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Novel DRNet occlusion target segmentation model combined with EloU
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Abstract: Instance segmentation is an important research direction in the field of computer vision, but the existence of the occlusion
problem still prevents this task from being fully explored. To address the poor segmentation detection of occluded objects by current
algorithms, which are prone to the problems of misdetection and omission, a novel duplex residual network ( DRNet) is proposed,
combining the EloU occluded target segmentation model with the Mask R-CNN framework. First, DRNet is proposed to replace the
original ResNet network, using fewer BN and Rel.U layers to replace the traditional Conv-BN-ReL.U structure, utilizing the conventional
convolution and depth-separable convolution serial connection to enhance the image sensory field features, and mitigating the degradation
problem of the network with the increase of the depth by the hopping connection. Second, the CEIoU NMS algorithm is used instead of
the original NMS algorithm to effectively deal with the overlapping bounding box suppression problem through the clustering idea, and the
introduction of the EloU evaluation index increases the bounding box geometric information, which more accurately describes the degree
of similarity between the bounding boxes, and reduces the network’ s erroneous suppression of the bounding boxes of the occluded
objects. Finally, the EloU loss is used to replace the original Smooth L1 loss to accelerate the network convergence speed and improve
the bounding box detection accuracy. In this paper, we first conduct pre-training on the public COCO 2017 dataset and experiments on
different degrees of occlusion datasets, and the results show that compared with the original network, the proposed segmentation algorithm

improves the Box AP and Mask AP by 1. 7% and 1.3% on the COCO 2017 dataset, respectively; and both the bounding-box detection
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accuracy of the occluded object and the mask segmentation accuracy on the occlusion dataset are significantly improved on the occlusion

dataset, confirming the effectiveness of the method for occluded object segmentation.

Keywords : occluded objects; instance segmentation; DRNet; CEIoU NMS; EloU loss
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Table 3 Example segmentation network model precision comparison
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Y 22.84 54.8 51.9 86.6 58.2
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T Y 12.91 68.0 66.9 94.3 83.1
TR 14.32 92.1 86. 4 99.7 92.0
AL — Y 13.62 74.2 72.8 92.7 88.6
Y 14.01 69.9 70.7 93.6 85.2

(a) Mask R-CNN (b) YOLACT (¢) Cascade Mask R-CNN (d) MS R-CNN (e) A3
(e) This paper
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Fig. 4 Example segmentation network inference results
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Table 4 Results of the ablation experiment
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DRNet V| vV 14.32 39.2 34.9
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T EloU $51 2K J5 P28 1| bt 2% il 26 58 Jin~F- 34, i1 ¢
HE [l 1458 2 (B S8 I, SR B it A rh EloU 4512k pR %K
FIE 1% T 407, S BT I A R S A 22 ) Y 25 S, R RE T
FEIBENR B, BREESMERAAL 7 7, $2 A
1 FE RTINS BE 5 S B UEAS [R] o F1 B AR (B o) 245 452 764 11
S R 2 AR RE AT, SEgR A5 R N3 5 PR,
x5 MUEIZWER

Table 5 Comparison of experimental results

a B Box AP/% Mask AP/%
0.5 2.0 85.7 82.9
0.7 1.4 87.4 83.5
1.0 1.0 88.9 84.7
1.4 0.7 88. 1 84.2
2.0 0.5 86. 1 83.2

T PG v R TR G 0 A 30 0 B R T e 3 o
BE AT o AR XSRS I B S T B A SR AT,
F1 - AR TN A 58 5 FE B AL 3008, Y o T B AN
AHS I, P28 BRI ROR B

)5 B R ResNet-50 #45e k7 DRNet, 45 4 W 4% 4
PRGE T OBRIPERE A&l 7 TR, 51 DRNet i, W44
P AT 4346 I AEC R ANHE 5 5 1 DRNet S P 265 Rl 65 47 4L
T E AR 38R 4 1% W] DRNet REGS A AU TR
AR 2, B THEE ARG IR

(a) 5 ADRNet#if

(b) 5| ADRNet/ii
(a) Before the (b) After the introduction
introduction of DRNet of DRNet

7 51 DRNet HifJ 25 SR XT L
Fig. 7  Comparison of network inference effects

before and after the introduction of DRNet
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