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Pediatric echocardiography segmentation combining attention and state space
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Abstract: The significant variation in cardiac dimensions across different age groups and the faster heart rate in children result in more
blurred cardiac borders compared to adults, impacting the segmentation of echocardiography. To address the above problems, the
segmentation model called H2Former is improved, and the model called TPA-H2VSS combining the attention and state space is proposed
to segment the left ventricle of pediatric echocardiography. Firstly, this paper replaces the Transformer block with the visual state space
('VSS) block to enhance the model’ s advantage in long-range modeling. Secondly, the temporal attention (TA) module is built between
the encoder and decoder in the model to complements and interacts with the semantic information of the left ventricle in the
echocardiography video in the temporal dimension. Finally, the positional attention (PA) module is added in the output head to make
pediatric echocardiographic left ventricle segmentation more accurate. The experiments were trained, validated, and tested on the
pediatric echocardiographic video dataset EchoNet-Pediatrics on the PSAX dataset and the A4C dataset, respectively. Compared with the
base model H2Former, Dice, loU, and accuracy on the PSAX dataset were improved by 0. 86%, 1.41%, and 0. 15%, respectively,
and HD was reduced by 0.219 5. Dice, loU, and accuracy on the A4C dataset were improved by 0.93%, 1.53%, and 0.2%,
respectively, and HD was reduced by 0. 167. By comparing with other models, it was demonstrated that the model could effectively
segment the left ventricle in pediatric echocardiography and could provide a new solution for the auxiliary diagnosis of congenital heart

disease.
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HE R IR ( congenital heart disease, CHD) #{IA A
JERCH WIS R B 2 — O Bl D S KA O
SR B2 BRGSO SRR, HERA T O
T REARLINFE bR T X 8 7 0 2 P81 v 20 25 48 G A A A
oI

PO Bl P A2 0 38 3 AR XE A B G 7 0 Bl
FRAELEBE SR I b AL L T % FE AR AR T
BEZELOIER IR 2 D 500, 0 T4 L
S5 JURH R AR e, R )OI R/ NREAR D7 22 350K 0 8K
PR R P Bl P e JIE 2 AR A N T ISR | 5 T 4
MR

PTAESk IR FRB 42 M ( convolutional neural network ,
CNN) F1 Transformer X3 B9 R B 27 5 B R P2 22 K4
Ay E) 7 IS T 8 B A7 . Ronneberger 25 4 H
T B2 B 53 BB UNet, 12 9 45 ) FH G i 245 ) T RR
ERLE TR S AR5 E], Zeng %1 211 MAEF-Net
POWINE=$1i X R IR AR L AR =k N ST QiNE
TERALA ARG &0 Guo A5 76 4 it 25 3 43 i FH FL A5 3 3
TE T AR BB AR R IE i SR POk 384 5 R AE 42 HCRE ), [
B, PEAB A AR B 43R ] T — > B 28 (R 3 ) 1Y S IR
FRAE LG AT UL il 5 R AR GURFAE . Chen 5511 7
WKHEH TIRA CNN-Transformer 4244 i) TransUNet 25 %}
B~ BURHEAT 0 #) . (BEXT T—28IE 5 CNN-Transformer
Z50y 1 UTNet''™ | BoTNet'"*? | TransUNet, H % JE4 M A
TR A R Z B8] YOG R, TC il 4 A [a] RUBE 9 %y
fE, CrossFormer "' BIR K £ N EERFIERL A B IF A
HATRIEIERE , S EBOR R RBERHIE Z R A vh o, BT X 1
TR, He 451 H2HT — Bl BE 2 & R 43 E) R A
H2Former , } Transformer #4548 it 2 1 . 2 RE#EE
TER F7 (multi-scale channel attention, MSCA ) 1 CNN [#) 5
VA 24 f & AH 45 & 8 8 IR A Transformer 152 8t (Chybrid
Transformer block , HTB) , M\ AR J7 T 58 5 R AiE 4R B fig

