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Pedestrian re-identification based on a multi-granularity dual-stream network

Song Xiaoyong' Sun Xuehong'® Liu Liping"? Qin Guoche' Yu Tong' Li Xiangguo'
(1. School of Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, China;
2. Key Laboratory of Intelligent Perception for Desert Information, Yinchuan 750021, China)

Abstract: In real surveillance scenarios, pedestrian re-identification tasks face numerous challenges, such as partial image occlusions
(trees, people, cars, small objects, etc. ) that lead to the loss of key information and a decline in recognition accuracy. To address
issues like low recognition accuracy in occluded pedestrian re-identification tasks, methods that combine local and global features or use
pose estimators are commonly employed. Although single-stream networks can achieve good recognition performance under partial
occlusions, they fail to fully exploit the remaining critical feature information during processing. Therefore, we propose an occluded
pedestrian re-identification method based on a multi-granularity dual-stream network. By designing a multi-granularity local feature
extraction strategy, a dual-stream feature processing network, and a feature weight fusion module, the ability to extract key feature
information is enhanced. This method employs a vision Transformer ( ViT) to extract global features and divides them into multiple
groups of local features. Subsequently, each group of local features is processed through a dual-stream feature processing network. The
features obtained from the dual-stream network are then fused using a feature weight fusion mechanism, thereby more effectively mining
key feature information. Experimental results on the Occluded-Duke, Market-1501, DukeMTMC-relD, and MSMT17 datasets
demonstrate the effectiveness and validity of the proposed method, achieving mAP/Rank-1 indicators of 61.3%/68.3%, 89.0%/
95.2%, 82.5%/91. 1%, and 66. 8%/84. 5% , respectively.
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Fig. 1 The overall network framework
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Table 1 Basic information of four public datasets

K Cam D Train Test Images
Market1501 6 1501 751 750 32 668
DukeMTMC 8 1402 702 702 36 411

Occluded 8 1402 702 519 35 489
MSMT17 15 4101 1041 3 060 126 441
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ARSCELIAE 64 i Windows #/E RSE T #E17, i F 1
7k NVIDIA RTX4090 & %, CUDALL. 8, Pytorch2.3.1,
python3. 8, A SCRF ViT-base 10 3T R 45, 4 A {2
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IIEAS S MGDSN A (4 A4 35V, B XRS5 4T A
HiRHTE 5 TE Occluded-Duke B4 4T T AHLSLE
ST T AR SO e 5 HAh S TR BT [, TransReIDM? 45
N IGER X S RANER 2 s,

%z 2 7 Occluded-Duke ##F&E E L%
Table 2 Comparison on the Occluded-Duke dataset

(%)
Backbone Fk mAP Rank-1
pcB!? 33.7 42.6
PGFALY! 37.3 51.4
HOReID'! 43.8 55.1
pAT!®! 53.6 64.5
CNN

DRL-Net! 53.9 65.8
RTGAT ¢! 50. 1 61.0
Mvipt?”! 57.3 68.6
MSOSNet! 2! 57.6 68. 6
TransReID! " 59.6 68.1
PFD! 60. 1 67.7
MAT! ') 58.8 66.2

RFMT!?’ 60. 6 69
ViT DBAAT!] 57.1 63.3
AAformer| ] 58.2 67.1
PAFormer3" 60. 4 66. 4
SSSC-TransReID!2! 61.0 69.2
MGDSN ( A30) 61.3 68.3

