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摘　 要:实例分割是计算机视觉领域的重要研究方向,但由于遮挡问题的存在,使得该任务仍然没有得到充分探索。 针对目前

算法对遮挡物体的分割检测效果不佳,容易出现误检漏检问题,在 Mask
 

R-CNN 框架基础上,提出一种新型双向残差网

络(DRNet)结合 EIoU 的遮挡目标分割模型。 首先,提出一种 DRNet 代替原有 ResNet 网络,使用更少的 BN 层和 ReLU 层取代

传统 Conv-BN-ReLU 结构,利用传统卷积和深度可分离卷积串行连接增强图像感受野特征,通过跳跃连接减轻网络随深度增加

出现退化问题,提升网络表征能力;其次,使用 CEIoU
 

NMS 算法代替原有 NMS 算法,通过聚类思想有效处理重叠边界框抑制问

题,引入 EIoU 评估指标增加边界框几何信息,更加精准地描述边界框之间的相似程度,减少网络对遮挡物体边界框的错误抑

制;最后,使用 EIoU 损失替换原有 Smooth
 

L1 损失,加速网络收敛速度,提升边界框检测精度。 在公共 COCO
 

2017 数据集上进

行预训练,再在不同程度的遮挡数据集上进行实验。 实验结果表明,相比较于原网络,所提分割算法在 COCO
 

2017 数据集上

Box
 

AP 和 Mask
 

AP 分别提升了 1. 7%
 

和 1. 3%;在遮挡数据集上对遮挡物体边界框检测精度和掩码分割精度均有明显提升,证
实该方法对遮挡物体分割的有效性。
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Abstract:
 

Instance
 

segmentation
 

is
 

an
 

important
 

research
 

direction
 

in
 

the
 

field
 

of
 

computer
 

vision,
 

but
 

the
 

existence
 

of
 

the
 

occlusion
 

problem
 

still
 

prevents
 

this
 

task
 

from
 

being
 

fully
 

explored.
 

To
 

address
 

the
 

poor
 

segmentation
 

detection
 

of
 

occluded
 

objects
 

by
 

current
 

algorithms,
 

which
 

are
 

prone
 

to
 

the
 

problems
 

of
 

misdetection
 

and
 

omission,
 

a
 

novel
 

duplex
 

residual
 

network
 

( DRNet)
 

is
 

proposed,
 

combining
 

the
 

EIoU
 

occluded
 

target
 

segmentation
 

model
 

with
 

the
 

Mask
 

R-CNN
 

framework.
 

First,
 

DRNet
 

is
 

proposed
 

to
 

replace
 

the
 

original
 

ResNet
 

network,
 

using
 

fewer
 

BN
 

and
 

ReLU
 

layers
 

to
 

replace
 

the
 

traditional
 

Conv-BN-ReLU
 

structure,
 

utilizing
 

the
 

conventional
 

convolution
 

and
 

depth-separable
 

convolution
 

serial
 

connection
 

to
 

enhance
 

the
 

image
 

sensory
 

field
 

features,
 

and
 

mitigating
 

the
 

degradation
 

problem
 

of
 

the
 

network
 

with
 

the
 

increase
 

of
 

the
 

depth
 

by
 

the
 

hopping
 

connection.
 

Second,
 

the
 

CEIoU
 

NMS
 

algorithm
 

is
 

used
 

instead
 

of
 

the
 

original
 

NMS
 

algorithm
 

to
 

effectively
 

deal
 

with
 

the
 

overlapping
 

bounding
 

box
 

suppression
 

problem
 

through
 

the
 

clustering
 

idea,
 

and
 

the
 

introduction
 

of
 

the
 

EIoU
 

evaluation
 

index
 

increases
 

the
 

bounding
 

box
 

geometric
 

information,
 

which
 

more
 

accurately
 

describes
 

the
 

degree
 

of
 

similarity
 

between
 

the
 

bounding
 

boxes,
 

and
 

reduces
 

the
 

network’ s
 

erroneous
 

suppression
 

of
 

the
 

bounding
 

boxes
 

of
 

the
 

occluded
 

objects.
 