H2Former H ) Transformer 5 5 78 4 FF 37 F2AK 31 56
ZOrm R AL ST WP BE , SR 1T, Transformer FY A ¥ & 1
PLHRITE MR B 2OR W R 408, 80 i 15
ARSI e T B A AR 3 ) A5 AR T A4 55
TR RS 25 AR B ( state space model , SSM) 512 T #fF
FENR) 2 7, L Mamba " SRR B COIR A 25
)RR HE N T R B MO OC 3, 3 BB T 53 0 R i
FEARENZerE , Liu 507 B0 T —Fhi F A 9058 32 T A
VMamba, B {# H T 3 F 38 X H # % B ( cross-scan

module , CSM ) FAL B R A5 %5 [8] ( visual state space, VSS) 15
Po e HA 42 Jyd5 52 BY 1) — 4 KR 25 6] v S 3 — 4E L 4%
PEFI . Ye 25106 Mamba 45 31 1 S 0 45 A1 A 25 73
e — DA AR A R KOG B SR T 20 & BV BE
{H 2T Mamba PYRERIFE BE 272 A0 53 31 J5 T 3B AN LA,
FEAR AR N BESR IS [ RRE, 20 T LR
PO BT S ) A I 1B) — Bk . RS B O
1) ] FH P05 B AR 8012 SRR M IR TE A
SRART 43380 Hp 1) ) ol FC R P 7 0 s > SR
7, H 0 M T2 3 0 AN R D00 e R 5 1] S e D D B e W 75
BIAFTE , BTG Y 7 A A AR T 1A R00H 4 7 0 3 AR
WU iz S E B S EEREA AR

BEXT ORI, 42 1 —Flogr iy & 8 D AR
243 ] P o 225 T R P 28 D) 24 | 56 7 I ) Rz 8 3 3 0 1 4
JEIRA MRS 25 [ B AY ( hierarchical hybrid visual state
space based on temporal and position attention, TPA-
H2VSS) % JLBHE 7 0 3l 6 20 28 64T 43 ) LA e |5k
PRk, IZARE — A L H2Former 1 Ay 328 % 45 1) 25 fift
T a b AR R T AN AR ROEE 59 JLBHEE P 0 3h 18]
FEESrE, H G, M VSS B IR A Transformer
B Y Transformer B LUE BUBT Y TR & L0 4R 285 25 18]
BEH (hybrid VSS block, HVB) , st 7c.0 % 73 A K
TG R AR TESR T 43 HURS B2 A TRl IR 5 1 etk S TR
WA, Ry 1 FE 53R FOAL i b 10 TR R A i T[] B
(] 77 3¢, 3t 1R Bl 7 7 (temporal attention, TA ) #5
HROGT it i 45 R A 25 22 1 %) B [ 1 R A7 A5, A 1 T 00
R BEE SUE BB SE B R Rl Sy 1 SR A 2 5
PG 2 ] 1) 22 ROBE AT, 6 B R] 3 3 00 45 5 Y 4 45 31 1Y)
R RGBT BB N 2 T (selective kernel attention,
SKA) "2 Hiiy ARFAE Rl o B e, TEA Y Y 4 th 8 4
AETET( positional attention, PA) 1 e 4% A Bk a)
HIE BRIRFFEF IR | #F— L3 T W 2 S U A D X
B Re

1 BB

1.1 B4 5EH

AR ZEAELLUNE 1 (a) FiR , it 2540 th 4 By
B AT, 2 A JE TR TR B3 2 T A 4 2 TR A i
ARAS S [RIBLTY fg < 43 2 S48 76 B4 B BUER R TR & 0
BORARZS R DCF I F B 22 R 1 4y #E 55, <R
B IRASHER 2 R I TE R 1 VSS 3 FlRRAE 4 i
TG A NG — e

A ] H2Former 15 TPA-H2VSS F4) K228 W 2%
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ZIEFIA TA B AA R F1 B 52 R 2 3 By R SCfF
B BRG] 7S e B L R AR A D A R
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expending ) f14& F1)Z ( convolution layers) , il i £ 4~ % R
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OB SCIURRIE L5 A AL . B J5 72 N 4% 1 A S A
PA BEHREE5 I E] 7 A5 B HG si AR 258
1.2 BAEMREKAEZ EHEER ( hybrid VSS block)

o i g R B BT B A — TR R R A 2 T A
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Bt (convolutional block ) Fl MSCA 4 1%, %A ER & o i3
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(a) TPA-H2VSSHERY (1) 42 1
(a) Architecture of the TPA-H2VSS
Bl 1
Fig. 1

