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电池字符缺陷检测 DDP-YOLOv8 模型方法∗

李绪涛　 邓耀华

(广东工业大学机电工程学院　 广州　 510000)

摘　 要:针对消费电池产品表面字符缺陷检测中存在的缺陷位置动态分布、多尺度适应性差和细小缺陷识别困难等关键技术难

题,提出了一种创新性的可变形大核卷积注意力、动态采样和 P2-动态检测头的 YOLOv8( DDP-YOLOv8)检测模型框架。 首先,
针对 YOLOv8 在特征提取过程中无法有效调整特征图权重的问题,设计 DCNv3-LKA 注意力模块,通过融合动态卷积网络与大

核注意力机制,在特征提取阶段实现空间权重自适应调整。 其次,针对 YOLOv8 颈部网络在字符缺陷检测中的采样位置固定和

多尺度适应性差的问题,对 YOLOv8 的颈部网络结构进行重构,采用跨尺度特征融合模块( CCFM)架构并提出一种引入了动态

偏移量与可学习采样权重双驱动机制的动态采样器 DS(DS-CCFM 模块),突破传统特征金字塔的固定几何约束。 最后,针对消

费电池产品表面字符小尺度及 YOLOv8 检测头使用普通卷积层导致的特征表达不足与信息丢失问题,增加 P2 小目标检测层并

在检测头融入 DynamicHead 多个自注意力机制(P2-DynamicHead 模块),提升对微小缺陷的捕获能力。 实验结果表明,DCNv3-
LKA、DS-CCFM 和 P2-DynamicHead 模块分别使模型在字符缺陷数据集上的平均精度均值(mAP)mAP@ 0. 5 达到 91. 8%、91. 2%
和 92. 4%,相较于 YOLOv8n 分别提高了 1. 7%、1. 1%和 2. 3%。 DDP-YOLOv8 最终实现了 94. 0%的 mAP@ 0. 5,相较于基准模型

YOLOv8n 提升了 3. 9%,模型检测速度为 85. 1
 

fps,满足电池大规模定制生产中字符缺陷检测对高精度与实时性的需求。
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Abstract:
 

To
 

address
 

the
 

critical
 

challenges
 

in
 

surface
 

character
 

defect
 

detection
 

of
 

consumer
 

batteries,
 

including
 

dynamic
 

defect
 

localization,
 

multi-scale
 

adaptability,
 

and
 

fine-scale
 

defect
 

recognition,
 

this
 

paper
 

proposes
 

an
 

innovative
 

DDP-YOLOv8
 

framework.
 

Firstly,
 

to
 

resolve
 

the
 

limitation
 

of
 

YOLOv8
 

in
 

effectively
 

adjusting
 

feature
 

map
 

weights
 

during
 

feature
 

extraction,
 

we
 

design
 

a
 

DCNv3-
LKA

 

attention
 

module
 

to
 

achieve
 

adaptive
 

spatial
 

weight
 

adjustment
 

through
 

dynamic
 

convolution
 

and
 

large-kernel
 

attention
 

fusion.
 

Secondly,
 

aiming
 

to
 

overcome
 

the
 

fixed
 

sampling
 

positions
 

and
 

poor
 

multi-scale
 

adaptability
 

of
 

YOLOv8’ s
 

neck
 

network
 

in
 

character
 

defect
 

detection,
 

we
 

restructure
 

the
 

neck
 

architecture
 

by
 

adopting
 

a
 

CCFM
 

framework
 

and
 

propose
 

a
 

dynamic
 

sampler
 

( DS-CCFM
 

module)
 

incorporating
 

dual-driven
 

dynamic
 

sampling
 

mechanism.
 