Finally,
 

the
 

EIoU
 

loss
 

is
 

used
 

to
 

replace
 

the
 

original
 

Smooth
 

L1
 

loss
 

to
 

accelerate
 

the
 

network
 

convergence
 

speed
 

and
 

improve
 

the
 

bounding
 

box
 

detection
 

accuracy.
 

In
 

this
 

paper,
 

we
 

first
 

conduct
 

pre-training
 

on
 

the
 

public
 

COCO
 

2017
 

dataset
 

and
 

experiments
 

on
 

different
 

degrees
 

of
 

occlusion
 

datasets,
 

and
 

the
 

results
 

show
 

that
 

compared
 

with
 

the
 

original
 

network,
 

the
 

proposed
 

segmentation
 

algorithm
 

improves
 

the
 

Box
 

AP
 

and
 

Mask
 

AP
 

by
 

1. 7%
 

and
 

1. 3%
 

on
 

the
 

COCO
 

2017
 

dataset,
 

respectively;
 

and
 

both
 

the
 

bounding-box
 

detection
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accuracy
 

of
 

the
 

occluded
 

object
 

and
 

the
 

mask
 

segmentation
 

accuracy
 

on
 

the
 

occlusion
 

dataset
 

are
 

significantly
 

improved
 

on
 

the
 

occlusion
 

dataset,
 

confirming
 

the
 

effectiveness
 

of
 

the
 

method
 

for
 

occluded
 

object
 

segmentation.
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loss

0　 引　 言

　 　 目标检测和实例分割是计算机视觉领域中两大重要

且关系紧密的任务,随着神经网络和深度学习技术的崛

起,该领域研究取得突破性进展,进而衍生出大批具有实

际意义的应用场景,例如自动驾驶,医学成像,无人机监

测和机器人抓取等。
当前实例分割算法主要包括单阶段方法和双阶段方

法。 单阶段方法主要有如下 3 种:YOLACT 网络[1] ,利用

生成一组原型掩码和预测每个实例掩码系数并行得到最

终的分割掩码,并利用 Fast
 

NMS 优化模型,实现实时的

实例分割;RDSNet 网络[2] ,通过引入物体级别和像素级

别学习特征,在目标检测和实例分割之间实现双向性,以
获取更高精度的分割结果和更准确的边界框;SOLO 网

络[3] ,通过引入“实例类别” 的概念,将实例掩码分割转

化成分类问题,利用简单的框架实现较强的性能。 双阶

段网络主要是基于 Mask
 

R-CNN 网络[4] :在 Faster
 

R-CNN
网络[5] 基础上增加全卷积网络分支,采用先检测后分割

的策略,同时实现目标检测和掩码分割;Cascade
 

Mask
 

R-
CNN

 

网络[6] ,在 Mask
 

R-CNN
 

网络的基础上,使用不同的

IoU 阈值训练多个级联的检测器,提高网络预测精度;
HTC 网络[7] ,在 Mask

 

R-CNN
 

网络和 Cascade
 

Mask
 

R-
CNN

 

网络基础之上,设计多任务多阶段的混合级连结

构,实现多任务间的消息共享和联合优化。
然而,当目标物体被遮挡时,其部分或全部特征信息

会丢失,导致模型难以准确地识别和分割出被遮挡的目

标[8] 。 此外,由于遮挡目标的存在,不同目标的检测框之

间可能会严重重叠,容易被非极大抑制算法看作同一个

预测目标而错误抑制,造成漏检的发生。 为应对上述问

题,目前已经有研究者提出了遮挡检测优化算法。 Zhang
等[9] 在 Faster

 

R-CNN 基础上设计部分遮挡感知区域池化

层代替 RoI 池化层,将行人划分为 5 个部分,通过对各个

部分的检测估计行人的遮挡状态,但行人各个部分均具

有丰富的特征信息,当被检测物体特征信息不充分时,难
以通过分部检测实现遮挡状态估计。 Liu 等[10] 在 R-
FCN[11] 基础上增加了多层特征提取网络,并将每一层的