VSS BRI AN 18 2 (a) B, S ARRIES 2
IH—4k (layer normalization ) Ja WA WA Y, FEEE 1
AN AR SE 403 26 )2 (linear layer) , SR I5 42
SR AT 43 5 4 B ( depth-wise separable convolution, DW-
Conv) 3 1% PR ECFD 2D 326 3% M 39 #f ( 2D-selective-scan,
SS2D) Ml FE)5 ,ﬁim layer normalization SHERAE AT 15
—fbo TEHE 2 A3 3 i AN RRIE Se 48 i 2 vk R RO
PRACAL BT SR 5 55— SR AR I RRE B 0T . B il
FHEAEZ R A FHIE I I R 53R 22 1 S & B L
VSS AP i i

K H SiLU( sigmoid-weighted linear unit) (24 M Sy B v
PRAL, BB VSS BN RO [ 2,2,2,2], 5L

(b) VBB ARAS 25 [ BLER
(b) Hybrid VSS block

TPA-H2VSS A ) A AR & AR 0 PR A 2 (R
Overall architecture of the proposed TPA-H2VSS and hybrid VSS block

AR FEASANIE] , VSS MRS AL B S 8 1A
Z JZ % (multi-layer perceptron, MLP) [ £k 145 #
T EAH [7] PR JEE T PR 5 B B o 2 A LA

SS2D PSR 3 AR, 430 R 28 AT H L S6 Bk
PRV AN A SCE T, A 3 B, e i A BIR A2 X
TR B e DU A A R A AR MR S T 1UT
§, SRIGHEH S6 Behb BRAEASFF A, #0254 5 1] B A7 B,
WAV NI AN R BORRAE . Bl I 5 I
FRVEXT R HEAT A O W 2R 2D FRAF IR Ry B 2 it ity
SS2D i R EAMY S AR 1 G i B MR R fE
UG AT R RE 5ok B AN TR 1) B B A AR R B A5 6L, A
G2 HE 42 Jry e 2 B 5T
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y ! AttentionMap 1 x H X W x 1
SKA DE—
Linear Layer D
N e
=Y _-
T 1 X 1Conv X X
Layer Normalization T f f
T v 1 x 1Conv < ;S
SS2D Activation _ w X X
T T . r awe
Activation Linear Layer X M Gar
T = G . Conv
e
DW-Conv 3 K Q
f -
Linear Layer
GAP GMP
— L
Layer Normalization
Feature Map TxHXWx(
X
O i D stk ® wEHE © sRfTe
(a) VSSHEER (b) BRI 71 (o) MLETERS
(a) VSS block (b) Temporal attention (c) Position attention
P12 VSS BEH I ) 2 AL R i BAR AR A
Fig. 2 Specific architecture for VSS block, temporal attention, and position attention
/ﬂﬂﬂﬂ EHT' — Fmp—s AR
| mbedding >4, D>p 1 e
}nn nLu HHT* Linear —> A »B (2:4) A(hﬁ(—AFAl;xt B nn Eau \gg
| % B ¢ = Chy + Dx; L YJic M ; 1
iLEﬂ \ ELE nn Lme?r —B,C> ;’= N EELH EEH
! anae IIT% x = o Be |3 | o284
(a) X4 (b) S63k (o) XX A3F
() Cross scan (b) S6 block (c) Position attention
K3 2D PR AR
Fig.3 lustration of the SS2D module
W = Concat(M,Q) (3)
TA B EIZH LI 2(b) FR . 1 S0k A = ety G = Expend(Conv( o (Conv(W)))) (4)
AEWSTHERY 3 46, 2 i B A X 075 57 b=voG (3)

WRAEDENCHE R, Ui B MRS MRS 21
FEH e B AR X SR, 8 4 Ry B Rt Ak ( global
maximum pooling , GMP ) Fl 4= &) 3 33t 4 ( global average
pooling , GAP) {ﬁ%lﬁlﬂﬁﬁﬁﬁﬂﬂﬁﬁﬁ EAER 2 A i)

K o () ERB—EAE; CConv( ) FURFE],
Expend () FRHEBA EERAT; Concar(+) R Juk
fE; Conv( ) RERBRERSE; ORKRTHRIL

TG A R 2% R 2 L 22 OB ARRAE , o 7

(O Pk K , 7l 20 B ] v v sk gy BUAOAJRIR I &R R0 I D it SKA 5 A RRAE il
3D k. ELARRIE T . Gt B HRRE Y o SKA SR p 2 e Xt

