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基于改进天牛群算法和三次样条插值的路径规划∗

欧阳鹏　 邝先验　 叶景贞

(江西理工大学电气工程与自动化学院　 赣州　 341000)

摘　 要:为更好地解决移动机器人路径规划问题,对天牛群算法的性能进行改进,并拓展其应用领域,提出了一种基于自适应精

英变异的改进天牛群算法(AEM-BSO)。 首先运用佳点集对天牛种群进行初始化操作,使种群分布更加均匀,降低陷入局部最

优解的风险;其次使用非线性递减惯性权重策略,以提升算法的初期探索能力和收敛速度;然后引入精英变异策略,在每次迭代

时对精英个体进行变异以产生新的、可能更优的候选解,避免早熟现象和陷入局部最优解。 将 AEM-BSO 应用于求解移动机器

人全局路径,借助三次样条插值方法,对规划得出的全局路径节点进行平滑化处理,使路径更贴合实际运动需求。 最后在 10 个

测试函数上和不同环境地图上评估 AEM-BSO 的有效性。 实验结果表明,AEM-BSO 在不同测试函数中具有较好的寻优精度和

稳定性能,在机器人路径规划中路径长度较原始 BSO 算法、粒子群算法和蝙蝠算法分别减少了 0. 24%、18. 12%与 8. 41%,标准

差分别减少了 25. 8%、96. 73%、14. 13%,表明了 AEM-BSO 算法的有效性。
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Abstract:
 

To
 

address
 

the
 

optimization
 

requirements
 

in
 

mobile
 

robot
 

path
 

planning
 

and
 

enhance
 

the
 

performance
 

limitations
 

of
 

the
 

beetle
 

swarm
 

optimization
 

algorithm
 

regarding
 

convergence
 

precision
 

and
 

application
 

scope,
 

this
 

paper
 

introduces
 

an
 

adaptive
 

elite
 

mutation-
based

 

beetle
 

swarm
 

optimization
 

(AEM-BSO)
 

algorithm.
 

The
 

methodological
 

innovations
 

manifest
 

in
 

three
 

principal
 

aspects.
 

Firstly,
 

the
 

implementation
 

of
 

good
 

point
 

set
 

initialization
 

ensures
 

uniform
 

population
 

distribution,
 

effectively
 

mitigating
 

the
 

risk
 

of
 

local
 

optima
 

entrapment.
 

