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摘　 要:在实际监控场景中行人重识别任务面临诸多挑战,如部分图像遮挡(树木、人、汽车、小物体等)导致识别过程中关键信

息丢失和识别精度下降。 在遮挡行人重识别任务中,通常采用局部联合全局特征或姿态估计器的方法来解决识别精度低等问

题,虽然在部分遮挡情况下利用单流网络有较好的识别性能,但在处理过程中未能充分挖掘剩余关键特征信息。 为此,提出了

一种基于多细粒度双流网络的遮挡行人重识别方法,通过设计多细粒度局部特征提取策略、双流特征处理网络和特征权重融合

模块来增强关键特征信息提取能力。 该方法采用视觉 Transformer(ViT)提取全局特征,并将其划分为多组局部特征。 随后,各
组局部特征分别经过双流特征处理网络,将通过双流网络的特征进行特征权重融合,从而更有效地挖掘关键特征信息。 在

Occluded-Duke、Market-1501、DukeMTMC-reID 和 MSMT17 数据集上实验结果证明所提方法的有效性与合理性,平均精度均

值(mAP) / Rank-1 指标分别达到了 61. 3% / 68. 3、89. 0% / 95. 2%、82. 5% / 91. 1%和 66. 8% / 84. 5%。
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Abstract:
 

In
 

real
 

surveillance
 

scenarios,
 

pedestrian
 

re-identification
 

tasks
 

face
 

numerous
 

challenges,
 

such
 

as
 

partial
 

image
 

occlusions
 

(trees,
 

people,
 

cars,
 

small
 

objects,
 

etc. )
 

that
 

lead
 

to
 

the
 

loss
 

of
 

key
 

information
 

and
 

a
 

decline
 

in
 

recognition
 

accuracy.
 

To
 

address
 

issues
 

like
 

low
 

recognition
 

accuracy
 

in
 

occluded
 

pedestrian
 

re-identification
 

tasks,
 

methods
 

that
 

combine
 

local
 

and
 

global
 

features
 

or
 

use
 

pose
 

estimators
 

are
 

commonly
 

employed.
 

Although
 

single-stream
 

networks
 

can
 

achieve
 

good
 

recognition
 

performance
 

under
 

partial
 

occlusions,
 

they
 

fail
 

to
 

fully
 

exploit
 

the
 

remaining
 

critical
 

feature
 

information
 

during
 

processing.
 

Therefore,
 

we
 

propose
 

an
 

occluded
 

pedestrian
 

re-identification
 

method
 

based
 

on
 

a
 

multi-granularity
 

dual-stream
 

network.
 

By
 

designing
 

a
 

multi-granularity
 

local
 

feature
 

extraction
 

strategy,
 

a
 

dual-stream
 

feature
 

processing
 

network,
 

and
 

a
 

feature
 

weight
 

fusion
 

module,
 

the
 

ability
 

to
 

extract
 

key
 

feature
 

information
 

is
 

enhanced.
 

This
 

method
 

employs
 

a
 

vision
 

Transformer
 

( ViT)
 

to
 

extract
 

global
 

features
 

and
 

divides
 

them
 

into
 

multiple
 

groups
 

of
 

local
 

features.
 

Subsequently,
 

each
 

group
 

of
 

local
 

features
 

is
 

processed
 

through
 

a
 

dual-stream
 

feature
 

processing
 

network.
 

The
 

features
 

obtained
 

from
 

the
 

dual-stream
 

network
 

are
 

then
 

fused
 

using
 

a
 

feature
 

weight
 

fusion
 

mechanism,
 

thereby
 

more
 

effectively
 

mining
 

key
 

feature
 

information.
 