K =0 =GMP,(X,) + GAP,(X,) (1) NIRRT 1 A AR 8T LA 3 7 )4 o JR 52 B 1 R
2 B K ST 4 B R SR /D SKA BUERHIANE 4 B,
1.4 PA

BIEEETI M . ¥ 05 M PHEREGR W R )58
Xt W TR ESE 1 x 1 4SR50y R #aAE , dF
— AR G, FEIEEE G AU IS A
WHEEXS R B F SRS g N = T, #ETOk,
HEF - eREEN G TR REEEETEIE D
SEHGRFFEFRIR . BRI .

M = o (GConv(K) ) (2)

PA B ESHAN P 2 () B, EIAFHER Z 1
AT BRI P, PA BEH S Ty A 2L WY
BE— WP OGS B AL B B G, 7 R 4 R 38 E A
JE X HHE R B GAP Fll GMP #2488 J5 4 3545 1 W 4>
FEAEEAR DN, BAREAEIT .

P =GMP(Z) ® GAP(Z) (6)
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2.1 SKIEE

T R A BATE AR SRy LR R 75 0 B AUAEE 5 EchoNet-
Pediatric ™, ZHUHE4E TR K2 T 2023 4R4E4E, (0
T 4 424 ) 55 5 5 ( parasternal short axis , PSAX) #7
LIS 3 176 A>T DU J#E ( pical-4-chamber, A4C) ##
PRSI, AR R T SR R O Bl SR
BIpRICIN B, EAE A A AT SR A I A2 0 A
LHRIREM A OERE L% AR W de R
HEF SR ARIAIEATIERE . USRS ROy 112x 112,
WIZREE IR AR NI A2 8+ 1« 1 MY Lu Bl A7 40 43
KR SEREA SO A0 O Z 5 AN B 5 0T .

(a) PSAXH# 4R (b) AdCEHE
(a) PSAX dataset (b) A4C dataset

K5 REA KOOI A O 28 55

Fig.5 Sample and corresponding left ventricular contour

2.2 KEFH

JIi A 250 HR S 7E NVIDIA GeForce RTX 3090 GPU I
H Pytorchl. 13. 1 SRy, BN BEAEH] AdamW A1
TR BIIR%: 2] % 0,000 1, AL 28 0. 000 01,
Ze3d 10 5, S FRIH 1R, TSR 0.9, batch size
BCE N 16, VIZRAEECH 90, K I A AR/l 112x112
PR 128x128 iy AR B A 15 0 JE Wi 4 AR S0 e
ETIRARIIAE N AOZESE 3 Mot 512K pRASCR FH 058 S i
2% (binary cross-entropy loss, BCE Loss) ,
2.3 WNERR

T VPAG BT B RS A Y 43 M AR X Dice R
0 (Dice coefficient ) . 3¢ 3+ b ( intersection over union,
loU) | #E 8 R (accuracy ) 1 5% £ ¢ #5 B ( Hausdorff
distance , HD ) YE 4 HAEREPEHr 4645

HD &b 1 B0 43 %1 5 225 3 ) 2 6] 1) d R B
LV FE BRI 5000 23 ) 1 5 22 40 i 3 5
Z I 22 5, BV HD 3R B 4F i o FI 45 R, A5
nr .

HD = Max,,,,,, | predicted ,GT} (7)
T predicted W2 i R TINSE 5 CT R EIARSS
2.4 HERSEIE

TE TA BEHRI) 42 Jay I [R] 57 72 0 & D 5% AR
X W) Bl A E 43, 0 3 H F SimA (simple  attention ) (2]
SEA ( squeeze-and-excitation attention ) 7] 'EMA ( efficient
attention ) 8] ECA ( efficient
attention) "' | CA ( comprehensive attention ) """ Fil SKA #5
HUEAT b3, L A5 RN aR 1 R,

F1 TA ERTE PSAX #iEE FX LW RAIF 0
Table 1 Impact of TA module on experimental
resultson PSAX dataset

multi-scale channel

Tk Dice/% 10U/ % Accuracy/ % HD/mm
SimA 92.18 85.84 98. 62 1.613 3
SEA 92.24 85.94 98. 64 1.574 9
EMA 92.19 85.87 98. 62 1. 600 2
ECA 92. 14 85. 80 98. 62 1.653 0
CA 92.18 85.84 98. 63 1.597 8
SKA 92. 30 86. 06 98. 64 1.559 4