特征信息进行融合,该方法充分利用特征提取网络采集

到的特征信息,增强输出特征图的表征能力,提高网络对

遮挡目标的检测精度,但当特征提取网络本身效果不佳

时,难以确保网络对遮挡问题的有效性。 Yang 等[12] 在

RetinaNet 基础之上,提出 Rep-GIoU
 

Loss,通过改进损失

函数来改善检测器在遮挡环境下的性能,是代价最小且

最具解释性的方式之一,但是大多数损失函数的设计无

法充分考虑遮挡条件的复杂性,容易造成漏检的情况;
Luo 等[13] 将非极大值抑制算法( NMS) 加入网络模型训

练,提出 NMS
 

Loss,NMS
 

Loss 考虑了假阴性和假阳性对

目标检测结果的影响,对假阳性没有被抑制而假阴性被

NMS 错误地删除进行惩罚,减少网络对遮挡目标检测框

的过度抑制。 但 NMS
 

Loss 只适用于单类目标的检

测[14] ,其在一般检测中的使用仍需要进一步的研究。
针对上述问题,本文在 Mask

 

R-CNN 框架基础之上,
提出一种针对遮挡物体的检测与分割算法。 设计了一种

双向 残 差 特 征 提 取 网 络 ( duplex
 

residual
 

network,
DRNet),将传统卷积和深度可分离卷积[15] 串行连接,充
分提取细节特征,利用跳跃连接[16] 减轻网络退化情况,
显著增强特征提取能力;改进 NMS 算法,使用 CEIoU

 

NMS 算法替换原有 NMS 算法,在 Cluster
 

NMS 算法[17] 基

础上,使用 EIoU 作为边界框评价指标,有效提升 NMS 算

法推理速度,减少网络对遮挡物体边界框的过度抑制;使
用 EIoU 损失[18] 计算边界框回归损失,促使模型更准确

地预测目标框的位置和大小,提高目标检测任务的定位

精度,加速网络收敛速度。

1　 改进 Mask
 

R-CNN 算法

1. 1　 算法整体框架

　 　 本文算法以 Mask
 

R-CNN 网络为基础,整体框架如

图 1 所示,训练图像经预处理以消除图像特征单位和尺

度差异的影响,提高数据的多样性;将预处理后的图像输

入至主干网络,提取图像特征信息;接着通过特征金字塔

网络[19] 进行多尺度图像特征融合,生成预测特征金字

塔;区域生成网络从特征金字塔网络输出的预测特征金

字塔中寻找可能包含目标的感兴趣区域,提高网络预测

定位能力;感兴趣区域经不同大小的尺寸对齐后输入到

快速卷积预测器[20] 和全卷积网络;快速卷积预测器对区

域生成网络的输出特征图和感兴趣区域进行特征提取和

分类,获取目标的类别信息和边界框信息;全卷积网络在

对齐后的感兴趣区域内部对每个像素进行标签预测,实
现实例级别的语义分割;后处理部分将网络预测的类别

信息,边界框信息和掩码信息经过过滤、合并等处理,将
最终预测结果绘制到原图像,实现目标检测与分割任务。
1. 2　 双向残差网络

　 　 在遮挡条件下,目标特征信息部分丢失,遮挡目标之
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图 1　 算法整体框架