Experimental
 

results
 

on
 

the
 

Occluded-Duke,
 

Market-1501,
 

DukeMTMC-reID,
 

and
 

MSMT17
 

datasets
 

demonstrate
 

the
 

effectiveness
 

and
 

validity
 

of
 

the
 

proposed
 

method,
 

achieving
 

mAP / Rank-1
 

indicators
 

of
 

61. 3% / 68. 3%,
 

89. 0% /
95. 2%,

 

82. 5% / 91. 1%,
 

and
 

66. 8% / 84. 5%,
 

respectively.
Keywords:occluded
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feature
 

fusion
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0　 引　 言

　 　 行人重识别( personre-identification,ReID)作为计算

机视觉领域关键课题,在智能监控、公共安全等领域至关

重要。 该技术旨在解决跨设备、跨场景下,从大量复杂的

行人图像中准确且高效地识别出同一行人的身份[1] 。 在

实际应用中,行人重识别技术面临光照变化、姿态多样性

和复杂背景等挑战,这些因素显著影响其性能[2] 。 同时,
遮挡问题(如汽车、广告牌、树木等) 进一步增加了该技

术的复杂性。
在现有卷积神经网络( convolutional

 

neural
 

network,
CNN)方法中,多数研究通过姿势估计[3] 、感兴区域[4] 和

骨骼关键点[5] 等局部特征提取技术,构建具有空间感知

能力的特征表征模型。 为增强模型准确性,Chen 等[6] 、
Tay 等[7] 引入注意力机制,增强模型对未被遮挡区域的

关注,进而提高识别准确性;Miao 等[8] 通过结合姿态信

息和特征聚合机制解决行人重识别中的遮挡问题,且提

供了 Occluded-Duke 遮挡数据集;Sun 等[9] 提出了部分卷

积基线网络( part-based
 

convolutional
 

baseline,PCB) 和精

细化部分池化方法(refined
 

part
 

pooling,RPP),通过精确

定位和优化部分特征,处理遮挡和姿态变化的行人重识

别任务; Zhou 等[10] 提出了一种姿态驱动可见性模

型(pose-driven
 

visibility
 

model,PDVM),通过姿态估计和

关键点检测来提取人体特征改善对齐问题,在遮挡的情

况下提高行人重识别的准确性;贺晓东等[11] 提出了一种

融合局部特征解析与视点感知的鲁棒性识别框架,通过

语义分割将车辆解构为前、后、侧、顶 4 个语义部件构建

细粒度表征,以视点感知网络动态预测视角概率分布生

成自适应权重矩阵,实现特征平滑与增强。 上述研究多

聚焦于显性局部特征的独立优化或遮挡区域的规避策

略,在特征处理过程中缺乏对关键判别性信息与全局上

下文依存关系的深度挖掘,导致身份识别过程中易丢失

部分关键特征。
随着视觉 Transformer( ViT) [12] 在计算机视觉、图像

分类等任务中的显著成功,He 等[13] 突破传统卷积神经

网络难以高效捕捉全局信息和长距离依赖关系的局限,
首 次 提 出 了 纯 视 觉 Transformer 物 体 重 识 别 架

构(Transformer-based
 

object
 

re-identification,TransReID),
通过设计拼图补丁模块和侧信息嵌入模块提升物体重识

别性能;Zhu 等[14] 提出了自动对齐行人重识别架构,通过

引入特征图自适应对齐模块,确保在不同视角下提取具

有判别性特征;Bian 等[15] 提出了遮挡特征恢复机制,有
效增强了特征表示的完整性和鲁棒性;Li 等[16] 提出了一

种端到端的部分感知 Transformer 模型,通过设计上下文

感知 Transformer 编码器和部分原型 Transformer 解码器,

精准捕获不同身体部位;Wang 等[17] 提出了一种姿态引

导的特征解耦技术,通过解耦行人图像中的关键特征与

非关键特征,增强模型在遮挡情况下的鲁棒性和识别准

确率;Zhou 等[18] 提出了一种运动动感知 Transformer 架

构,通过分析不同行人姿态照片所衍生的运动信息来识

别主要身体部位;Zhu 等[19] 提出了一种双重跨注意力学

习的方法,通过设计双重跨注意力模块在不同任务之间

共享和强化关键信息,从而实现更具辨别力和鲁棒性的