H%% 2 Ir %, MGDSN 7E Occluded-Duke %84 4 I 1%
RIUAE, 78 mAP $545 L, MHEF LI CNN O T R %%
HIBFSE , MGDSN H 2 LA PCB 1 27. 6% , HL o BIF 5%
HYATEY MSOSNet 155 3. 7% ; #HEE T LA VIiT R T W45 1Y
58, MGDSN  Fb %50 5 5 4 9 A5 ) SSSC-TransRelD 15
0.3% . 7E Rank-1 4§45 b, A& O kW43 SOTA /K,
B PCBHRTF T 25. 7%, ARSCAN, TR N E IR
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Table 3 Comparison on the Market-1501, DukeMTMC-reID, and MSMT17 datasets (%)
. Market1501 MSMT17 DukeMTMC-relD
Backbone ik
Rank-1 mAP Rank-1 mAP Rank-1 mAP
PCB!! 92.3 77.4 68.2 40.4 88.7 78.4
HOReID!! 94.2 84.9 - - 86.9 75.6
PAT!®! 95.4 88.0 - - 88.8 78.2
CNN DRL-Net! % 94.7 86.9 78. 4 55.3 88. 1 76.6
RTGAT!! 95.3 88.2 - - 85.6 74.3
MVIPL? 95.3 87.9 83.9 61.4 91.9 80.9
MSOSNet! 28! 95.5 88. 4 81.2 59.6 91.6 79.2
TransRelD! "’ 95.0 88.8 84.6 66. 6 90. 4 81.8
PFD!!! 95.5 89.6 82.7 65.1 90. 6 82.2
MAT! ! 95.3 89. 4 - - 89.3 81.8
Vi DCAL[V 19] 94.7 87.5 83. 1 64.0 89.0 80. 1
RFMT!?! 95.4 89.2 - - 90. 5 82.4
DBAAT! 95. 1 88.8 - - 90. 6 82.0
AAformer' ') 95. 4 88.0 84. 4 65.6 90. 1 80.9
MGDSN(73) 95.2 89.0 84.5 66.8 91.1 82.5

M2 3 B, A SCEH Y MGDSN 7E MSMT17 i 4
SR A, ST A CNN A 3 F N 4% 1 e LM R i
IFRYRE Y MVIP, mAP F1 Rank-1 #5450 932 TH T 5. 4%
0. 6% ; FH4E T LA VIT £ T P2 AL AAformer, 4
T mAP 2T T 1. 2% , Rank-1 #1220 )L ; 5 20 iuAss
%1 PCB 77440, mAP Fl Rank-1 3 B4 7 T 26. 4% il
16.3% ., MGDSN 7E DukeMTMC-relD ¥ #i4E |12 30 5%
£, MHEE MVIP B8 mAP $8F5$E T+ T 1. 6% Rank-1 $§
FR R 0. 8% ; FHEE T LA VIT by 3 T 45 1 T A 5 0 A
SCT7 ) mAP il Rank-1 #B35 2 i MR, Lk AR R
RFMT f mAP . Rank-1 > 5] & & T 0.1%. 0.6%,
MGDSN 7£ Market1501 Et#fa4E B d%3r H HT SOTA 452% .
XF HECHB A 2 M 1 MGDSN % {41 i 6 30 B 410, 3iF W
T T 4342 B T A S AR B M AR O vk Y
Pk,

2.4 HELSCIG

SRyt — A 56 IE A BB AE MGDSN 7 325 Hh (1 s ik, i
JETE Oceluded-Duke ZUHE4E [ X £2 400ki B JR) 3 450 AiF 472 B
g UEAT LB I UE, A LR E T LA N
TransRelD %% 5 &y % il 3F 47 56 UE, Baseline & /n &2 B
TransRelD 4558, Holh & RIBRE 4 0 4 AR R HRAE , £
UL PR 2% 1) 1 S BP0 S IR 28 A 3 s m1 3R K 4 SRy REAIE 4
6 AR EBERAE | 2852 KU 45 10 16 )2 5043 57 I 45 Ab 2
m2 TR R RIE R B R 53R 4 AN 6 AR ERRRE, 48
T WU 26 TR J2 B3 S 46 A0 FE s m3 R 4 DR
FRAE 285 SO N 45 AL B md FeR085 6 A SRy R AIE 285 XL

U245 A B 3 mS 71K P> 2R L S5y A Al ] Fsf 284 X
TR LA B AR BRS B FEAE (DR R & s m6 s e
RN 45 P 2RV R S R AT [+ Py 280 XS 1) 295 A0 B 4k
B RSO0 R R AEA R AT R . O BR T mS
PR A A S 90 24 (R AR A A SR R A T R, 36 4 2
N T AR FE ST 0 2
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Table 4 Results of experiments with varying granularities

(%)
ik mAP Rank-1 Rank-5 Rank-10
Baseline 59.6 68. 1 82.2 86.3
ml 60. 6 68.5 82.6 87.3
m2 60. 6 68. 1 82. 4 86.7
m3 60. 4 68. 1 83. 1 87.1
m4 60. 6 68. 4 81.9 86.3
m5 60.5 67.8 82.2 87.2
m6 61.3 68.3 82.8 86.2