Fig. 1　 Overall
 

framework
 

of
 

algorithm

间特征信息互相干扰,导致网络对遮挡目标的特征信息

提取困难,造成检测和分割效果不佳。 针对上述问题,本
文设计了一种双向残差网络 DRNet,通过串联传统卷积

和深度可分离卷积提取更加丰富的特征信息,利用跳跃

连接减少网络退化[21] ,增加网络深度,提升网络特征提

取能力。
DRNet 网络组成结构如图 2 所示,当输入通道数和

输出通道数相同时,网络采用双向残差基础结构。 输入

特征图 F ∈ Rc×w×h ,通过 DRB 结构正向传播,并利用跳

跃连接将原始输入和网络输出叠加,得到最终得到输入

输出尺寸相同的特征图 F̂ ∈ Rc×w×h 。 第 1 个 1×1 卷积层

对特征图降维处理,减少通道个数,降低计算量;再通过

3×3 卷积层捕捉输入特征图的细节特征信息,提高特征

图表征能力。 第 2 个 1×1 卷积层对特征图升维处理,以
提高非线性能力;再通过 5×5 深度卷积层[22] ,在更高的

维度通过逐点卷积实现通道间的信息融合,使用更大的

卷积核可以拥有更广阔的感受野,进一步增加特征信息。
第 3 个 1×1 卷积层对特征图再做升维处理,保证输入输

出特征通道数相同;最后通过跳跃连接减少梯度消失,防
止网络退化。 不同于传统的 Conv-BN-ReLU 结构,DRB
使用更少的 BN 层和 ReLU 层[23] ,虽然 BN 层能够加速网

络收敛,减少梯度消失或爆炸问题,但 BN 层引入了额外

的计算量,并导致网络结构复杂化,增加调参难度,适当

减少 BN 层可以降低计算开销,减少过度正则化,保留更

多特征信息;ReLU 层通过截断负数值引入非线性特征,
增加网络表征能力,过多的 ReLU 使得许多神经元输出

为零,损坏特征信息,减少 ReLU 层以增强信息流动,缓
解梯度消失问题。

当输入通道数和输出通道数不同时,网络采用双向

残差跳跃结构,在双向残差基础结构上,将 3×3 卷积层的

步距设置为 2,对输入特征图进行下采样;利用第 3 个 1×

图 2　 DRNet 网络组成结构

Fig. 2　 DRNet
 

network
 

infrastructure

1 卷积层对特征图升维处理
 

,并在跳跃连接时使用一个

1×1 卷积层对原始输入特征层升维,确保梯度传播,最终

得到输出特征图 F
~

∈ R2c×w / 2×h / 2。
DRNet 网络完整结构如图 3 所示,结构参数如表 1

所示。
表 1　 DRNet 网络结构参数

Table
 

1　 DRNet
 

Network
 

structure
 

parameter
层级 输出大小 网络参数

层 0 48× w
4

× h
4

卷积 7×7,步距
 

2
最大池化层,步距

 

2

层 1 192× w
4

× h
4

双向残差基础结构×1
双向残差基础结构×2

层 2 384× w
8

× h
8

双向残差跳跃结构×1
双向残差基础结构×2

层 3 768× w
16

× h
16

双向残差跳跃结构×1
双向残差基础结构×8

层 4 1
 

536× w
32

× h
32

双向残差跳跃结构×1
双向残差基础结构×2
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图 3　 DRNet 网络结构

Fig. 3　 DRNet
 

network
 

structure

1. 3　 CEIoU
 

NMS 算法

　 　 在检测遮挡目标时,传统 NMS 算法存在如下两点问

题:1)使用交并比( intersection
 

over
 

union,IoU)作为算法

抑制评价指标,无法很好地衡量边界框的重叠程度,可能

导致某些有效目标被错误移除,造成漏检问题;2)对于大

量候选检测框,计算每个检测框之间的 IoU 并进行比较,
计算复杂度较高,处理速度较慢。 因此,本文使用 CEIoU

 

NMS 算法,在 Cluster
 

NMS 算法基础上,利用 EIoU 抑制评

价指标,加速 NMS 算法推理速度,减少网络对遮挡物体

边界框的过度抑制。
Cluster

 