特征表示。 以上研究虽在特征对齐、遮挡处理、部件感知

等方面取得较好的性能,但其技术路线多聚焦于局部优

化,忽略了在特征处理过程中对关键判别性信息的深入

挖掘以及全局-局部特征联合建模不足等问题。
针对以上问题,受双流网络[20] 的启发和以往研究方

法的不足,本文提出了一种纯 Transformer 架构的多细粒

度 双 流 网 络 ( multi-granularity
 

dual-stream
 

network,
MGDSN),该网络融合多细粒度局部特征提取策略、双流

特征处理网络和特征权重融合模块。 通过全局-局部协

同机制构建层次化特征表示体系,将全局特征划分为 4
个粗粒度局部特征和 6 个细粒度局部特征并独立处理,
既能捕捉局部细节信息(如鞋子、包包、帽子等),又能保

留全局上下文信息 ( 如整体姿态、 衣着风格等)。 纯

Transformer 架构的双流网络,充分利用浅层网络和深层

网络对特征捕获能力的差异。 利用浅层网络提取低级特

征(如边缘、纹理和颜色等),深层网络提取高级特征(如

语义信息或复杂模式等),分层特征提取方式可有效提升

模型的性能、鲁棒性和泛化能力。 本文最后设计了特征

权重融合模块,实现特征的动态权重分配、强化关键信

息、抑制噪声和冗余信息,从而促进特征间的互补性和提

升模型性能。 在多个公开数据集上验证了本文方法的有

效性,在挖掘剩余关键特征信息和全局-局部特征联合建

模等方面优于先进(state-of-the-art,SOTA)模型。

1　 本文方法

　 　 本文提出的基于 Transformer 的多细粒度双流网络整

体架构如图 1 所示,主要由以下几个关键模块构成:全局

特征提取网络(以 ViT 作为全局特征提取网络)、多粒度

局部特征提取模块、双流网络、特征权重融合模块以及行

人身份预测模块。
1. 1　 全局特征提取

　 　 给定一副输入图像 x∈RH×W×C ,其中 H、W、C 分别表

示其高度、宽度和通道数。 首先将其划分为固定大小的

一系列重叠图像块( patches)。 设图像的高度为 H,宽度

为 W,每个图像块的大小为 P×P,滑动窗口的步长为 S。
则图像可以被划分为 N 个图像块,其中 N 的计算公

式为:
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图 1　 网络整体框架

Fig. 1　 The
 

overall
 

network
 

framework

N = H + S - P
S

× W + S - P
S

(1)

将每个图像块经过一个线性投影 F 映射到一个更高

维的空间 D 中,从而得到每个图像块的嵌入表示。 引入

一个可学习的类标记( class
 

token) xcls ,将其前置到输入

序列 中。 通 过 添 加 可 学 习 的 位 置 嵌 入 ( position
 

embeddings),空间信息被整合到模型中。 输入序列表

示为:
Z0 = [xcls;x

1
p;x

2
p;…;xN

p ] + Epos (2)
其中, P ∈ R(N+1) ×D 表示位置编码,用于整合空间

信息。
设输入序列 Z0 经过一系列 Transformer 层进行特征

表示学习。 每个 Transformer 层包含多头自注意力机制和

前馈神经网络(multi-layer
 

perceptron,MLP)。 假设共有 L
个 Transformer 层,则最后一层的输入特征表示为:

ZL-1 = [zL-1
0 ;zL-1

1 ,zL-1
2 ,…,zL-1

N ] (3)
式中: zL-10 为全局 token; zL-1

i ( i = 1,2,3,…,N)为第 i 个
patch 的特征;N 表示 patch

 

tokens 的总数量(不包括全局

token)。
1. 2　 多粒度特征提取

　 　 对于处理遮挡行人重识别任务时,由于部分细节特

征易受遮挡干扰,深度挖掘残余有效信息则尤为重要。
本文为实现特征精细化表示,将全局特征细分为多粒度

局部特征(即将一个全局特征划分为一个 4 个局部特征

和一个 6 个局部特征),有助于模型捕捉更多细节信息。
这些局部特征可以关注到不同行人的身体部位、纹理、颜
色等,从而增强模型的鲁棒性提升模型识别的准确率和

适应性。 经主干网络提取得到 N+ 1 个特征向量,引用

TransReID 中 JPM 思想,将全局 token 外的序列进行移位

和打乱,得到新的序列表示为:
ZL-1

JPM = JPM zL-1
0 ;zL-1

1 ,zL-1
2 ,…,zL-1

N[ ]( ) (4)
设经过多粒度特征提取后得到的局部特征划分索引

表示为 m i = N + 1
i

( i∈4,6),则各局部特征表示为:

L i
a =

JPM([zL-1
0 ;zL-1

1 ,…,zL-1
k-1 ])