Subsequently,
 

a
 

non-linearly
 

decreasing
 

inertia
 

weight
 

strategy
 

enhances
 

global
 

exploration
 

capabilities
 

during
 

initial
 

iterations
 

while
 

accelerating
 

convergence
 

rates
 

in
 

later
 

stages. Furthermore,incorporation
 

of
 

elite
 

mutation
 

mechanisms
 

that
 

strategically
 

perturb
 

high-performing
 

individuals
 

during
 

iterative
 

processes
 

to
 

prevent
 

premature
 

convergence. For
 

practical
 

implementation
 

in
 

mobile
 

robot
 

navigation,
 

cubic
 

spline
 

interpolation
 

optimizes
 

waypoint
 

connections
 

in
 

generated
 

paths,
 

ensuring
 

kinematic
 

feasibility
 

and
 

smooth
 

trajectory
 

formation. Comprehensive
 

validation
 

across
 

10
 

benchmark
 

functions
 

and
 

diverse
 

environmental
 

maps
 

demonstrates
 

the
 

algorithm’s
 

superior
 

optimization
 

precision
 

and
 

robust
 

stability. Experimental
 

comparisons
 

reveal
 

that
 

AEM-BSO
 

achieves
 

respective
 

path
 

length
 

reductions
 

of
 

0. 24%,
 

18. 12%,
 

and
 

8. 41%
 

compared
 

to
 

primitive
 

BSO,
 

PSO
 

and
 

BA,
 

accompanied
 

by
 

significant
 

standard
 

deviation
 

decreases
 

of
 

25. 8%,
 

96. 73%,
 

and
 

14. 13%. These
 

quantitative
 

improvements
 

substantiate
 

the
 

proposed
 

algorithm ’ s
 

effectiveness
 

in
 

balancing
 

exploration-exploitation
 

trade-offs
 

and
 

enhancing
 

solution
 

quality
 

for
 

complex
 

path
 

planning
 

tasks.
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0　 引　 言

　 　 移动机器人当前的应用较为广泛,在工业生产、服务

业、运输、仓储等领域都能见到其身影。 路径规划问题一

直都是移动机器人研究的核心。 路径规划是指在具有障

碍物的环境中根据某些性能指标,搜索出一条能够从起

始点到目标点的无碰撞最优或近似最优路径。 移动机器

人的路 径 规 划 算 法 有 A∗ 算 法[1-2] 、 快 速 探 索 随 机
数(rapidly-exploring

 

randem
 

trees,RRT) 算法[3-4] 、Dijkstra
算 法[5] 、 粒 子 群 算 法 ( particle

 

swarm
 

optimization,
PSO) [6-9] 、 蝙 蝠 算 法 ( bat

 

algorithm, BA ) [10] 、 遗 传 算
法(genetic

 

algorithm, GA ) [11] 、 蚁 群 算 法 ( ant
 

colony
 

optimization, ACO ) [12-13] 、 天 牛 须 算 法 ( beetle
 

antennae
 

search,BAS) [14-15] 、深度学习[16] 等。
天牛群算法( beelte

 

swarm
 

optimization,BSO) 是一种

智能优化算法,在群体智能优化算法中有较强的竞争力,
常应用于连续函数优化问题,目前天牛群算法在路径规

划领域应用较少。 沈显庆等[17] 将环境建模中的二维栅

格法拓扑到三维,使用三维栅格法进行环境建模,将粒子

群中的粒子替换成天牛提出天牛群算法并将其用于求解

移动机器人的三维路径规划,该方法采用的是传统的天

牛群算法,主要是面对的三维路径规划问题。 吕昱呈

等[18] 提出一种融入变异交叉的改进天牛群算法,该方法
主要是解决 TSP 问题。 王蕊等[19] 引入改进的 Tent 混沌

序列生成初始解,加入高斯变异策略对天牛群算法进行

改进,提高了驱鸟车的驱鸟效率。 尽管现有的 BSO 算法

在局部精细搜索能力上已有所改进,但其性能仍不够理

想。 与 PSO 算法和 BAS 算法相比,BSO 算法在收敛速度

和寻优精度等关键性能指标上虽有一定程度的提升,但
仍有较大的优化空间。 因此,本文对天牛群算法进行了

改进,提出了一种自适应精英变异的改进天牛群优化算

法 ( adaptive
 

elite
 

mutation
 

of
 

improved
 

beetle
 

swarm
 

optimization
 

algorithm,AEM-BSO)。 改进措施包括采用佳

点集初始化天牛种群,调整算法的惯性权重变化策略,并
在迭代过程中引入精英变异策略,保留优秀个体,并在后

续迭代中对其进行微调,以产生新的、可能更优的候选

解。 这种策略有助于维持算法的多样性并避免过拟合到

局部最优解。 将改进后的天牛群算法应用于移动机器人

的路径规划问题时,首先利用该算法寻找一条较优的路

径,然后通过三次样条插值平滑路径,以消除路径中的锐

角和突变,确保移动机器人运动的连续性和安全性。 通

过仿真对比实验,验证改进算法的可行性和有效性。

1　 天牛群算法

　 　 天牛群算法是粒子群算法和天牛须搜索算法的结

合,将每个粒子都当成天牛个体进行搜索。 天牛群搜索

算法的收敛速度较快、收敛精度较高,其算法原理如下。
设 f

 

(x)为适应度函数,天牛群中的全部天牛个体在

每次迭代时均对其左侧和右侧的适应度函数值进行比

较,取两者的更优方向更新天牛群的位置。 BSO 生成的

更新率如式(1)所示。
vb i =- δt·b·sign( f(xr) - f(x l)) (1)

式中:δt 为 t 时刻天牛两须间距;b 为标准化方向向量;x l

为左须位置;xr 为右须位置。
天牛群中天牛个体的速度和位置更新方法:
vt +1
i = ω·vti + c1·rand·(Pbest ti - x t

i) + c2·rand·
(Gbest ti - x t

i) + c3·rand·vb i (2)
x t +1
i = x t

i + vt +1
i (3)