NMS 算法通过引入聚类步骤,在每个聚类内

部执行 NMS 操作,通过分组形式减少需要比较的边界框

数量,提高效率和效果。 由于 b 矩阵为 0 的元素不会对

抑制结果产生影响,使得 A 和矩阵 X 的乘积操作将没有

重叠的预测框被隐式地分组到不同的聚类中,并在聚类

间执行抑制,有效改善网络过度抑制问题,并且利用 GPU
加速矩阵运算,提升 NMS 推理速度。
算法:Cluster-NMS
输入: N 个预测边界框,B = [B1 ,B2 ,…,BN] T ,抑制框阈值 ε
输出: b = {bi} 1×N,b ∈ [0,1]
1: T = N,t = 1,t∗ = T,b0 = 1
2:计算 IoU 矩阵

 

X = {xij} N×N,xij = IoU(Bi,B j)
3: X = triu(X) && xij = 0
4:while

 

t ≤ T
 

do

5:　 　 　 　
 

At = diag(bt-1 )
6:　 　 　 　

 

Ct = At × X

7:　 　 　 　
 

g = maxiC
t

8:　 　 　 　
 

bt =
bi = 1 , gi > ε

bi = 0 , gi < ε{
9:　 　 　 　

 

if
 

bt = = bt-1

10:　 　 　 　 　 　 　 　 　 t∗ = t ,
 

break
11:　 　 　

 

end
 

if

12:end
 

while

13:return
 

bt∗

　 　 传统 NMS 使用 IoU 作为抑制评价指标,用于衡量两

个边界框之间的重叠程度,IoU 定义公式如下:

IoU =
areaA ∩ areaB

areaA ∪ areaB
(1)

式中: areaA 和 areaB 分别表示A、B两个边界框的面积,但
IoU 仅计算两个边界框重叠区域与并集的比值,不考虑

边界框的其他几何特征,当两个框高度重叠但形状和位

置不同时,IoU 无法进行有效区分。 本文在 Cluster
 

NMS
基础上,引入 EIoU 作为抑制评价指标,增加边界框中心

点距离和长宽比差异惩罚项,提供更多几何信息,EIoU
定义公式如下:

EIoU = IoU -
ρ2(bA,bB)

c2
-
ρ2(wA,wB)

C2
w

-
ρ2(hA,hB)

C2
h

(2)
式中: c,Cw 和Ch 分别表示A、B边界框最小外接矩形对角

线长度,宽度和高度; ρ2(bA,bB)、
 

ρ2(wA,wB) 和 ρ2(hA,
hB) 分别表示 A、B 边界框几何中心点之间的欧氏距离,
宽度差平方和高度差平方。 EIoU 能够抑制 IoU 得分,提
供更高的定位精度,减少 NMS 错误抑制。
1. 4　 损失函数

　 　 损失函数提供衡量标准,用于衡量模型预测值和真

实值之间的差异,通过最小化损失函数更新模型参数,提
升网络效果,Mask

 

R-CNN 网络损失定义如下:
loss = acl + arl + cla + reg + seg (3)

式中: acl、 cla 和 seg 分别表示 RPN 分类损失、目标检测

分类损失以及掩码分类损失。 使用二元交叉熵损
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失(binary
 

cross-entropy
 

loss) 统计计算, 损失函数定义

如下:

ce = 1
Nce

∑
i
CE(ρi,ρ

∗
i ) (4)

式中: ρi 和 ρ∗
i 分别表示第 i 个目标的预测概率和真实标

签;CE 表示交叉熵损失。
arl 和 reg 分别表示 RPN 边界框回归损失和目标检

测边界框回归损失,使用 Smooth
 

L1 损失统计计算,损失

函数定义如下:

sl = 1
Nsl

∑
i
y∗
i ·Smooth L1( t i - t∗

i ) (5)

式中: y∗
i 为指示变量,当第 i 个边界框为正样本时, y∗

i =
1 ,否则 y∗

i = 0;t i 和 t∗
i 分别代表第 i 个边界框预测回归

参数和真实回归参数。
Smooth

 

L1 损失结合了 L1 和 L2 损失的优点,对异常

值具有一定的鲁棒性,在误差较小时有较好的优化效果。
然而,Smooth

 