Finally,
 

to
 

mitigate
 

the
 

insufficient
 

feature
 

representation
 

and
 

information
 

loss
 

caused
 

by
 

standard
 

convolution
 

layers
 

in
 

YOLOv8’ s
 

detection
 

head
 

when
 

handling
 

small-scale
 

battery
 

characters,
 

we
 

introduce
 

a
 

P2
 

small-target
 

detection
 

layer
 

and
 

integrate
 

multiple
 

self-attention
 

mechanisms
 

from
 

DynamicHead
 

into
 

the
 

detection
 

head
 

(P2-DynamicHead
 

module)
 

to
 

improves
 

small
 

defect
 

recognition.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

DCNv3-LKA,
 

DS-CCFM,
 

and
 

P2-DynamicHead
 

modules
 

achieve
 

mean
 

average
 

precision
 

(mAP)
 

mAP@ 0. 5
 

of
 

91. 8%,
 

91. 2%,
 

and
 

92. 4%
 

respectively
 

on
 

the
 

character
 

defect
 

dataset,
 

representing
 

improvements
 

of
 

1. 7%,
 

1. 1%,
 

and
 

2. 3%
 

over
 

baseline
 

YOLOv8n.
 

DDP-YOLOv8
 

achieves
 

a
 

final
 

mAP@ 0. 5
 

of
 

94. 0%,
 

representing
 

a
 

3. 9%
 

improvement
 

over
 

the
 

baseline
 

model
 

YOLOv8n.
 

With
 

an
 

FPS
 

of
 

85. 1,
 

the
 

model
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meets
 

the
 

requirements
 

of
 

high
 

accuracy
 

and
 

real-time
 

performance
 

for
 

character
 

defect
 

detection
 

in
 

large-scale
 

customized
 

battery
 

production.
Keywords:character

 

defect;
 

YOLOv8;
 

attention;
 

dynamic
 

sampling;
 

dynamichead

0　 引　 言

　 　 消费电池表面的字符文本不仅传递产品信息,还承

载了关键的制造和质量控制信息。 然而,字符印刷过程

易受生产工艺、材料质量和环境等因素的影响,导致字符

缺印、模糊和污染等常见缺陷的出现。 因此,准确检测产

品表面字符缺陷对于保障产品质量与生产效率至关

重要。
传统的字符缺陷检测方法主要分为人工抽检和机器

视觉检测两类。 人工抽检方式由于检测效率低、标准不

统一、人工成本高等缺点,正逐步被现代化企业淘汰。 基

于机器视觉的字符缺陷检测方法则通过字符定位和分

割,再与标准图像进行对比,从而判断字符的质量。 熊继

淙等[1] 采用基于形状的模板匹配算法快速定位目标区

域,结合灰度值差影匹配算法,实现了锂电池标签字符缺

陷的检测。 裴炜冬[2] 则提出通过多模板分区域的方法检

测锂电池表面字符的缺陷,相较于传统的图像像素差值

法,其检测的鲁棒性得到了提升。 然而,基于机器视觉的

字符缺陷检测方法在图像质量和字符样式变化时,通常

需要更新标准对比图像和调整算法参数。 这一过程导致

较高的维护成本和时间开销,影响大规模定制生产中快

速响应和灵活调整的需求。
近年来,深度学习技术为字符缺陷检测提供了有效

工具。 卢丹等[3] 改进了 LeNet-5 网络以应用于汽车手柄

字符缺陷检测,通过改变输入图像像素增加缺陷字符的

缺陷特征信息,并引入 Adam 优化器和批量归一化操作,
提升了检测的准确性。 赵卫东等[4] 结合 Faster

 