M T AT RUA RS0 68 ] SKA L, 15
#Uf) Dice ., IoU ., Accuracy FI HD BT 92.30%
86. 06% .98. 64% 11 1. 559 4SBT HAEHA I 0H] . X2
PR SKA B RE A AR 90 iy A 8l 25 A [) RN 4
PR o SRR B 0 45 T AR 5 A 1 3 1 78] 8 HC
JRSZ I, DT S A A% A AR AN ) ROBE )RR AR PR, 7
TA P flA &850, A8 SKA B — 2% A0 &
AT E

N T AERI A A R, E PSAX K 5 bk
TR SEIG B VSS AHe TA BEH A PA AR H 22 3 LB
W—~ L H2Former “N3ELL A M4, T4 E 12— AF
B2 h SRR A RANER 2 iR,

R2 BHEHARAE PSAX HIE&E X LIS E RN
Table 2 Impact of each improvement scheme on the

experimental results on the PSAX dataset

VSs TA PA  Dice/%  1oU/%  Accuracy/%  HD/mm
—  —  — 9.4  84.65 98.49 1.778 9
v, — — 91.76 85.19 98.56 1.681 1
— VvV — 91.84  85.30 98. 57 1.676 5
— — VvV 9L.63 8.0l 98. 54 1.688 7
vV — 9210 85.68 98. 61 1.628 9
vV — V. 91.85  85.30 98.58 1.650 0
— VvV V9211 8.75 98.61 1.607 6
VooV VvV 9230 86.06 98. 64 1.559 4
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MR 2 AT R, L fd ] H2Former 1 S HEZE )
Y5 BRI Dice ToU | Accuracy Fl HD 4354 91. 44% |
84.65% 98.49% .1.778 9, ¥ Transformer 15 B & 4y
VSS B E | 5 RO i R R 45 A L |, Dice ToU | Accuracy
SEERTE T 0.32% 0. 54% 0. 07% ,HD [ T 0.097 8,
A TA BEHCRT PA BT, 43 FIORG BE 244 i £
Th, X W] TA BCHURT PA A58 T LI 2 4 FH s 8] 12 ]
15 25 1 O 24 T G J LA 7 Bl 1 1) 0 8 XAl A
MR 2 o BIVERE . LA, B W9 TR Z ] (148
AR TR 3 B3 0 ok B A5 5 -0 A8 A A5 e i X
MG, W2 WXT LE AR TR, B W 20 5 JF A 2
REAR R 2 MR, By 2 ik B MR I PR BE . B, 24
8 3 MR EE TS, PZEPERE [RIREAS B Bl | 5 2k ) 2%
Xt L, Dice ., ToU | Accuracy 435l #2 F+ T 0.86% . 1. 41% .
0.15% ,HD K& T 0.219 5, JHRESEHIEN] T VSS #idk |
TA BN PA BP0 T4 T W 28 Ve RE B A E2AE T, =
R LG A R AR e 00 B XY 3 R R %
2.5 ARAEHEREER

Sy T VPAGRCRL 4 1 R, A SO B 5 B A
RALL K HA 9 Fh o3 BB AL AT 1 HLHK

PSAX Bl SR RN 3 iR, ARSCEAH Ty
AR TPl bR 4R IR 5 | Dice \IoU | Accuracy #l
HD 43 51 35 3] 92.30% . 86.06% . 98. 64% . 1.559 4, 5
UNet #H [t., Dice. IoU, Accuracy SRR TT 1.67%,
2.78% .0.28% HD F&{K T 0.422 1, XN UNet %
M/NERRZRERIRAE, 20 T 2R R UEE, R,
SRR A ) DATransUNet #H H , Dice . IoU Accuracy 43
BIPEE T 1.11% 1. 82% ,0. 19% ,HD F&fiX T 0.307 7,

®3 T REEEE PSAX HiEE FHIEEEIEIR
Table 3 The values of performance indexes by different
algorithms on the PSAX dataset

WiRiS Dice/% 1oU/%  Accuracy/% HD/mm
FCN3! 89.98 82.32 98.26 2.144 7
UNet[®] 90. 63 83.28 98. 36 1.9815