L1 损失函数在目标边界框回归损失的应用

中存在一些局限性:当误差较大时,Smooth
 

L1 损失函数

变为线性增长,对大误差的惩罚力度不足;在边界框定位

问题上,仅仅考虑边界框回归参数的差值,无法很好衡量

边界框的位置和几何信息,影响网络边界框定位能力;针
对上述问题,本文提出使用 EIoU 损失函数统计边界框回

归损失,EIoU 引入了更多的几何信息,提供了更丰富的

梯度,有助于加快模型训练的收敛速度,EIoU 损失函数

定义如下:

EIoU = 1 - IoU +
ρ2(bA,bB)

c2
+ α

ρ2(wA,wB)
C2

w

+

β
ρ2(hA,hB)

C2
h

(6)

式中: α 和 β 表示权重参数,用于平衡长宽比差异对损失

的影响。

2　 实验与分析

2. 1　 数据集与评价指标

　 　 本文使用 COCO( common
 

objects
 

in
 

context) 数据集

和自制的遮挡数据集进行网络训练和测试实验。 COCO
数据集是一个大型的、丰富的物体检测和分割数据集,数
据集中包含 80 种常见目标类别,超过 330

 

000 张图像,包
含 150 万个目标。 遮挡数据集共收集 3

 

580 张图像作为

训练数据,该数据集共包含 5 种检测目标,钳子、扳手、剪
刀、螺丝刀和美工刀。 根据遮挡程度划分为无遮挡,轻微

遮挡 ( 0% ~ 20%), 一般遮挡 ( 20% ~ 40%) 和严重遮

挡(40% ~ 60%),无遮挡数据集包括 930 张训练集,310
张验证集;轻微遮挡,一般遮挡和严重遮挡数据集均包含

520 张训练集和 260 张验证集。 模型在 COCO 数据集上

进行预训练,并在不同遮挡程度的数据集进行训练和

测试。
本文实验采用 COCO 数据集中设 定 的 平 均 精

度(average
 

precision,AP) 以及帧率作为评价指标,平均

精度包括 IoU 阈值从 0. 50 ~ 0. 95,步长为 0. 05 的 10 个值

的平均 AP, IoU 阈值为 0. 50 和 0. 75 下的 AP @ 0. 5
和 AP@ 0. 75。
2. 2　 实验环境与训练参数

　 　 本文实验得到福建省超算中心算力支持,使用 Liunx
超算集群, 系统内核版本 CentOS

 

Linux
 

release
 

7. 9.
2009

 

(Core),4 块 Nvidia
 

Tesla
 

P100 显卡,在 PyTorch 框

架下进行实验,使用 SGD 优化器完成梯度下降,开启混

合精度训练,学习率设置为 0. 02,每 100 轮训练学习率衰

减 0. 1,共迭代 300 轮,EIoU 损失函数 α 和 β 权重参数设

置为 1。
2. 3　 实验结果与分析

　 　 本文在 COCO 数据集上进行预训练,结果如表 2 所

示。 相比较与原网络,本文提出的网络在 COCO 数据集

上 Box
 

AP 提升了 1. 7%,Mask
 

AP@ 0. 5 略有下降,但平

均 Mask
 

AP 和 Mask
 

AP @ 0. 75 值分别提升了 1. 3%
和 2. 1%。

表 2　 COCO 数据集网络预训练结果对比

Table
 

2　 Comparison
 

of
 

network
 

pre-training
results

 

for
 

the
 

COCO
 

dataset (%)
方法 Box

 

AP Mask
 

AP Mask
 

AP@ 0. 5 Mask
 

AP@ 0. 75
Mask

 

R-CNN 37. 5 33. 6 55. 2 35. 3
本文 39. 2 34. 9 54. 7 37. 4

　 　 本 文 在 遮 挡 数 据 集 上 与 Mask
 

R-CNN, Yolact,
Cascade

 