RCNN 与

RetinaNet,提出了端到端的电表字符检测算法,先通过

Faster
 

RCNN 提取字符区域,再利用 RetinaNet 精确检测

缺陷。 Peng 等[5] 基于 EfficientNet 的核心模块构建了名

为 BBE 的网络,主要由特征提取网络 BUNet、特征融合网

络 BWNet、分类和回归网络组成,用于复杂背景下喷码字

符的缺陷检测工作。 然而,这些改进方法和模型在复杂

场景、大规模图像处理或需要高精度时,存在扩展性不

足、计算开销较大或对参数敏感的问题,影响了模型的通

用性和实际应用效果。
随着目标检测技术的快速发展,YOLO[6] 系列算法凭

借其精度与速度优势,在实时对象检测中表现突出。 特

别是 YOLOv8 算法,因其在高效定位和分类各种缺陷方

面的优势,已被广泛应用于缺陷检测领域。 李冰等[7] 针

对复杂环境下风机桨叶缺陷检测精度较低的问题,提出

了一种改进 YOLOv8 的风机桨叶缺陷检测算法。 通过引

入 LSKA 注意力机制并采用加权双向特征金字塔网

络(bidirectional
 

feature
 

pyramid
 

network,BiFPN) 结构,增
强了多尺度特征融合能力,提升了小目标检测的精度。
杜昌都等[8] 通过在 YOLOv8 中加入卷积块注意力模

块(convolutional
 

block
 

attention
 

module, CBAM) 机制,提

升了贴片芯片引脚缺陷检测的精度。 王安静等[9] 则引入

GFPN 特征融合模块,加强了相邻层级间的跨尺度连接

和同尺度下的跨层连接,改善了鼓形滚子表面缺陷特征

在卷积网络中的传递效果。
消费电池产品表面的字符缺陷往往较小且复杂,位

置多变, 类型繁多, 且常伴随细微变化。 当前基于

YOLOv8 改进的缺陷检测方法在字符缺陷检测场景中存

在局限,即常规注意力机制难以应对背景干扰,固定采样

策略导致细微缺陷特征丢失,检测头对小目标检测能力

弱。 故在 YOLOv8 的基础框架上,提出了一种基于可变

形大核卷积注意力、 动态采样和 P2-动态检测头的

YOLOv8 ( deformable
 

large
 

kernel
 

convolutional
 

attention,
 

dynamic
 

sample,
 

and
 

P2-dynamichead
 

YOLOv8, DDP-
YOLOv8)模型。 1)主干网络部分,创新性地设计结合大

核注 意 力 机 制 的 可 变 形 卷 积 网 络 ( deformable
 

convolutional
 

networks
 

v3
 

with
 

large
 

kernel
 

attention,
DCNv3-LKA)。 2)颈部网络部分,对 YOLOv8 的颈部网络

结构进行重构,采用跨尺度特征融合模块 ( cross-scale
 

feature
 

fusion
 

module,CCFM)架构并创造性地设计一种引

入了 动 态 偏 移 量 和 可 学 习 采 样 权 重 的 动 态 采 样

器(dynamic
 

sampler,DS)。 3)检测头部分,增加 P2 小目

标检测层并在检测头融入 DynamicHead 多个注意力

机制。

1　 字符缺陷检测 DDP-YOLOv8 模型构建

1. 1　 DDP-YOLOv8 模型总体架构

　 　 YOLOv8 模型主要包括输入模块、主干网络、颈部网

络和检测头 4 个部分。 其中,主干网络部分采用 C2f[10]

