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Infrared human target detection by improved single shot mulitibox detector

Luo Tihua Yuan Lihua Zhu Xiao Lu Chao

(Key Laboratory of Nondestructive Testing ( Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China)

Abstract: To address the issue of high computational complexity in the single shot multibox detector ( SSD) model and its poor
robustness in handling small targets and occlusions, an improved SSD-based infrared human target detection method is proposed to meet
the real-time requirements of intelligent surveillance. First, MobileNet V2 is used as the backbone feature extraction network, replacing
the traditional visual geometry group network 16( VGG16) network in SSD, which reduces computational cost through depthwise separable
convolutions. Then, a feature pyramid network ( FPN) structure is introduced to achieve multi-scale feature fusion, enhancing the
representation ability of shallow features. Finally, the squeeze-and-excitation ( SE) channel attention mechanism is incorporated to
dynamically learn the channel weights, focusing on key features and improving the model’ s attention to important channel information.
Experimental results on the self-built IR-HD dataset show that the improved SSD model’ s detection accuracy is increased by
1.3%@ APO. 5 and 14. 3% AP@ 0. 75, while the model’ s inference speed improves by 3. 835 fps. The conclusion indicates that this
method, through lightweight design, feature fusion, and attention mechanism collaboration, significantly enhances both detection
accuracy and real-time performance, demonstrating strong robustness in infrared small target and occlusion scenarios.
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Fig. 1 The basic structure of MobileNet
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(a) Schematic diagram of FPN fusion
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(b) Schematic diagram of feature fusion in this paper
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Fig.2 The schematic diagram of the feature fusion structure
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Fig.3 The structure of SE attention mechanism
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Fig.4 The structure of modified SSD network model
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Table 1 Validity validation of modified SSD model

SSD MobileNet v2 SE +FPN AP@0.5/% AP@0.75/% i35/ fps FEFIF /N (x10%)
vV 95.3 71.0 7.949 100. 3
vV vV 89. 1 87.6 16. 83 18.4
Vv vV Vv 96. 8 85.6 11.784 19.7

T B E MobileNet V2 BT A4 850M: K br i SSD
TR T R 25 T2 MobileNet V2, F5 8 i) mAP | &
T 0.65% , A5 Y ey I 3 BE HE R T 8. 881 fps, 4 AR K W
MobileNet V2 7535 TS 1T 43 2 4 BUR He bl K 3 42
Tt T SSD AR FRAG I

Sk T SR UE 3 3 R ) WL 5 R A R R B A K
PEERRAERIZE B8N SE VE ML IE45 4 FPN
SEM B mAP FFFT 7.7%@0. 5, WUE TR T 5. 046
fps. WA SE R AHLHIZE AR 1T FRAE B Z 8] A 2140 Ak

H br A EAS ST (74 ) 5, B TH 7 780 S = 230 1 A R
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E2 3 S T8 R B O W el o - 1 [ NS E = A K I e
FRAE B B B B R AR 45 T SSD AR R mAP L TF T
1. 5% , W% F I T 3. 835 fps, UM T BCsk o4 1 i A 2% bk
e FE AT R, 51 A MobileNet V2 Fl7E & L
)X T TR R A T 255 0 R A R 2 T AT A, oA AR
CEGEREA KT A2 A . BT 5 AL AE TR-HD %X
P L AR H ARSI 25 R S B,

(a) SSD E AR R

(a) SSD target detection effect

(b) BFESSD H il 351

(b) Modified SSD target detection effect
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Fig.5 Results of infrared human target detection
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2R, HIR 2 Z040 B ARG I 45 5 5 VTl 45 5 mT A
Faster R-CNN BB RGIRG B 5 7, 7638 L6 Ry 0.5 B AP
IKENT 98. 8% HAL UG I H AE CPU _FAXAT 0.995 fps,
FR AT YOLOVS #EAY | SOk 3k i R oG 1 A 5 1
o 0.5 BHIK T 0.7%, /£ 58Il 0.75 BF B F+ T
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Table 2 Infrared human body target detection results detection accuracy analysis

el BT M4 AP@O0.5/% AP@0.75/% WiZR/ fps FEHIK N/ (%10°)
Faster R-CNN ResNet50 98.8 91.2 0.995 216
YOLO V5 CSPDarknet53 97.6 82.8 6. 835 192
CenterNet ResNet50 96.0 78.0 2.032 341
EfficientDet EfficientNet 95.8 76.0 3.295 4.5
A MobileNet V2 9.8 85.6 11.875 19.7

28(5) :1152-1164.
3 2 FANLL, ZHAO HW, ZHAO HY, et al. A review of

Bt 5XoF IO P A s S ARSI ) 75 5K 5 2T A MG A IR AR
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F s =, 32T B AR RS B 5 580 DA R A o A AAIEERY /)N
HARSERI, A6 SSD BRI 8L T 3 A kAT T
ek DLSCIRET AP AR B ARASI . 1) 4 T KB T )
% VGG-16 B N2 i ALY MobileNet V2;2) N2 2T 4
EUGRFIERE Z K /N H bR GEERS IR 8E, SR FHRRAIE 4 7
ATk SEBLTR 2 RRAE RS R 2 R R Ak 215 B
AN AR TN BRSPS BE 5 3) BTN [ i A RE ) 22
5,51 A SE Gl IE I L] A R AR AR A s
A T B S BRRR IR I A0 ) 59 F A A, 4R T A
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WL R, ek 5 R A S5 % 2R A1
P AT AL S SSD, KRG EEHR T 1.3% AP@ 0. 5
1 14.3%AP@ 0. 75, #EHLHEEHE 5 3. 835 fps; ARG EAE
0.5 F10. 75 323 H R4 Faster R-CNN 1§ 2% #11 5. 6% ,{HAs:
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