Mask
 

R-CNN,MS
 

R-CNN 网络进行对比,结果如

表 3 所示。 以 Mask
 

R-CNN 网络为基准线,本文在轻度

遮挡,一般遮挡和严重遮挡情况下的 Box
 

AP 分别提升

5. 8%、5. 2%和 7. 8%,Mask
 

AP
 

分别提升了 4. 2%、4. 0%
和 2. 8%,相比较于其他经典的二阶段分割算法,本文算

法的分割精度更高;Cascade
 

Mask
 

R-CNN
 

通过级联结构

显著提高了检测和分割的精度,但代价是更高的计算复

杂度和训练难度;与单阶段网络 YOLACT 相比,检测精度

与分割精度明显提升。
网络实例分割推理结果如图 4 所示,YOLACT 网络

对钳子造成漏检,Mask
 

R-CNN 和 MS
 

R-CNN 网络对钳子

分割结果不够精细;Mask
 

R-CNN 和 YOLACT 网络对美

工刀多余分割,Cascade
 

Mask
 

R-CNN 和 MS
 

R-CNN 对钳

子尖嘴部分分割不够完整;本文的分割结果相对较好,分
割结果更加完整,证明了本文所提方法的有效性,提升了

网络对遮挡物体的分割能力。
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表 3　 实例分割模型网络精度对比

Table
 

3　 Example
 

segmentation
 

network
 

model
 

precision
 

comparison
 

方法 遮挡程度 帧率 / FPS Box
 

AP / % Mask
 

AP / % Mask
 

AP@ 0. 5 / % Mask
 

AP@ 0. 75 / %

Mask
 

R-CNN
轻微遮挡 12. 48 86. 3 82. 2 98. 9 90. 4
一般遮挡 11. 35 69. 0 68. 8 93. 3 85. 8
严重遮挡 11. 87 62. 1 67. 9 90. 5 83. 2

YOLACT
轻微遮挡 23. 67 71. 5 76. 5 92. 4 81. 8
一般遮挡 23. 42 62. 1 60. 8 89. 7 74. 9
严重遮挡 22. 84 54. 8 51. 9 86. 6 58. 2

Cascade
 

Mask
 

R-CNN
轻微遮挡 10. 54 90. 5 83. 0 99. 3 91. 8
一般遮挡 11. 79 75. 6 70. 6 95. 4 89. 0
严重遮挡 11. 20 71. 4 68. 5 93. 1 82. 8

MS
 

R-CNN
轻微遮挡 13. 11 87. 2 82. 3 98. 7 90. 8
一般遮挡 12. 97 73. 8 69. 4 93. 6 80. 7
严重遮挡 12. 91 68. 0 66. 9 94. 3 83. 1

本文

轻微遮挡 14. 32 92. 1 86. 4 99. 7 92. 0
一般遮挡 13. 62 74. 2 72. 8 92. 7 88. 6
严重遮挡 14. 01 69. 9 70. 7 93. 6 85. 2

图 4　 实例分割网络推理结果

Fig. 4　 Example
 

segmentation
 

network
 

inference
 

results

2. 4　 消融实验

　 　 为验证本文所提出的 DRNet、CEIoU
 

NMS 和 EIoU 损

失函数的有效性,在遮挡数据集上设计消融实验,实验结

果如表 4 所示。
　 　 实验表明,加入 CEIoU

 

NMS 算法和 EIoU 损失后网

络推理速度和网络精度均有所提升,证明了各个模块的

有效性;相比较于 ResNet-50 网络,本文所提 DRNet 对于

网络提升明显,平均 Box
 

AP 和 Mask
 

AP 分别提升了

3. 2%和 1. 7%,证明本文所提主干网络具有更加出色的

特征提取能力,有利于增强网络定位和分割精度,提升网

络推理速度,结合可视化结果进一步说明本文所提方法

的有效性。

表 4　 消融实验结果

Table
 

4　 Results
 

of
 

the
 

ablation
 

experiment

主干网络
CEIoU
NMS

EIoU
损失

帧率 / FPS Box
 

AP / % Mask
 

AP / %

ResNet-50
× × 12. 48 86. 3 82. 2
√ × 13. 67 86. 7 83. 3
√ √ 13. 94 88. 9 84. 7

DRNet √ √ 14. 32 39. 2 34. 9
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　 　 首先,在原网络基础上引入 CEIoU
 