模块和 SPPF[11] 模块, 颈部网络结合特征金字塔网

络(feature
 

pyramid
 

network,FPN) 和路径聚合网络( path
 

aggregation
 

network,PAN) 两种主要的网络结构形成了

PAN-FPN 架构[12] ,检测头使用解耦头,并采用无锚框的

思想。
针对消费电池产品表面字符缺陷的特点,现有的

YOLOv8 模型存在一定的局限性。 由于字符缺陷在形



　 第 6 期 电池字符缺陷检测 DDP-YOLOv8 模型方法 ·167　　 ·

状、排列、大小及空间分布上具有较强的多样性,设计了

一种注意力机制模块———DCNv3-LKA,该模块结合大核

卷积和改进的可变形卷积,从而使得模型能够更加聚焦

于图像中的关键区域,灵活适应不同字符缺陷类型的变

换。 在此基础上,对模型的颈部结构进行重要优化,提出

DS-CCFM 模块,该模块采用 CCFM 网络架构,有效融合

了来自不同通道的特征,并设计了一种高效的动态采样

器 DS,使模型具备了同时调整采样点位置和权重的能

力,从而提升了字符检测任务的表现。 考虑到字符缺陷

通常为小尺寸目标,设计了 P2-DynamicHead 模块,增加

P2 小目标检测层以捕捉更多的微小特征,同时采用了

DynamicHead 检测头提供的多个注意力机制和池化层,
使模型能够充分表达复杂的目标特征,进一步提高检测

准确率。 DDP-YOLOv8 网络模型具体结构如图 1 所示。

图 1　 DDP-YOLOv8 网络架构

Fig. 1　 DDP-YOLOv8
 

network
 

architecture
 

diagram

1. 2　 DDP-YOLOv8 模型各模块设计

　 　 1)DCNv3-LKA 模块设计

DCNv3-LKA 模块的核心是带有偏移量的大核变形

卷 积[13] 。 大 卷 积 核 注 意 力 ( large
 

kernel
 

attention,
LKA) [14] 是一种用于捕捉图像中广泛上下文信息的机

制,模仿了自注意力机制[15] 的感受野 ( receptive
 

field,
RF),但是使用更少的计算量。 假设输入特征图为 X ,其
尺寸为 H × W × C ,卷积核的尺寸为 K × K ,自注意力机

制的计算过程如下:
首先,生成查询( query,Q),键( key,K) 和值( value,

V)矩阵:
Q = XWQ (1)
K = XWK (2)
V = XWV (3)

式中: WQ、WK、WV 是可训练的权重矩阵,尺寸均为 C ×
C。

然后计算注意力分数:

A = softmax(QK
T

dK

)V (4)

式中: softmax 函数是一种将一个包含任意实数的向量转

换为一个概率分布的激活函数; dK 为键向量的维度,通

常为 C 。 注意力权重的计算结果 softmax( QKT

dK

)V 将每

个位置的输出特征都考虑了输入特征图上所有位置的信

息,从而实现了全局感受野。 然而,自注意力机制的计算

复杂度为 O(H2W2C) ,在高分辨率特征图上计算量非常

大。 LKA 通过大核卷积将计算复杂度降为 O(HWK2C),
由于 K2 通常远小于 H × W ,故 LKA 的计算复杂度相较于

自注意力机制大幅减少。
在 LKA 的基础上,本模块通过优化特征提取网络,

提高了模型对字符缺陷的自适应。 如图 2 所示,首先引

入大小和方向都可以任意变化的偏移量来动态地调整卷

积核的采样位置,对输入特征图进行可变形卷积[16] 。 设

输入特征图为 X ,卷积核为 W ,卷积核的采样位置为 p ,
偏移量为 Δp ,则可变形卷积的输出为:

Y(p0) = ∑ pn􀆠R
W(pn)X(p0 + pn + Δpn) (5)

式中: p0 是输出特征图的位置; pn 是卷积核的相对位置;
Δpn 是动态偏移量。

输出特征图通过区域建议网络 ( region
 

proposal
 

network,RPN) 生成一组候选区域
 

( region
 

of
 

interest,
RoI),接着使用 RoI 池化层[17] 和 RoI 对齐层对特征进行

提取。 定义分别为:
YRoIPool = RoIPool(X,R,ΔR,Hout,Wout) (6)
YRoIAlign = RoIAlign(X,R,ΔR) (7)

式中: R是区域候选框; ΔR是偏移量; Hout、Wout 是输出特

征图的高度和宽度。 可变形 RoI 池化层通过引入动态偏
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图 2　 DCNv3 结构

Fig. 2　 Structure
 

diagram
 

of
 

DCNv3

移量,实现在对象形状不规则时的高效特征提取,从而提

高了模型的鲁棒性。 RoI 对齐层则通过双线性插值的方

法解决了量化误差问题,从而提高对目标的检测精度。
2)DS-CCFM 模块设计

CCFM[18] 网络架构的核心思想是利用跨尺度的特征

融合来增强对尺度层次信息的感知能力。 CCFM 通过将

来自不同层次的特征图进行融合,传递网络中不同尺度

的信息,从而利用多分辨率的特征图在细节信息和低分

辨率特征间搭建全局上下文。 这样的跨尺度特征融合机

制能够提高网络对于尺度变化的适应性。
YOLOv8 的采样器虽然包含了内嵌的特征选择,它

对目标各位置的采样仍有很大的局限性,并未能充分利

用跨尺度信息进行有效调整。 为解决该问题,提出了

DS,以应对采样位置固定、局部特征不敏感等问题。 DS
结构如图 3 所示。 设输入特征图为 X ,其尺寸为 H × W ×
C ,首先定义一个标准的初始采样网络 S init ,将 X 通过线

