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DDP-YOLOvV8 model for battery character defect detection

Li Xutao  Deng Yaohua

(School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510000, China)

Abstract: To address the critical challenges in surface character defect detection of consumer batteries, including dynamic defect
localization, multi-scale adaptability, and fine-scale defect recognition, this paper proposes an innovative DDP-YOLOvS framework.
Firstly, to resolve the limitation of YOLOvV8 in effectively adjusting feature map weights during feature extraction, we design a DCNv3-
LKA attention module to achieve adaptive spatial weight adjustment through dynamic convolution and large-kernel attention fusion.
Secondly, aiming to overcome the fixed sampling positions and poor multi-scale adaptability of YOLOv8’ s neck network in character
defect detection, we restructure the neck architecture by adopting a CCFM framework and propose a dynamic sampler ( DS-CCFM
module) incorporating dual-driven dynamic sampling mechanism. Finally, to mitigate the insufficient feature representation and
information loss caused by standard convolution layers in YOLOv8’ s detection head when handling small-scale battery characters, we
introduce a P2 small-target detection layer and integrate multiple self-attention mechanisms from DynamicHead into the detection head
(P2-DynamicHead module) to improves small defect recognition. Experimental results demonstrate that the DCNv3-LKA, DS-CCFM,
and P2-DynamicHead modules achieve mean average precision (mAP) mAP@O0.5 of 91. 8%, 91.2%, and 92. 4% respectively on the
character defect dataset, representing improvements of 1.7%, 1.1%, and 2.3% over baseline YOLOv8n. DDP-YOLOv8 achieves a
final mAP@ 0.5 of 94. 0%, representing a 3. 9% improvement over the baseline model YOLOv8n. With an FPS of 85. 1, the model
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meets the requirements of high accuracy and real-time performance for character defect detection in large-scale customized battery

production.
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Fig. 1  DDP-YOLOvVS8 network architecture diagram
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Table 3 Ablation study results
YOLOv8n DCN-LKA DCNv3-LKA CCFM DS-CCFM DynamicHead P2-DynamicHead mAP@0.5/% Params/ ( x 106) ﬂ]ﬁ%@/fps
vV 90. 1 3.01 147. 4
vV Vv 91.2 2.63 114.3
vV VvV 91.8 2.59 114.6
Vv vV 90. 8 1.97 132.5
v 2 91.2 1.96 156.6
v vV 91.3 2. 14 93.7
vV vV 92.4 2.87 84.0
Vv Vv Vv 92.0 2.02 132.7
vV vV 93.3 3.39 89.0
vV Y 93.0 2.76 89. 1
VvV Vv VvV vV 94.0 3.28 85.1
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Table 4 Comparative experimental results

LAY HERI %/ % BER/%  15Y Ap/% KM Ap/%  BRED Ap/%  mAP@0.5/% Params/(x10°) Wi/ fps
YOLOvSn 77.6 92.0 85.9 86.3 85.4 85.9 2.51 181.6
YOLOV3 83.9 92.0 87.7 87.1 91.0 87.6 103. 69 31.5
RT-DETR 85.8 96.0 85.7 84.3 97.2 89. 1 32.81 38.9
YOLOv8n 85.5 94.0 89.8 94. 8 85.8 90. 1 3.01 147. 4

YOLOv8n+CBAM 79.8 97.0 88.3 94.2 84.4 89.0 2.75 99.7
YOLOv8n+LSKA 88.8 95.0 88.4 94. 8 87.5 90. 2 3.08 106. 3
YOLOv8n+GPFN 84.9 96.0 87.4 9.5 87.0 90.3 2.75 98.7
YOLOv8n+BIFPN 86.9 95.0 89.6 94.2 86.9 90.2 1.67 121.7

DDP-YOLOvS 86.3 97.0 94. 4 95.1 92.5 94.0 3.28 85.1
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Table 5 Performance comparison between
DDP-YOLOvVS and YOLOv10n

Y WEWR, HMZE/ mAP@ Params/
FELHY MR/ fps
% % 0.5/% (x10°)
DDP-YOLOvS 86.3 97.0 940  3.28 85. 1
YOLOv10n 86. 1 96.0  93.8  2.71 106. 1
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