NMS 模块,待网

络训练收敛后,使用模型进行推理,可视化边界框预测结

果,如图 5 所示。

图 5　 NMS 与 c
 

EIoU
 

NMS 效果对比

Fig. 5　 Comparison
 

of
 

NMS
 

and
 

Cluster
 

EIoU
 

NMS
 

effects

由推理结果可知,Cluster
 

EIoU
 

NMS 对边界框预测准

确性更高,对多余边界框抑制效果更好;其次,引入
 

EIoU
损失函数进行训练,可视化网络训练过程中的边界框损

失,如图 6 所示。

图 6　 Smooth
 

L1 与 EIoU 边界框回归损失曲线对比

Fig. 6　 Comparison
 

of
 

Smooth
 

L1
 

and
 

EIoU
boundary

 

regression
 

loss
 

curves

加入 EIoU 损失后网络训练损失曲线更加平滑,边界

框回归损失值明显降低,表明训练过程中 EIoU 损失函数

能够更好地反映预测框和真实框之间的差异,提供更加

丰富的梯度信息,有效指导网络模型优化方向,提升模型

边界框检测精度;为验证不同 α 和 β 的值对网络模型的

影响,采用多组不同值进行测试,实验结果如表 5 所示。
表 5　 对比实验结果

Table
 

5　 Comparison
 

of
 

experimental
 

results
α β Box

 

AP / % Mask
 

AP / %
0. 5 2. 0 85. 7 82. 9
0. 7 1. 4 87. 4 83. 5
1. 0 1. 0 88. 9 84. 7
1. 4 0. 7 88. 1 84. 2
2. 0 0. 5 86. 1 83. 2

　 　 通常图像中矩形检测框边宽跨度略微高于边高跨

度,使得 α 权重对模型影响略高于 β 权重;综合场景下,
由于目标预测边界框宽高比随机性较强,当 α 和 β 权重

相当时,网络模型效果最优。
最后,将原有 ResNet-50 替换为 DRNet,结合网络推

理结果对比模型性能,如图 7 所示。 引入 DRNet 前,网络

对物体部分检测效果不佳;引入 DRNet 后网络能够有效

识别目标,减少检测错误率,表明 DRNet 能够有效提升特

征信息,提升模型检测效果。

图 7　 引入 DRNet 前后网络推理效果对比

Fig. 7　 Comparison
 

of
 

network
 

inference
 

effects
before

 

and
 

after
 

the
 

introduction
 

of
 

DRNet

3　 结　 论

　 　 为解决实例分割任务场景中的遮挡问题,本文提出

了一种改进 Mask
 

R-CNN 算法,采用双向残差网络提取

特征,增强了网络的表证能力;使用 Cluster
 

EIoU
 

NMS 算

法减少预测边界框过度抑制,在遮挡条件下能够有效减

少网络漏检发生;同时使用 EIoU 损失统计边界框回归损

失,有效增强网络定位能力,提升网络收敛速度。 实验表

明,以 Mask
 

R-CNN 网络为基准线,本文所提算法在轻微
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遮挡,一般遮挡,严重遮挡数据集下的平均 Box
 

AP 分别

提升了 5. 8%、5. 2%和 7. 8%,平均 Mask
 

AP 分别提升了

4. 2%、4. 0%和 2. 8%;相比较于其他经典分割网络,本文

模型能够有效提升遮挡物体的检测与分割精度。
然而,本文方法仍然存在一些局限性,仅考虑到当前

遮挡物体的边缘进行检测与分割,并未考虑遮挡物体间

的遮挡状态,因此,未来的研究方向应该进一步探讨遮挡

物体间的遮挡关系,以提升模型的检测性能。
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