性层生成每个位置的偏移量 ΔS:

h = - scale + 1
2

,…,scale
- 1

2
(8)

S init =
1

scale
·meshgrid(h,h) (9)

ΔS = 0. 5σ·linear(X)·linear(X) (10)
式中: scale 决定了采样的密度; meshgrid 函数用于生成

一个二维网格坐标系; σ 是用于缩放偏移量的比例因子,
以确保偏移量不会过大。

X 通过卷积层和 Sigmoid 函数生成可学习的动态权

重 W ,将 ΔS 进行权重调整后与 S init 生成采样集 Sweight 。
最后,将 Sweight 进行归一化以匹配 grid_sample 函数,然后

通过网格采样函数生成新的特征图 X′ :
W = Sigmoid(Conv(X)) (11)
Sweight = S init + ΔS × W (12)

Snorm = 2·
Sweight

[H,W]
- 1 (13)

X′ = grid_sample(X,Snorm) (14)
其中, grid_sample 是 Pytorch 的函数,根据每个采样

点的位置,通过双线性插值的方法获取输入特征图在该

位置的值,并重新组合生成新的特征图。

图 3　 DS 结构原理

Fig. 3　 Schematic
 

diagram
 

of
 

DS

将 DS 嵌入到 CCFM 网络架构中,使模块具备了可调

谐采样点位置和范围的能力。 动态偏移量能够灵活调整

采样点的位置[19] ,适应输入特征的几何变化,达成较优

解和性能的提升。 通过引入区域权重的调整机制,该模

块不仅能捕捉全局信息,同时还加强了对局部特征的关

注。 DS 与 CCFM 的跨尺度特征融合机制协同作用,进一

步提升了模型在复杂场景中的表现。
3)P2-DynamicHead 模块设计

模块在原有检测层的基础上,通过与网络的较浅层

进行特征融合,增加一个具有更高分辨率的检测层 P2。
较高分辨率的特征图能够提供更多的空间信息,能够更

好地捕捉到小尺寸目标的细节,有助于检测小尺寸的字

符缺陷。 同时,在 4 个检测层中应用 DynamicHead 检测

头的多个注意力机制和 RoI 池化层进行目标分类和位置

回归。
DynamicHead 检测头[20] 结构如图 4 所示,将输入特

征图视为一个三维的张量, L × S × C ,其中, L 是特征层

级、 S是特征图的宽高乘积(HW)、 C 是通道数,在每一个

维度上分别采用尺度感知注意力机制 πL 、空间感知注意

力机制 πS 和任务感知注意力机制 πC ,并在 πC 之前采用

RoI 池化层进行压缩,该检测头可表示为:
W(Γ) = π C(RoIPool(π S(π L(Γ)·Γ)·Γ))·Γ

(15)
其中, Γ∈ RL×S×C,π L 在特征层级维度上执行,不同

层级的特征图对应了不同的目标尺度,在层级增加注意

力,可以增强目标检测的尺度感知能力。 π S 聚焦于不同

空间位置的判别能力,其参考了可变形卷积的原理,采用

位置偏移以聚焦于有判别力的区域,能够考虑到目标在

不同视角下呈现出不同的形状、旋转和位置。 π C 专注于

通道 C ,可以动态开关特征通道以辅助不同任务。
P2-DynamicHead 模块通过增加小目标检测层 P2,并
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图 4　 DynamicHead 结构