JPM([zL-1
k ;zL-1

k+1 ,…,zL-1
2k-1])

…
JPM([zL-1

( i -1)k;z
L-1
( i -1)k+1,…,zL-1

k ])

ì

î

í

ï
ïï

ï
ïï

(5)

式中: i = 4,6;a = 1,2,…,i。
1. 3　 双流网络

　 　 本文设计的双流网络由纯 Transformer 结构组成,其
中包含单分支浅层网络和单分支深层网络,结构如图 2
所示。

图 2　 双流网络框架

Fig. 2　 The
 

dual-stream
 

network
 

framework

设双流网络处理后特征为 F i
a ,双流网络表示为

Tb( . )b∈(1,2),处理后的特征表示为:
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F i
b(a) = Tb(L

i
a) (6)

式中:b 表示双流网络的分支;i= 4,6;a= 1,2,…,i。
将处理后的特征进行特征加权融合,设融合后的特

征为 F 表示为:
F = λF i

1(a) + (1 - λ)F i
2(a) (7)

式中:λ 是一个权重系数,用于平衡两个分支的贡献。
1. 4　 损失函数

　 　 为了提高模型的分类能力和特征的判别性,本文损

失函数采用标准交叉熵损失和三元组损失[21] ,其中全局

特征和两个局部特征分别用 LCE 和 L tri 监督训练。 交叉

熵损失可表示为:

LCE(s,y) = - log( esy

∑ K

j = 1
esj

) (8)

式中: s = [s1,s2,…,sK] 为一个样本输出向量;y 为真实

类别标签;sy 为正确预测得分;K 为类别总数; esy

∑ K

j = 1
esj

为 y 的预测概率。
三元组损失函数可表示为:
L tri = max(d(a i,p i) - d(a i,n i) + α,0) (9)

式中: a i 表示为锚点样本; p i 为正样本; n i 为样本; d(a i,
p i) 为锚点与正样本之间的距离; d(a i,n i) 为锚点与负

样本之间的距离; α 是控制距离差参数;max( . ,0) 表示

输出值不小于 0。
最终损失函数可表示为:

L = LCE( s,y) + L tri + 1
k1

∑
k1

1
(LCE( s,y) + L tri ) +

1
k2

∑
k2

1
(LCE( s,y) + L tri ) (10)

2　 实验与分析

2. 1　 数据集与评价指标

　 　 本文在 4 个公开的行人重识别数据集上进行了实

验, 包括 Market-1501[22] 、 DukeMTMC-reID[23] 、 Occluded-
Duke 和 MSMT17[24] 。 其中,Occluded-Duke 数据集是从

DukeMTMC-reID 数据集中处理得到的,主要针对遮挡情

况下的行人重识别问题。 各数据集的使用摄像头数

量(cam)、总行人 ID、训练集( train)和测试集( test)的行

人 ID 及总图像数量(image)信息如表 1 所示。
本文采用累积匹配特征 ( CMC ) 和均值平均精

度(mAP)作为算法性能评估指标。 CMC 关注查询图像

的匹配结果,衡量正确匹配在排名前 k 的数量,直观反映

模型的快速匹配能力;而 mAP 则通过计算每个查询的平

均精度,综合评估模型的检索性能。

表 1　 4 个公开数据集基本信息

Table
 

1　 Basic
 

information
 

of
 

four
 

public
 

datasets
数据集 Cam ID Train Test Images

Market1501 6 1
 

501 751 750 32
 

668
DukeMTMC 8 1

 

402 702 702 36
 

411
Occluded 8 1

 

402 702 519 35
 

489
MSMT17 15 4

 

101 1
 

041 3
 

060 126
 

441

2. 2　 实验设置

　 　 本文实验在 64 位 Windows 操作系统下进行,使用单

张 NVIDIA
 

RTX4090 显 卡, CUDA11. 8, Pytorch2. 3. 1,
python3. 8。 本文采用 ViT-base 作为主干网络,输入图像

尺寸为 384×128。 在训练过程中,采用 SGD 优化器进行

参数更新,设置动量衰减因子为 0. 9,权重衰减为 1 ×
10-4,初始学习率为 0. 008 训练过程中余弦衰减,迭代次

数为 120 次。
2. 3　 与最先进方法比较

　 　 为验证本文 MGDSN 模型的有效性,针对遮挡行人

重识别任务在 Occluded-Duke 数据集上进行了相关实验,
分析了本文算法与其他先进方法的对比,TransReID[13] 结

果为复现结果,对比结果如表 2 所示。
表 2　 在 Occluded-Duke 数据集上比较

Table
 

2　 Comparison
 

on
 

the
 

Occluded-Duke
 

dataset
(%)