DeepLabV3!®!  89.59 81.69 98. 20 2.246 3
TransUNet" ! 90. 76 83.59 98.38 2.042°5
SSFormer' ) 90. 90 83.76 98. 40 1.966 0
DCSAUNet 90. 28 82. 80 98.28 2.126 7
DATransUNet'3  91. 19 84.24 98. 45 1.867 1
AMSUNet ¥ 89. 07 80. 88 98. 07 2.473 3
Mamba_UNet' ! 90. 89 83.78 98. 40 1.949 1
H2Former ') 91. 44 84. 65 98. 49 1.778 9
TPA-H2VSS 92.30 86. 06 98. 64 1.559 4

4R AAC BRI XT L SE IR 25 L, TPA-H2VSS
BOBUAE A T AE b B 300 T HoAl JUR 2331 J7 5, 1E Dice |
ToU , Accuracy 433135 %] 90. 75% ,83. 47% ,98. 10% , [F]
B, TPA-H2VSS #AIRAS T fe/IMi HD X B IR © A Be

JIALPRABORT ) 0 A S5 FRELR 4% H2Former AH HY, Dice |
ToU , Accuracy 43 42 T 0.93% 1. 53% 0. 2% , HD [%
KT 0.167, 5PERER I RY SSFormer #H b, Dice . IoU
Accuracy 73R T 1. 14% 1. 84% 0. 24% ,HD [&{% T
0.3514,

X H &P, R 48 DATransUNet Fil SSFormer HE %
R4 )R R S E AR AT L TPA-H2VSS BEAIR A RS
JE X POILEEAE SR A T 58 50 M) i 2ot 22 ] F) B [ £
SRS T O BB S AR R, A, VSS
BT LB G b A s AR AR OC 28, A T B8 o Ay b 331
e ERRE . BAR DATransUNet F SSFormer i Fh &L 7E
e HRUIE B B RE IS B O ROR (B A A ) B 46
RPN, M0 TPA-H2VSS BERIE P K g B3 sisl 1
HRARH T EIEE R, i —DUER] T TPA-H2VSS AYZ ALt

x4 FTEHEZE AMC HIEE FRMERTER
Table 4 The values of performance indexes by
different algorithms on the A4C dataset

Tk Dice/ % IoU/%  Accuracy/%  HD/mm
FCNBY 88. 44 79. 84 97. 61 2.784 1
UNet!® 88. 61 79.98 97. 64 2.587 6

DeepLabV3[%! 88.52 79.94 97. 65 2.776 3
TransUNet' ') 89. 07 80.77 97.76 2.648 7
SSFormer-! 89. 61 81.63 97. 86 2.508 8
DCSAUNet'*! 88. 44 79. 86 97. 60 2.949 2
DATransUNet'®*!  89.21 81.01 97.78 2.636 8
AMSUNet [’ 87.25 78. 06 97. 40 3.3570
Mamba_UNet!3  89.21 81.09 97.82 2.6399
H2Former '™ 89. 82 81.94 97.90 2.324 4
TPA-H2VSS 90.75 83.47 98. 10 2.157 4
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R Al A 78 e a4 i el AR A 6 TR, H
L X FR & REILRHE A LA E A0 E LT
Ty EIEE R Ak EAAREL A g B R, iwtT
X3 PSAX ¥t B2 5, 5 Wi T3k A4C Bl
B Loy EIMEs A, A5 SRR, JUR R A £ P A5 4
BIZ P T, 78 220 25 £ 5K R 1R e A 00 Hh 3R
yYEVRGE A EIBSR M L2 R, TPA-H2VSS 1 — 2 T2
AR T P T SR T o RIS R R T DL
PRI 32 43 ) DX 35T FRAR AR 5 i A/ 7 O Ik U 4
A A0 X I /B, BRI T oA LR B3

bR T RUE AL 25 B A0 R B T WAL FE bR A e 1T
SEF . FRE LIRS I IR G A DA 8 b 43 A R4 T
SIMTAIRTEG, T 7 RN 8 s R T BRI AE PSAX BidE
FA4C FHi4E 19 Dice 4041, A 250 s T 45088 1 431K
[ PN E 2 N T B R VA O LU RV G RE VA
MEF KA, B 7.8 AT LA H, TPA-H2VSS B AL
FHABR IEAEA AR R — B HEdE,
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