Fig. 4　 Structure
 

diagram
 

of
 

DynamicHead

在特征层级之间、空间位置之间以及输出通道内部结合

多个自注意力机制,实现了尺度感知、空间感知和任务感

知的统一,提高了目标检测头的性能。

2　 实验部分

2. 1　 实验环境和模型超参数

　 　 为了验证所构建模型的有效性,以 Windows11 为操

作系统,以 PyTorch 为深度学习框架,搭建了一个实验平

台,所有的实验均在该平台上进行。 实验平台的配置如

表 1 所示。
表 1　 实验工作站具体配置

Table
 

1　 Specific
 

configuration
 

of
 

experimental
 

workstation
环境参数 数值

操作系统 Windows11
GPU NVIDIA

 

GeForce
 

RTX
 

4060(8
 

GB)
CUDA 12. 1
CPU Intel

 

Core
 

i7-12650H
RAM 32

 

GB
深度学习框架 Pytorch

 

2. 1. 0
编程语言 Python

 

3. 8

　 　 同时,在所有实验的整个训练过程中应用了一致的

训练参数和超参数。 具体的训练参数和超参数如表 2
所示。
2. 2　 实验数据集

　 　 数据集来自某电池制造加工企业丝印字符检测机的

缺陷图像,如图 5 所示,共计 1
 

618 张图像,采用 labelimg
工具对图像进行标注。 缺陷类型有 3 种, 分别是污

染(pollution)、缺印(omission)和模糊( unenevness),数量

分别为 805、912、507,采用训练集 ∶ 验证集 ∶ 测试集 =
8 ∶ 1 ∶ 1 对数据集进行划分。

表 2　 训练参数和超参数

Table
 

2　 Training
 

parameters
 

and
 

hyperparameters
参数 数值

训练参数

图像大小 640×640
批次大小 4

轮数 300
工作线程数 8

超参数

学习率 0. 01
动量 0. 937

权重衰减 0. 000
 

5

图 5　 常见的产品表面字符缺陷

Fig. 5　 Common
 

surface
 

character
 

defects
 

of
 

products

　 　 为了防止数据集规模小导致的过拟合问题,在所有

实验中采用数据增强技术,通过色彩增强、图像翻转、图
像缩放、图像拼接等多种数据增强方法,增强了模型的鲁

棒性和泛化性,使其能够在避免过拟合的同时处理不同
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场景下的检测任务,从而提高检测的准确性和可靠性,其
效果如图 6 所示。

图 6　 数据增强效果

Fig. 6　 Data
 

augmentation
 

effects

2. 3　 实验评价指标

　 　 实验中,采用准确率( precision,P )、召回率( recall,
R)、平均精度均值(mean

 

average
 

precision,mAP)、模型参

数量(parameters,Params)和帧率客观评价标准来评估训

练后的字符缺陷检测模型的性能。 P、R、mAP 计算公式如

式(16) ~ (18)所示。

　 　 P = TP
TP + FP

(16)

R = TP
TP + FN

(17)

mAP = 1
n ∑ n

k = 1∫
1

0
PkdRk (18)

式中: TP 表示实际为正、预测为正的样本数量; FP 表示

实际为负、预测为正的样本数量; FN 表示实际为正、预
测为负的样本的数量; n 是数据集类别的数量。
2. 4　 实验及结果

　 　 1)消融实验

为验证 3 种模块的有效性,进行多组消融实验。 实

验主要通过在 YOLOv8n 中逐步加入改进模块,并测试其

在字符缺陷数据集上的性能。 图 7 所示为实验结果,表 3
为实验结果数据,其中√表示添加了该模块。

图 7　 消融实验结果

Fig. 7　 Ablation
 

study
 

results

表 3　 消融实验结果数据
Table

 

3　 Ablation
 

study
 

results
YOLOv8n DCN-LKA DCNv3-LKA CCFM DS-CCFM DynamicHead P2-DynamicHead mAP@ 0. 5 / % Params / ( ×106 ) 帧率 / fps