式中:vi
t+1 和 x i

t+1 分别表示第 t 次迭代后第 i 只天牛的速

度和位置;c1 和 c2 均为学习因子;c3 为认知因子; rand
为(0,1)内随机数;Pbest i

t 为个体最优位置;Gbest i
t 为全

局最优个体位置;ω 为惯性权重,其更新方法为:

ω = ωmax - (ωmax - ωmin) t
tmax

(4)

式中:ωmax 和 ωmin 分别为最大和最小惯性权重;tmax 是最

大迭代次数。

2　 自适应精英变异的天牛群算法

　 　 本文针对天牛群算法易陷入局部最优的问题,提出

了一种自适应精英变异策略的改进天牛群算法。 该算法

采用佳点集初始化天牛种群,优化算法的惯性权重调整

机制,并引入精英变异策略,旨在保留优秀的个体,以此

维持算法的多样性并防止算法过度拟合到局部最优解。
2. 1　 佳点集初始化

　 　 天牛群算法的初始化种群是通过随机初始化获得

的。 随机初始化生成的种群在整个空间上的分布是不均

匀,易使算法陷入局部最优解。 使用佳点集理论生成的

样本点偏差较小,且样本的偏差只受样本大小影响,因
此,使用佳点集初始化的种群在搜索空间分布更加均匀,
从而降低算法陷入局部最优解的风险。

佳点集初始化种群的公式为:
x i( j) = lb j + (ub j - lb j)·{ r( i)

j ·k} (5)
式中:ub j 和 lb j 分别表示第 j 维的上界和下界;{ r j

( i) ·k}
代表佳点集取小数部分。

假设天牛种群的规模为 100,分别采用随机初始化

和佳点集初始化两种方法来构建天牛群。 如图 1 所示,
随机初始化产生的种群在多个区域未能实现覆盖,而佳

点集初始化的种群分布则更为均匀,其在解空间中的覆

盖范围也更为广泛。 因此,采用佳点集初始化的种群可

以有效降低算法陷入局部最优的风险。
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图 1　 随机生成和佳点集生成的天牛群分布

Fig. 1　 Beetle
 

swarm
 

distribution
 

generated
by

 

random
 

and
 

good
 

point
 

set

2. 2　 调整惯性权重值
 

　 　 惯性权重可以影响天牛群算法的全局搜索能力与局

部勘探能力。 当惯性权重较大时算法趋向于进行全局搜

索,此时种群的搜索范围扩大,较小时利于局部勘探,此
时天牛个体在当前点附近进行精细搜寻,以避免过早收

敛到局部最优解。 当天牛的惯性权重随迭代次数增加而

简单的线性减小时会降低搜索精度,因此提出一种非线

性递减的惯性权重策略。

ω = ωmin + (ωmax - ωmin)·cos π
2

t
tmax

( ) (6)

非线性递减惯性权重使 ω 值在搜索后期较小,加强

天牛个体的寻优能力,以便获得更好的最优解。

2. 3　 精英变异策略

　 　 为了降低算法陷入局部最优的可能性,引入精英变

异策略[20] ,精英变异策略的加入是为了保留优秀个体,
并在后续迭代中对其进行微调,以产生新的、可能更优的

候选解。

将天牛种群中的全局最优个体 Gbest 作为种群的精

英天牛个体,在每次迭代过程当中,都根据式(7) ~ (9)
对 Gbest 进行变异操作获得新的精英天牛个体 Gbest∗ 。
若 Gbest∗的适应度值优于 Gbest 的适应度值,则用 Gbest∗

替代 Gbest 进行到后续迭代中。

G1 = k1
t

tmax
(7)

G2 = k2e
k3( favg-fGbest) (8)