Backbone 方法 mAP Rank-1

CNN

PCB[9] 33. 7 42. 6
PGFA[8] 37. 3 51. 4

HOReID[5] 43. 8 55. 1
PAT[16] 53. 6 64. 5

DRL-Net[25] 53. 9 65. 8
RTGAT[26] 50. 1 61. 0
MVIP[27] 57. 3 68. 6

MSOSNet[28] 57. 6 68. 6

ViT

TransReID[13] 59. 6 68. 1
PFD[17] 60. 1 67. 7
MAT[18] 58. 8 66. 2

RFMT[29] 60. 6 69
DBAAT[30] 57. 1 63. 3

AAformer[14] 58. 2 67. 1
PAFormer[31] 60. 4 66. 4

SSSC-TransReID[32] 61. 0 69. 2
MGDSN(本文) 61. 3 68. 3

　 　 由表 2 所知,MGDSN 在 Occluded-Duke 数据集上的

表现最佳。 在 mAP 指标上,相较于以 CNN 为主干网络

的研究,MGDSN 比经典模型 PCB 高 27. 6%,比最新研究

的模型 MSOSNet 高 3. 7%;相较于以 ViT 为主干网络的

研究, MGDSN 比效果最好的模型 SSSC-TransReID 高

0. 3%。 在 Rank-1 指标上,本文方法也接近 SOTA 水平,
较 PCB 提升了 25. 7%。 本文认为,在遮挡行人重识别任
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务中,部分遮挡会导致关键信息丢失,传统方法未能充分

挖掘剩余信息,本文设计的模型能够深入挖掘剩余的关

键信息,从而有效提升了模型的整体性能和鲁棒性。

为进一步验证本文设计模型的有效性, 本文在

Market-1501、DukeMTMC-reID 和 MSMT17 数据集上展开

相关实验,实验结果如表 3 所示。
表 3　 在 Market-1501、DukeMTMC-reID 和 MSMT17 数据集上比较

Table
 

3　 Comparison
 

on
 

the
 

Market-1501,
 

DukeMTMC-reID,
 

and
 

MSMT17
 

datasets (%)

Backbone 方法
Market1501 MSMT17 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP Rank-1 mAP

CNN

PCB[9] 92. 3 77. 4 68. 2 40. 4 88. 7 78. 4
HOReID[5] 94. 2 84. 9 - - 86. 9 75. 6

PAT[16] 95. 4 88. 0 - - 88. 8 78. 2
DRL-Net[25] 94. 7 86. 9 78. 4 55. 3 88. 1 76. 6
RTGAT[26] 95. 3 88. 2 - - 85. 6 74. 3
MVIP[27] 95. 3 87. 9 83. 9 61. 4 91. 9 80. 9

MSOSNet[28] 95. 5 88. 4 81. 2 59. 6 91. 6 79. 2

ViT

TransReID[13] 95. 0 88. 8 84. 6 66. 6 90. 4 81. 8
PFD[17] 95. 5 89. 6 82. 7 65. 1 90. 6 82. 2
MAT[18] 95. 3 89. 4 - - 89. 3 81. 8

DCAL[19] 94. 7 87. 5 83. 1 64. 0 89. 0 80. 1
RFMT[29] 95. 4 89. 2 - - 90. 5 82. 4

DBAAT[30] 95. 1 88. 8 - - 90. 6 82. 0
AAformer[14] 95. 4 88. 0 84. 4 65. 6 90. 1 80. 9

MGDSN(本文) 95. 2 89. 0 84. 5 66. 8 91. 1 82. 5

　 　 由表 3 所知,本文设计的 MGDSN 在 MSMT17 数据集

上效果最优,相较于以 CNN 为主干网络的最新且性能最

好的模型 MVIP,mAP 和 Rank-1 指标分别提升了 5. 4%
和 0. 6%;相较于以 ViT 为主干网络的模型 AAformer,本
文方法的 mAP 提升了 1. 2%,Rank-1 相差无几;与经典模