FH 4 Al 7E#5% m1 o', mAP  Rank-1.Rank-5 FfI
Rank-10 435427} 1% .0. 4% 0. 4% 1%, A3 ¥
2R FFERN 53R 6 A SR ER AR I FRAS Jey i X A RO
/N BEANFEAE SN 10 R A, 15 I 45 BE A8 4l 41 2
M /N LR B RRAE (AN AR B T A A AR i 4 A
W), TEALAY m2 AR TR BI A mAP | Rank-5 Al
Rank-10 233132} 1% .0. 2% F1 0. 4% , Rank 1 {5435 A~ 725
5 ml BEAH L, mAP fRFFAEE  Rank-1,Rank-5 Fl Rank-
10 43550 R B 0. 4% .0. 2% F1 0. 6%, A NN, 7 H 4k
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R AUE B AERZ IR, 23— B ARG E U4 5
HWR AR RN SR B ARt 1T RE 5 | & 30 A 4 A 15 B
TUAx, TEREAL m3 md ALY m3 1Y Rank-1 fR4F
N7F mAP  Rank-5 il Rank-10 43 5132 T+ 0. 8% .0. 9% FiI
0.8%, m4 [ Rank-10 fRFEFAAE , mAP il Rank-1 4351 $&
F19%H10. 3%, LA EZ5F R, A SCBTH ) B 9 45 7E
FOT YR R AR AR B T EA B A TR m6
RO AR B A T mAP | Rank-1 1 Rank-5 43 %1 32 7}
1.7% .0.2% 1 0. 6% ; A1 % m2 #5 5 mAP  Rank-1 F
Rank-5 73 B2 71 0. 7% 0. 2% 1 0. 4% , VA |45 R 0FE B
22 YA 8 XU X 45 15 1 S RMIRGURRAIE 1 285 5 B Oy 1 e
PR 55 B 3 A B MRS T mS B mAP | Rank-1 Al
Rank-5 73542 T+ 0. 8% .0. 5% F1 0. 6% , iIE B i AR AE AL
Rl AR A R
FHIKRTE Occluded-Duke 0355 X XU B 25 16 2443
SCURJZ LS RISy SR 2 M 46 A T SE B B0iE . 5 2 4lhE
JE R R i SR W S 56 AH [R] |, Baseline .m1 A1 m2 475
FE B PR 28 1R 2 B0 S 5 EA T AR P m6 7R fe &
AL pl FR B2 R FRE 3 4 AR FRRE , 280 BUR
P28 PR 2 B3 S 48 b 3L p2 RO 2 R R R4 6
AR FRRHAE , 2835 MU I 26 1) TR J2 4 S X 246 Kb B 5 p3
FORB AR FFIERI R 20 A 4 A F 6 A SRy AR AR, 280
LI O 265 B R J2 200 S X 45 3R A 7 b B, LK T A 40 s 52
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Lvert S
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Table 5 Experimental results of each module

of the dual-stream network (%)
i mAP Rank-1 Rank-5 Rank-10
Baseline 59.6 68. 1 82.2 86.3
ml 60. 6 68.5 82.6 87.3
m2 60. 6 68. 1 82.4 86.7
pl 59.9 66.3 81.5 86.7
p2 60. 6 68. 4 82.5 87.5
p3 60.7 68.2 82.6 86. 8
mo6 61.3 68.3 82.8 86.2

MR 5 AT FERLRL pl H 38 Baseline 7, mAP Fll
Rank-10 23 BI42T; 0. 3% F1 0. 4% ; FEBL R p2 H4E m1 A5
B mAP {RFFAZE  Rank-10 #2FF 0. 2% , ARSI, IR
YRR SE B NS 2% ) T A R AR R, K oy B — J2 4R
A DATERT— 2 Al b 4 O 5 2 AR AE PR3 Y
PR 2 TR IO 248 00 R 25 BT - s FE ALY p3 i m2 A,

mAP Rank-1,Rank-5 Fl Rank-10 4351427} 0. 1% .0. 1% .
0.2%M10. 1%, ARSCANH pl .p2 Fl p3 SLERHEARUE ,
T Y TR UK N 2 B U AR PEREAL TR B IR N4, m6
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