Gbest∗ = Gbest·[1 ± (G1 + G2 + μ)] (9)
式中:k1、k2、k3 为常数;μ 为(0,1) 内的随机数;favg 为种

群平均适应度值;fGbest 为种群最优适应度值。 从式(7) ~
(9)可以看出,在算法迭代前期,t 较小,因此变异主要受

G2 影响,而在算法迭代后期,种群平均适应度值逐渐接

近种群最优适应度值,因此变异主要受 G1 影响。

3　 实验及结果分析

　 　 为验证本文提出的自适应精英变异天牛群算法的性

能,同时验证非线性惯性权重的效果,记 AEM-BSO2 算法

为采用线性递减的惯性权重更新的自适应精英变异天牛

群算法,AEM-BSO2 算法的惯性权重采用式( 4) 进行更

新,其余控制策略与 AEM-BSO 一致, 将本文提出的

AEM-BSO 分别与 AEM-BSO2、BSO、PSO、BA 进行比较。
测试运行环境为 MATLAB

 

R2024b,所用计算机 CPU 为

Intel
 

Core(TM)
 

i7-7700,内存为 8
 

G。 5 种算法的种群规

模均设置为 100,最大迭代次数为 1
 

000,ωmax = 0. 9,ωmin =
0. 4。 其中 BSO 算法参数设置为 c1、c2、c3 均为 1. 49;PSO
算法参数设置为 c1 和 c2 为 1. 49;本文所用参数设置为

c1、c2、c3 均为 1. 49。
本文对 10 个基准测试函数进行对比实验,分别在维

度 D= 30 和 D= 60 下进行测试,重复执行 100 次,统计最

优值和平均值。
1)

 

Sphere 函数

Sphere 函数为单峰函数,x i 的取值范围为[ - 100,
100],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f1 = ∑
D

i = 1
x2
i (10)

2)
 

Step 函数

Step 函数为单峰函数, x i 的取值范围为 [ - 100,
100],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f2 = ∑
D

i = 1
(⌊x i + 0. 5」) 2 (11)

3)
 

Rosenbrock 函数

Rosenbrock 函数为单峰函数,x i 的取值范围为[ -50,
50],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f3 = ∑
D-1

i = 1
[100(x i +1 - x2

i )
2 + (x i - 1) 2] (12)
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4)
 

Quadric 函数

Quadric 函数为单峰函数,x i 的取值范围为[ - 100,
100],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f4 = ∑
D

i = 1
∑

i

j = 1
x2
i( ) (13)

5)
 

Schwefel
 

P2.
 

2 函数。
Schwefel

 

P2.
 

2 函数为单峰函数,xi 的取值范围为

[-10,10],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f5 = ∑
D

i = 1
| x i | + ∏

D

i = 1
| x i | (14)

6)
 

Elliptic 函数

Elliptic 函数为单峰函数,x i 的取值范围为[ - 100,
100],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f6 = ∑
D

i = 1
(106)

i -1
D-1x2

i (15)

7)
 

Rastrigin 函数。
Rastrigin 函数为多峰函数,x i 的取值范围为[ -5. 2,

5. 2],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f7 = ∑
D

i = 1
[x2

i - 10cos(2πx i) + 10] (16)

8)
 

Griewank 函数。
Griewank 函数为多峰函数,x i 的取值范围为[ -600,

600],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f8 = 1
4

 

000∑
D

i = 1
x2
i - ∏

D

i = 1
cos

x i

i( ) + 1 (17)

9)
 

Ackley 函数。
Ackley 函数为多峰函数, x i 的取值范围为 [ - 32,

32],在(x1,x2,…,xD)= (0,0,…,0)时有最优值 0。

f9 = 20 + e - 20exp - 0. 2 1
D ∑

D

i = 1
x2
i( ) -

exp
1
D ∑

D

i = 1
cos(2πx i)( ) (18)

10)
 