型 PCB 方法相比,mAP 和 Rank-1 分别提升了 26. 4%和

16. 3%。 MGDSN 在 DukeMTMC-reID 数据集上也表现最

佳,相比 MVIP 模型,mAP 指标提升了 1. 6%、Rank-1 指

标下降 0. 8%;相较于以 ViT 为主干网络的所有模型,本
文方法的 mAP 和 Rank-1 都达到最佳性能,比次优模型

RFMT 的 mAP、 Rank-1 分 别 提 高 了 0. 1%、 0. 6%。
MGDSN 在 Market1501 数据集上也接近目前 SOTA 结果。
对比大部分经典算法,MGDSN 整体性能表现最优,证明

了其充分挖掘剩余关键信息的重要性和本方法的适

用性。
2. 4　 消融实验

　 　 为进一步验证各模块在 MGDSN 方法中的贡献,首
先在 Occluded-Duke 数据集上对多细粒度局部特征提取

策略 进 行 实 验 验 证。 在 相 同 实 验 设 置 下 以 复 现

TransReID 结果为基础进行验证, Baseline 表示复现

TransReID 结果,其中全局特征分为 4 个局部特征,经过

双流网络的浅层单分支网络处理;m1 表示将全局特征分

为 6 个局部特征,经过双流网络的浅层单分支网络处理;
m2 表示将全局特征同时划分为 4 个和 6 个局部特征,经
过双流网络的浅层单分支网络处理;m3 表示将 4 个局部

特征经过双流网络处理;m4 表示将 6 个局部特征经过双

流网络处理;m5 表示将两个细粒度局部特征同时经过双

流网络处理,处理后的特征使用拼接融合;m6 表示最终

模型,将两个细粒度局部特征同时经过双流网络处理,处
理后的特征使用特征权重模块进行融合。 其中除了 m5
模型外其他实验均使用特征权重模块进行融合,表 4 是

不同细粒度实验结果。
表 4　 不同细粒度实验结果

Table
 

4　 Results
 

of
 

experiments
 

with
 

varying
 

granularities
(%)

方法 mAP Rank-1 Rank-5 Rank-10
Baseline 59. 6 68. 1 82. 2 86. 3

m1 60. 6 68. 5 82. 6 87. 3
m2 60. 6 68. 1 82. 4 86. 7
m3 60. 4 68. 1 83. 1 87. 1
m4 60. 6 68. 4 81. 9 86. 3
m5 60. 5 67. 8 82. 2 87. 2
m6 61. 3 68. 3 82. 8 86. 2

　 　 由表 4 可知,在模型 m1 中,mAP、Rank-1、Rank-5 和

Rank-10 分别提升 1%、0. 4%、0. 4%和 1%。 本文认为,将
全局特征划分为 6 个局部特征时,单个局部区域的尺寸

减小,每个特征更加专注于局部细节,使网络能够捕捉到

更为微小且重要的特征(如衣物、鞋子和背包等边缘细

节)。 在模型 m2 中,相较于基线模型,mAP、Rank-5 和

Rank-10 分别提升 1%、0. 2%和 0. 4%,Rank1 保持不变;
与 m1 模型相比,mAP 保持不变,Rank-1、Rank-5 和 Rank-
10 则分别下降 0. 4%、0. 2%和 0. 6%。 本文认为,在基线
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模型的基础上,将全局特征同时划分为 4 和 6 个局部特

