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Path planning based on improved beetle swarm optimization
algorithm and cubic spline interpolation

Ouyang Peng Kuang Xianyan Ye Jinzhen

(School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China)

Abstract: To address the optimization requirements in mobile robot path planning and enhance the performance limitations of the beetle
swarm optimization algorithm regarding convergence precision and application scope, this paper introduces an adaptive elite mutation-
based beetle swarm optimization (AEM-BSO) algorithm. The methodological innovations manifest in three principal aspects. Firstly, the
implementation of good point set initialization ensures uniform population distribution, effectively mitigating the risk of local optima
entrapment. Subsequently, a non-linearly decreasing inertia weight strategy enhances global exploration capabilities during initial
iterations while accelerating convergence rates in later stages. Furthermore , incorporation of elite mutation mechanisms that strategically
perturb high-performing individuals during iterative processes to prevent premature convergence. For practical implementation in mobile
robot navigation, cubic spline interpolation optimizes waypoint connections in generated paths, ensuring kinematic feasibility and smooth
trajectory formation. Comprehensive validation across 10 benchmark functions and diverse environmental maps demonstrates the
algorithm’ s superior optimization precision and robust stability. Experimental comparisons reveal that AEM-BSO achieves respective path
length reductions of 0.24%, 18.12%, and 8.41% compared to primitive BSO, PSO and BA, accompanied by significant standard
deviation decreases of 25.8%, 96.73%, and 14.13%. These quantilative improvements substantiate the proposed algorithm’ s
effectiveness in balancing exploration-exploitation trade-offs and enhancing solution quality for complex path planning tasks.
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Table 1 Comparison of the results of the five algorithms on 10 test functions
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Table 2 Path length and time consumption of three

interpolation methods in different environments

EESIN A

ik BE P UGE BJE P Rk

K B K B2 /s K K  Bl/s

LPEARM 120.68 121.08  2.62  115.24 139.67 5.20
BOEARARIE 158.81 159.28  2.60  159.01 159.76 4.89
SWREAATE 114.86  146.29 2,64  116.17 160.19 4.94

R, AR SCHE RIS AEM-BSO Bk 5 = YRk 4 7
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(a) Path planning diagrams with different interpolation in simple environments
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Fig. 3 Different interpolation path planning diagram
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Table 3 Four algorithm path lengths and time consumption in different environments

. e P
' REKE  PHKE PR RN/ mEKE  PHKE W TR
AEM-BSO 114. 11 121. 65 1.50 2.35 115.94 158. 51 8.57 4. 60
BSO 115. 00 209. 06 99. 04 2.35 116.22 162. 20 11.55 4.62
PSO 121. 67 361.94 247.32 0.78 141.59 279.31 262. 14 1. 54
BA 115. 48 310. 81 609. 00 0.79 126. 59 165. 53 9.98 1.58
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