Bohachevsky 函数。
Bohachevsky 函数为多峰函数, x i 的取值范围为

[ -50,50],在( x1,x2, …,xD ) = ( 0,0, …,0) 时有最优

值 0。

f10 = ∑
D-1

i = 1
[x2

i + 2x2
i+1 - 0. 3cos(3πxi) - 0. 4cos(4πxi) +

0. 7] (19)
表 1 为 5 种算法在 10 个标准函数上分别在维度 D=

30 和 D= 60 时求得的最优值和平均值的比较结果。 其

中,f1 ~ f6 为单峰函数,本文采用的 AEM-BSO 算法在 D =
30 和 D= 60 时在这些函数上均取得了最优值和平均值

的最佳表现,且所得结果的精度较高,AEM-BSO2 算法的

最优值和平均值率低于 AEM-BSO 算法。
表 1　 5 种算法在 10 个测试函数上的结果比较

Table
 

1　 Comparison
 

of
 

the
 

results
 

of
 

the
 

five
 

algorithms
 

on
 

10
 

test
 

functions
测试

函数

统计

指标

D= 30 D= 60
AEM-BSO AEM-BSO2 BSO PSO BA AEM-BSO AEM-BSO2 BSO PSO BA

单峰

函数

双峰

函数

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

最优值 2. 68×10-174 4. 91×10-159 6. 76×10-2 3. 15×100 3. 44×100 1. 94×10-171 9. 95×10-163 2. 00×102 3. 71×102 1. 53×101

平均值 1. 98×10-154 1. 99×10-143 4. 82×100 3. 09×101 5. 03×100 2. 45×10-156 1. 32×10-145 4. 81×102 8. 32×102 2. 23×101

最优值 0 0 4. 00×101 5. 20×101 4. 00×100 0 0 6. 20×102 7. 61×102 2. 30×101

平均值 2. 00×10-2 2. 50×10-1 1. 48×102 1. 94×102 6. 94×100 0 0 1. 11×103 1. 40×103 3. 30×101

最优值 2. 91×10-5 1. 07×10-2 9. 54×101 3. 65×102 5. 22×102 4. 76×101 4. 81×101 8. 22×103 3. 92×104 3. 27×103

平均值 1. 29×10-1 3. 66×10-1 5. 97×102 3. 96×103 1. 57×103 4. 94×101 4. 96×101 1. 01×105 2. 09×105 6. 15×103

最优值 4. 23×10-170 4. 69×10-157 2. 79×101 1. 36×102 9. 15×100 2. 08×10-170 1. 81×10-163 6. 01×102 1. 25×103 2. 19×102

平均值 2. 00×10-154 2. 32×10-143 1. 67×102 3. 60×102 1. 54×101 1. 91×10-152 5. 90×10-142 1. 70×103 2. 57×103 3. 73×102

最优值 1. 26×10-179 1. 69×10-166 2. 43×10- 3 5. 01×10- 2 3. 61×100 1. 52×10-173 1. 52×10-163 1. 84×100 4. 33×100 1. 98×101

平均值 3. 52×10-157 1. 88×10-148 7. 29×10- 2 4. 30×10- 1 1. 60×102 7. 34×10-132 6. 93×10-127 5. 90×100 9. 55×100 6. 38×1016

最优值 1. 26×10-163 2. 67×10-156 6. 03×104 1. 20×105 5. 47×105 1. 98×10-164 1. 01×10-152 1. 07×106 1. 63×106 4. 30×106

平均值 7. 38×10-149 2. 48×10-139 2. 74×105 7. 58×105 2. 57×106 1. 96×10-149 1. 60×10-140 3. 30×106 6. 68×106 8. 82×106

最优值 1. 69×101 3. 08×101 2. 11×101 2. 23×101 2. 02×102 3. 48×101 4. 78×101 1. 13×102 1. 30×102 5. 35×102

平均值 5. 12×101 6. 12×101 5. 38×101 5. 26×101 2. 50×102 1. 08×102 1. 12×102 1. 68×102 1. 97×102 6. 39×102

最优值 0 2. 08×10-1 2. 89×10-1 8. 60×10-1 2. 03×10-1 0 0 2. 84×100 3. 63×100 4. 62×10-1

平均值 1. 77×10-3 2. 66×10-1 9. 35×10-1 1. 27×100 2. 68×10-1 1. 75×10-3 2. 44×10-3 5. 19×100 8. 13×100 5. 60×10-1

最优值 -4. 44×10-16 -4. 44×10-16 2. 53×100 3. 11×100 3. 01×100 -4. 44×10-16 -4. 44×10-16 5. 88×100 6. 03×100 3. 91×100

平均值 2. 58×10-15 2. 58×10-15 5. 66×100 5. 48×100 5. 19×100 2. 43×10-15 2. 72×10-15 7. 44×100 7. 54×100 8. 29×100