征时,模型的信息捕捉能力有所增强,基于模型 m1,Rank
指标下降主要归因于以下两点:首先,将 4 和 6 个局部特

征分别通过相同的浅层单一网络处理,这限制了特征提

取能力仅停留在低层次,导致一定程度的低级特征冗余;
其次,不同大小的局部特征也可能引发部分特征信息的

冗余。 在模型 m3、m4 中,较基线模型 m3 的 Rank-1 保持

不变,mAP、Rank-5 和 Rank-10 分别提升 0. 8%、0. 9%和

0. 8%。 m4 的 Rank-10 保持不变,mAP 和 Rank-1 分别提

升 1%和 0. 3%。 以上结果表明,本文设计的双流网络在

充分挖掘局部特征信息方面具有较明显优势。 在模型 m6
中,相较基线模型, mAP、 Rank-1 和 Rank-5 分别提升

1. 7%、0. 2% 和 0. 6%; 相较 m2 模型, mAP、 Rank-1 和

Rank-5 分别提升 0. 7%、0. 2%和 0. 4%。 以上结果均证明

多细粒度双流网络在高级和低级特征的结合提取方面展

现出较显著的优势;相较于 m5 模型, mAP、 Rank-1 和

Rank-5 分别提升 0. 8%、0. 5%和 0. 6%,证明加入特征权

重融合模块的有效性。
其次在 Occluded-Duke 数据集上对双流网络的单分

支浅层网络和单分支深层网络进行实验验证。 与多细粒

度局部特征提取策略实验相同,Baseline、m1 和 m2 模型

表示双流网络的浅层单分支网络进行处理;m6 表示最终

模型;p1 表示将全局特征分为 4 个局部特征,经过双流

网络的深层单分支网络处理;p2 表示将全局特征分为 6
个局部特征,经过双流网络的深层单分支网络处理;p3
表示将全局特征同时划分为 4 个和 6 个局部特征,经过

双流网络的深层单分支网络进行处理,且将两个细粒度

特征使用特征权重进行融合,表 5 是双流网络各模块实

验结果。
表 5　 双流网络各模块实验结果

Table
 

5　 Experimental
 

results
 

of
 

each
 

module
of

 

the
 

dual-stream
 

network (%)
方法 mAP Rank-1 Rank-5 Rank-10

Baseline 59. 6 68. 1 82. 2 86. 3
m1 60. 6 68. 5 82. 6 87. 3
m2 60. 6 68. 1 82. 4 86. 7
p1 59. 9 66. 3 81. 5 86. 7
p2 60. 6 68. 4 82. 5 87. 5
p3 60. 7 68. 2 82. 6 86. 8
m6 61. 3 68. 3 82. 8 86. 2

　 　 由表 5 可知,在模型 p1 中较 Baseline 模型,mAP 和

Rank-10 分别提升 0. 3%和 0. 4%;在模型 p2 中较 m1 模

型,mAP 保持不变,Rank-10 提升 0. 2%。 本文认为,更深

的模型通常能够学习更复杂的特征表示,因为每一层都

可以在前一层的基础上提取更高层次的特征,因此适当

的深层次网络效果会更好些;在模型 p3 中较 m2 模型,

mAP、Rank-1,Rank-5 和 Rank-10 分别提升 0. 1%、0. 1%、
0. 2%和 0. 1%。 本文认为由 p1、p2 和 p3 实验整体证明,
适当的深层次网络提取特征性能优于浅层次网络。 m6
模型较 m2 和 p3 模型,证明同时使用深、浅层网络可增强

对关键特征的提取能力。
为进一步验证深、浅层网络对特征捕获能力的差异,

对深、浅层网络和整体双流网络提取的特征图进行了可

视化,特征图可视化结果如图 3 所示。

图 3　 特征图可视化结果

Fig. 3　 The
 

dual-stream
 

network
 

framework

对比图 3(b)、(c)可知,深层次网络能较好的提取关

键特征。 由图 3(d)可知,双流网络提取关键特征的效果

最好。

3　 结　 论

　 　 针对遮挡行人重识别任务中不能充分挖掘剩余关键

特征信息和全局-局部特征联合建模不足等问题,本文提

出了基于多细粒度双流网络的行人重识别方法。 结合全

局-局部协同机制构建层次化特征表示体系,通过捕获不

同细节和整体信息,增强特征的多样性和表达能力;设计

的双流网络和特征权重融合模块,通过浅层网络提取低

级特征,深层网络提取高级特征,形成互补性特征表达,
充分挖掘剩余关键信息,最大程度提升模型的性能、鲁棒

性和泛化能力。 在 4 个经典行人重识别数据集上,实验

证明本文所提 MGDSN 模型在充分挖掘剩余关键特征信

息等方面优于 SOTA 模型。 在未来的工作中,将考虑建

立遮挡预测网络,通过生成遮挡掩码定位图像中被遮挡

的区域(如背包、遮挡物等),从而提升模型对有效特征

的辨别能力。
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