√ 90. 1 3. 01 147. 4
√ √ 91. 2 2. 63 114. 3
√ √ 91. 8 2. 59 114. 6
√ √ 90. 8 1. 97 132. 5
√ √ 91. 2 1. 96 156. 6
√ √ 91. 3 2. 14 93. 7
√ √ 92. 4 2. 87 84. 0
√ √ √ 92. 0 2. 02 132. 7
√ √ √ 93. 3 3. 39 89. 0
√ √ √ 93. 0 2. 76 89. 1
√ √ √ √ 94. 0 3. 28 85. 1
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　 　 消融实验结果表明,加入 DCNv3-LKA 模块后,模型

的 mAP@ 0. 5 达到 91. 8%,较加入 DCN-LKA 模块后的模

型提高了 0. 6%,这一结果表明,该模块在优化特征提取

网络方面取得了良好的效果。 在 DS-CCFM 模块的加入

下,模型的 mAP@ 0. 5 达到 91. 2%,相较于仅采用 CCFM
架构的模型提高了 0. 4%,这些结果验证了动态采样模块

在提升多尺度特征融合方面的有效性。 同时,模型的参

数量较 YOLOv8n 下降约 35%,帧率提高了 9. 2
 

fps,这表

明 DS-CCFM 模块在提高检测精度的同时,还提高了推理

速度。 此 外, 加 入 P2-DynamicHead 模 块 后, 模 型 的

mAP@ 0. 5 相比于加入 DynamicHead 模块提升了 0. 9%,
充分证明了在 4 个检测层中采用注意力机制和池化层策

略的有效性。 在加入提出的 3 种模块后,模型的 mAP@
0. 5 达到了最高值 94. 0%,比 YOLOv8n 提高了 3. 9%。

2)对比实验

为了进一步验证所提出的改进模型在字符缺陷检测

中的性能优势,选取了几种主流目标检测算法作为对照

模 型, 分 别 为 RT-DETR[18] 、 YOLOv3[21] 、 YOLOv5n 和

YOLOv8n。 此外,为了进一步评估改进模块的有效性,实
验还添加了最新的基于 YOLOv8 改进的模块( CBAM[8] 、
LSKA[7] 、 GPFN[9] 、 BIFPN[7] ) 进 行 对 比 实 验, 以 检 验

DDP-YOLOv8 模型的表现。 实验结果数据如表 4 所示,
图 8 所示为检测结果对比。

表 4　 对比实验结果数据

Table
 

4　 Comparative
 

experimental
 

results
模型 准确率 / % 召回率 / % 污染 Ap / % 模糊 Ap / % 缺印 Ap / % mAP@ 0. 5 / % Params / ( ×106 ) 帧率 / fps

YOLOv5n 77. 6 92. 0 85. 9 86. 3 85. 4 85. 9 2. 51 181. 6
YOLOv3 83. 9 92. 0 87. 7 87. 1 91. 0 87. 6 103. 69 31. 5

RT-DETR 85. 8 96. 0 85. 7 84. 3 97. 2 89. 1 32. 81 38. 9
YOLOv8n 85. 5 94. 0 89. 8 94. 8 85. 8 90. 1 3. 01 147. 4

YOLOv8n+CBAM 79. 8 97. 0 88. 3 94. 2 84. 4 89. 0 2. 75 99. 7
YOLOv8n+LSKA 88. 8 95. 0 88. 4 94. 8 87. 5 90. 2 3. 08 106. 3
YOLOv8n+GPFN 84. 9 96. 0 87. 4 96. 5 87. 0 90. 3 2. 75 98. 7
YOLOv8n+BIFPN 86. 9 95. 0 89. 6 94. 2 86. 9 90. 2 1. 67 121. 7

DDP-YOLOv8 86. 3 97. 0 94. 4 95. 1 92. 5 94. 0 3. 28 85. 1

图 8　 检测结果对比

Fig. 8　 Comparison
 

of
 

detection
 

results

　 　 由 表 4 可 知, YOLOv5n、 YOLOv3、 RT-DETR 和

YOLOv8n 模型的 mAP @ 0. 5 分别为 85. 9%、 87. 6%、
89. 1%和 90. 1%,说明这些主流的目标检测算法在字符

缺陷数据集上的检测效果并不理想。 YOLOv8n+CBAM、
YOLOv8n+ LSKA、YOLOv8n + GPFN 和 YOLOv8n + BIFPN
模型的 mAP @ 0. 5 分别为 89. 0%、 90. 2%、 90. 3% 和