最优值 0 0 1. 74×101 2. 70×101 2. 81×101 0 0 1. 81×102 3. 59×102 9. 06×101

平均值 0 1. 10×10- 1 4. 03×101 6. 25×101 3. 39×101 0 0 4. 57×102 7. 10×102 1. 08×102

　 　 对于 f7 ~ f10 这些双峰函数,从表 1 可以看出,AEM-
BSO 算法和 AEM-BSO2 算法能够有效地跳出局部最优,
成功找到全局最优解,在所有比较算法中表现最为出色。

尽管在函数 f7 上的表现尚有提升空间,但 AEM-BSO 算

法的结果仍然优于其他对比算法。 以上可以看出在单峰

和多峰函数下 AEM-BSO 算法的效果都是比较优秀的,但
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亦显示出在高维情况下,AEM-BSO 针对局部极值点特别

多的部分函数仍可能陷入局部极值。 同时从 AEM-BSO
和 AEM-BSO2 的对比可以看出采用本文所用非线性递减

惯性权重更新方法略优于线性递减的惯性权重更新

策略。

图 2 所示为维数 D = 30 时 10 个函数的最优适应度

值迭代曲线。 从这些曲线可以看出,与对比算法相比,
AEM-BSO 算法能够更快地收敛到最优解,此外,由于引

入了精英变异策略,该算法能够有效避免陷入局部最优,
从而在全局搜索中保持优势。

图 2　 10 个测试函数最优迭代曲线

Fig. 2　 10
 

Optimal
 

iteration
 

curves
 

of
 

test
 

functions
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4　 基于 AEM-BSO 和三次样条插值的路径
规划

　 　 三次样条插值法是常用的数值分析方法,可通过给

定的一组散点数据来拟合出一条光滑的连续函数曲线。
其基本思想是用低次多项式逼近一段小区间内的数据,
使整个曲线连续光滑。 使用三次样条插值进行路径平

滑,可以确保移动机器人运动的连续性和安全性。
4. 1　 三次样条插值

　 　 三次样条插值的定义:对于已知的 n 个数据节

点
 

(x i,y i),满足 x1 <x2 <…<xn -1 <xn,如果函数 S( x)满足

以下条件:
1)在每个子区间[xn -1,xn],( i = 1,2,…,n),均为三

次多项式;
2)在两个相邻的子区间的连接处拥有相同的一阶导

数和二阶导数;
3)经过所有的给定的数据点,即 S(x i)= y i。
则称 S(x)为 n 个数据节点的三次样条插值函数。

4. 2　 构造插值路径

　 　 将三次样条插值每一个分段的交点作为路径节点,
将一条路径的所有路径节点作为单个天牛个体,假设一

条路径上共有 m 个路径节点,路径节点坐标可表示成

R= [(x i 1,y i 1),( x i 2,y i 2 ),…,( x im,y im )],可得路径节点

横纵坐标的集合分别为 Rx
 =

 

{ x i 1,x i 2,…,x im } 和 Ry =
{y i 1,y i 2,…,y im},将路径节点横纵坐标集合 Rx 和 Ry 合

并作为天牛个体坐标:
x = Rx ∪ Ry = [x i 1,x i 2,…,x im,y i 1,y i 2,…,y im] (20)
故该天牛个体的维数为 2m,由此可知天牛群的维数

是路径节点个数的 2 倍。 再结合已知的起始位置坐标和

目标位置坐标,便可通过三次样条插值的方法获得 n 个

插值点的坐标,插值点坐标的连线就是规划的全局路径

曲线。
4. 3　 路径评价

　 　 移动机器人路径规划的曲线通常是尽可能短的,并
且不能与障碍物有交点。 因此可以构建带有罚函数的路

径评价适应度函数:
z = L(1 + M·ξ) (21)

式中:L 表示规划的路径总长度;M 为惩罚系数,一般设

置为 100;ξ 表示规划的路径和 ξ 个障碍物之间的距离小

于安全距离 dsafe,若 ξ= 0,则 z=L,此时路径评价适应度的

大小就是路径长度。
4. 4　 路径规划流程

　 　 步骤 1)创建环境模型,初始化移动机器人的起始位

置和目标位置,初始化工作空间;

