。

4. 2　 泛化性检验

　 　 为了验证本文所提方法的泛化性,采用 Shen 团

队[20]在 2024 年公开的 HUST
 

Bearing 公开数据集。 故障

试验使用 Spectra-Quest 机械故障实验台进行,被测轴承

类型为 ER-16K,提取数据集 X 方向传感器所测的 4 种复

合故障数据,每种类型设置 100 组样本,每个样本包含

2
 

048 个数据点,测试集与训练集的比例为 2 ∶ 8。 第一

种轴 承 状 态 为 内 圈 外 圈 复 合 中 度 故 障, 转 速 为

4
 

200
 

r / min;第 2 种轴承状态为内圈外圈复合中度故障,
转速为 4

 

500
 

r / min;第 3 种轴承状态为内圈外圈复合重

度故障,转速为 4
 

200
 

r / min;第 4 种轴承状态为内圈外圈

复合重度故障,转速为 4
 

500
 

r / min。 使用本文所提模型

对以上数据进行复合故障的分类识别,其识别结果如图

12 所示。

图 12　 公开数据的检测结果

Fig. 12　 Test
 

result
 

graph
 

of
 

open
 

data

从图 12 可以看出,公开数据的识别结果也为 95%,
说明本文所提方法具有较高的泛化性,符合测试要求。
公开数据集作为统一的基准,通过此数据集的验证确保

不同方法间的对比是公正一致的,同时确保本文所提方

法能够处理不同的故障情况,而不是对单一数据集的过

拟合。 所以通过公开数据的使用即与行业标准对接,又
能通过多样性的数据集测试算法的实际适应性。

5　 结　 论

　 　 为解决齿轮箱健康监测和智能故障诊断中由于信号

非线性、不平稳,造成识别效果不稳定及泛化能力和抗噪

性不足的问题,提出了一种基于 WB-MDEGNN 的齿轮箱

复合故障诊断方法。 该方法通过多尺度韦伯色散熵特征

图对齿轮箱复合故障状态进行了充分且全面的故障信息

挖掘,克服了复合故障信号微弱,非线性,复杂的问题,获
取了更敏锐的齿轮箱运行状态信息。 在齿轮箱复合故障

诊断时,通过 WB-MDEGNN 模型,提高了齿轮箱复合故
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障诊断时原始数据的特征利用率和模型的稳定性,使其

据备良好的抗噪性和泛化性。 未来将对齿轮箱的运行机

理,结构特性,故障模型,及其部件的健康监测和智能化

复合故障诊断进一步深入研究,以此获取抗噪性能更好、
泛化能力更强的复合故障诊断模型,进一步提高在工业

场景中的适用性和使用价值。
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