90. 2%,相比原始 YOLOv8n 的 90. 1%并没有显著提升,
说明这些模块并未显著提升模型在字符缺陷检测中的性

能。 最终, DDP-YOLOv8 模型在
 

mAP @ 0. 5 上达到了

94. 0%,显著优于其他对比模型,说明了提出的改进模块

的有效性,尤其在提升字符缺陷检测的精度方面表现突

出。 由图 8 可以看出,在不同段落字符的检测任务中,
DDP-YOLOv8 均能有效识别字符缺陷,且在置信度评分

上均优于 YOLOv8n,特别是在细小缺陷的检测任务中,
DDP-YOLOv8 表现出更优的性能,进一步验证了模型的

有效性和泛化能力。
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此外, 还 将 DDP-YOLOv8 模 型 与 最 新 发 布 的

YOLOv10[22] 基础模型进行了对比,利用已有数据集进行

测试。 如表 5 所示,DDP-YOLOv8 模型的实验测试指标

与 YOLOv10 基础模型的实验测试指标相当,进一步证明

DDP-YOLOv8 模型具有一定的先进性和实用性。
表 5　 DDP-YOLOv8 与 YOLOv10n 性能对比

Table
 

5　 Performance
 

comparison
 

between
DDP-YOLOv8

 

and
 

YOLOv10n

模型
准确率 /

%
召回率 /

%
mAP@
0. 5 / %

Params /

( ×106 )
帧率 / fps

DDP-YOLOv8 86. 3 97. 0 94. 0 3. 28 85. 1
YOLOv10n 86. 1 96. 0 93. 8 2. 71 106. 1

3　 结　 论

　 　 针对电池表面字符缺陷检测中存在的目标尺度微

小、缺陷分布随机性强以及特征表达能力不足等关键问

题,提出了一种全新的 DDP-YOLOv8 模型,从特征提取、
特征融合和检测头 3 个核心环节进行了系统性优化,提
升了模型在消费电池字符缺陷检测场景中的性能与实用

性。 首先,针对 YOLOv8 在特征提取过程中全局信息捕

捉能力弱、 权重分配不均的问题, 创新性地设计了

DCNv3-LKA 模块,通过融合可变形卷积与大核注意力机

制,实现了特征图空间权重的自适应分配,使模型能够更

精准地聚焦于关键特征区域,mAP @ 0. 5 提升了 1. 7%。
针对 YOLOv8 在字符缺陷检测中采样位置固定、局部特

征敏感性差以及多尺度特征融合效率低的问题,提出了

DS-CCFM 模块,通过动态采样机制与可学习权重相结

合,显著增强了模型对多尺度特征的适应能力,mAP @
0. 5 提高了 1. 1%,且帧率提高了 9. 2

 

fps,在保证精度的

前提下进一步优化了计算效率。 最后,针对 YOLOv8 检

测头对小尺寸字符特征表达能力不足的问题,创新性地

引入了 P2-DynamicHead 模块,通过增加高分辨率检测层

并集成自适应注意力机制,有效提升了模型对小目标的

检测能力, mAP @ 0. 5 提升了 2. 3%。 实验结果表明,
DDP-YOLOv8 模型在检测性能与计算效率之间实现了平

衡,其 mAP@ 0. 5 达到 94. 0%,参数量为 3. 28×106,帧率

为 85. 1
 

fps,说明该模型在满足工业实时检测需求的同

时,显著提升了消费电池表面字符缺陷的检测精度。 未

来研究将致力于 DDP-YOLOv8 模型的持续优化,重点探

索两个方向,通过将所提出的改进模块迁移至 YOLOv10
等先进架构,进一步提升模型的特征提取能力和检测精

度;采用模型剪枝等轻量化技术,优化模型的计算效率与

推理速度,为智能制造场景下的字符缺陷检测提供更高

效、更精确的解决方案。
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