步骤 2)初始化算法参数,包括种群规模、最大迭代

次数、种群维数、插值点个数等参数,使用佳点集初始化

天牛群位置 x,初始化速度 v,求出个体最优值解和全局

最优解;
步骤 3)进行算法迭代,根据式(6)更新惯性权重,根

据式(1) ~ (3)更新天牛的位置 x 和速度 v;
步骤 4)利用三次样条插值的方法,求出插值点坐

标,结合起始位置和目标位置获得全部路径节点,计

算路径节点之间的距离,得到路径总长度 L,确定 ξ
的值;

步骤 5)根据式(21)求出路径适应度值,更新个体最

优 Pbest 和全局最优 Gbest;
步骤 6)根据式(7) ~ (9)进行精英变异生成 Gbest∗ ,

若 Gbest∗的路径评价小于 Gbest 则替换全局最优个体为

Gbest∗ ,否则不变;
步骤 7)判断算法是否达到最大迭代次数,若满足则

停止搜索输出全局最优路径;否则返回步骤 3) 继续

迭代。

5　 路径规划效果测试

　 　 测试环境地图设置为 100 × 100,起始坐标点 Begin
为[10,10],目标坐标点 Goal 为[90,

 

90],惩罚系数 M =
100,安全距离为 1. 5,最大迭代次数为 500,重复执行 100
次。 简单环境下障碍物个数为 10,复杂环境下障碍物数

量为 30。
5. 1　 插值方法比较

　 　 为验证三次样条插值方法的有效性,将本文提出的

AEM-BSO 算法分别和线性插值 ( linear )、 最近邻插

值(nearest) 以及三次样条插值 ( spline) 进行结合,由

AEM-BSO 算法规划路径节点,分别使用 3 种插值方法构造

插值路径,分别在简单环境和复杂环境下进行路径规划。
表 2 为 AEM-BSO 算法结合 3 种插值方法在简单环

境和复杂环境下规划出的路径长度和单次运行时间耗

时的比较结果。 通过分析表 2 的数据,可以观察到,在
简单环境中,采用三次样条插值方法规划出的路径长

度是最短的。 而在复杂环境下,虽然线性插值方法得

到的路径长度最短,但三次样条插值与线性插值规划

出的路径长度相差无几,3 种插值算法单次运行所用时

间基本一致。 因此,三次样条插值的综合性最好。
图 3 所示为在简单环境和复杂环境下,不同插值方

法进行路径规划。 从图 3 可以发现,在这两种环境下,
无论是线性插值还是最近邻插值规划出的路径都存在

多个拐点,而相比之下,三次样条插值规划的路径则显

得最为平滑。 路径中的拐点过多对于移动机器人的运

动是不利的,因为它们可能导致机器人运动的不连续
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性和不稳定性。 相反,平滑的曲线更适合作为移动机

器人的路径点,因为它能够确保机器人运动的流畅性

和安全性。

表 2　 不同环境下 3 种插值方法路径长度和耗时

Table
 

2　 Path
 

length
 

and
 

time
 

consumption
 

of
 

three
interpolation

 

methods
 

in
 

different
 

environments

算法

简单环境 复杂环境

最短

长度

平均

长度

单次耗

时 / s
最短

长度

平均

长度

单次耗

时 / s
线性插值 120. 68 121. 08 2. 62 115. 24 139. 67 5. 20

最近邻插值 158. 81 159. 28 2. 60 159. 01 159. 76 4. 89
三次样条插值 114. 86 146. 29 2. 64 116. 17 160. 19 4. 94

　 　 因此,本文选择将 AEM-BSO 算法与三次样条插值方

法相结合的方式用于移动机器人的路径规划,以期获得

更优的路径规划结果。
5. 2　 简单环境和复杂环境的效果比较

　 　 为评估 AEM-BSO 算法与三次样条插值在不同环境

下的路径规划效果,对 AEM-BSO、BSO、PSO 和 BA 这 4
种算法进行仿真对比实验,分别采用 4 种对比算法规划

全局路径节点,而后用三次样条插值平滑曲线,分别在简

单环境和复杂环境下进行路径规划。 所有算法的参数均

按照第 3 节的设定进行配置。 表 3 为 4 种算法结合三次

样条插值在简单环境和复杂环境下规划出的路径长度和

单次运行所耗时间的对比分析。 图 4 和 5 为不同环境下

的迭代曲线和路径规划。 图 3　 不同插值方法路径规划

Fig. 3　 Different
 

interpolation
 

path
 

planning
 

diagram

表 3　 不同环境下 4 种算法路径长度和耗时

Table
 

3　 Four
 

algorithm
 

path
 

lengths
 

and
 

time
 

consumption
 

in
 

different
 

environments

算法
简单环境 复杂环境

最短长度 平均长度 标准差 单次耗时 / s 最短长度 平均长度 标准差 平均耗时 / s
AEM-BSO 114. 11 121. 65 1. 50 2. 35 115. 94 158. 51 8. 57 4. 60

BSO 115. 00 209. 06 99. 04 2. 35 116. 22 162. 20 11. 55 4. 62
PSO 121. 67 361. 94 247. 32 0. 78 141. 59 279. 31 262. 14 1. 54
BA 115. 48 310. 81 609. 00 0. 79 126. 59 165. 53 9. 98 1. 58

　 　 根据表 3 的数据,可以明显观察到,在简单环境和复

杂环境下,AEM-BSO 算法规划出的最短路径长度均为所

有算法中最短,并且其平均路径长度也是所有算法中最

小的,在简单环境 AEM-BSO 算法的最短路径长度较

BSO、PSO、BA 分别减少了 0. 77%、6. 21%、1. 29%,标准

差分别减少了 98. 49%、99. 39%、99. 75%;在复杂环境下

AEM-BSO 算法的最短路径长度较 BSO、PSO、BA 分别减

少了 0. 24%、 18. 12%、 8. 41%, 标 准 差 分 别 减 少 了

25. 8%、96. 73%、14. 13%。 AEM-BSO 和 BSO 算法的单次

运行所用时间相差不大,均比 PSO 和 BA 要更久一些。

这一结果表明 AEM-BSO 算法在路径的最优化和平均性

能上的表现是不错的,但运算速度会比 PSO 和 BA 略慢。
从图 4 可以看出本文算法可以较快的收敛,图 4( b)

在复杂环境下,能够多次跳出局部最优,从而找到最短路

径。 由图 5 可以看出在简单环境和复杂环境下,4 种算

法都能够避开障碍物规划出一条无碰撞的路径,并且本

文算法规划的路径都是较优的。
综上可以看出 AEM-BSO 能够比较快的收敛并规划

出最短路径,要优于对比算法。
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图 4　 不同环境下路径评价迭代曲线

Fig. 4　 Iterative
 

curve
 

of
 

path
 

evaluation
in

 

different
 

environments

6　 结　 论

　 　 本文提出了一种自适应精英变异的天牛群算法,并
将其与三次样条插值相结合,应用于移动机器人的路径

规划问题。 通过采用佳点集初始化天牛种群,有效降低

了算法陷入局部最优的风险,并引入了自适应精英变异

　 　 　 　 　

图 5　 不同环境下路径规划

Fig. 5　 Path
 

planning
 

diagram
 

in
 

different
 

environments

策略。 该策略旨在保留优秀的个体,并在后续迭代中对

其进行细致调整,以生成新的、可能更优的候选解。 这不

仅有助于维持算法的多样性,还能避免算法过度拟合到

当前的局部最优解。 在将改进的天牛群算法应用于移动

机器人路径规划时,首先利用该算法寻找一条较优的路

径,然后通过三次样条插值技术平滑路径,消除路径中的

锐角和突变,确保移动机器人运动的连续性和安全性。
为了验证算法的性能,在简单环境和复杂环境中进行了

仿真实验。 实验结果表明,结合三次样条插值的改进天

牛群算法能够有效解决移动机器人的路径规划问题。 与

传统的天牛群算法及其他优化算法相比,改进后的算法

在避免陷入局部最优和提高路径平滑度方面展现出了

更优越的性能,为移动机器人的路径规划提供了一种

高效且可靠的解决方案。 未来将进一步将算法用于实

际场景,并在此基础上研究动态障碍物场景下算法的

适用性。
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