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摘　 要:不同年龄段的儿童心脏尺寸差异大且儿童心率过快会导致心脏边界相较成人更加模糊,影响超声心动图的分割效果。
针对上述问题,对 H2Former 分割模型进行改进,提出了一种时间和位置注意力的分层混合视觉状态空间模型( TPA-H2VSS)对

儿科超声心动图左心室进行分割。 首先替换 Transformer 模块为视觉状态空间模块,改进医学图像分割的长期依赖性建模关

系;其次在模型的编码器与解码器之间搭建时间注意力模块,把超声心动视频左心室的语义信息在时间维度上进行补充和交

互;最后,在输出部分加入位置注意力模块,进一步提高网络的分割性能。 在儿科超声心动视频数据集 EchoNet-Pediatric 的

PSAX 数据集和 A4C 数据集上分别进行训练、验证和测试。 与基线模型 H2Former 相比,在 PSAX 数据集上的 Dice、交并

比(IoU)、准确率(accuracy)分别提升了 0. 86%、1. 41%、0. 15%,豪斯多夫距离( HD)降低了 0. 219
 

5;在 A4C 数据集上的 Dice、
IoU、Accuracy 分别提升了 0. 93%、1. 53%、0. 2%,HD 降低了 0. 167。 与其他模型进行比较,该模型能有效分割儿科超声心动图

左心室,可以为先天性心脏病辅助诊断提供新的解决方案。
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Abstract:

 

The
 

significant
 

variation
 

in
 

cardiac
 

dimensions
 

across
 

different
 

age
 

groups
 

and
 

the
 

faster
 

heart
 

rate
 

in
 

children
 

result
 

in
 

more
 

blurred
 

cardiac
 

borders
 

compared
 

to
 

adults,
 

impacting
 

the
 

segmentation
 

of
 

echocardiography.
 

To
 

address
 

the
 

above
 

problems,
 

the
 

segmentation
 

model
 

called
 

H2Former
 

is
 

improved,
 

and
 

the
 

model
 

called
 

TPA-H2VSS
 

combining
 

the
 

attention
 

and
 

state
 

space
 

is
 

proposed
 

to
 

segment
 

the
 

left
 

ventricle
 

of
 

pediatric
 

echocardiography.
 

Firstly,
 

this
 

paper
 

replaces
 

the
 

Transformer
 

block
 

with
 

the
 

visual
 

state
 

space
 

( VSS)
 

block
 

to
 

enhance
 

the
 

model’s
 

advantage
 

in
 

long-range
 

modeling.
 

Secondly,
 

the
 

temporal
 

attention
 

(TA)
 

module
 

is
 

built
 

between
 

the
 

encoder
 

and
 

decoder
 

in
 

the
 

model
 

to
 

complements
 

and
 

interacts
 

with
 

the
 

semantic
 

information
 

of
 

the
 

left
 

ventricle
 

in
 

the
 

echocardiography
 

video
 

in
 

the
 

temporal
 

dimension.
 

Finally,
 

the
 

positional
 

attention
 

(PA)
 

module
 

is
 

added
 

in
 

the
 

output
 

head
 

to
 

make
 

pediatric
 

echocardiographic
 

left
 

ventricle
 

segmentation
 

more
 

accurate.
 

The
 

experiments
 

were
 

trained,
 

validated,
 

and
 

tested
 

on
 

the
 

pediatric
 

echocardiographic
 

video
 

dataset
 

EchoNet-Pediatrics
 

on
 

the
 

PSAX
 

dataset
 

and
 

the
 

A4C
 

dataset,
 

respectively.
 

Compared
 

with
 

the
 

base
 

model
 

H2Former,
 

Dice,
 

IoU,
 

and
 

accuracy
 

on
 

the
 

PSAX
 

dataset
 

were
 

improved
 

by
 

0. 86%,
 

1. 41%,
 

and
 

0. 15%,
 

respectively,
 

and
 

HD
 

was
 

reduced
 

by
 

0. 219
 

5.
 

Dice,
 

IoU,
 

and
 

accuracy
 

on
 

the
 

A4C
 

dataset
 

were
 

improved
 

by
 

0. 93%,
 

1. 53%,
 

and
 

0. 2%,
 

respectively,
 

and
 

HD
 

was
 

reduced
 

by
 

0. 167.
 

By
 

comparing
 

with
 

other
 

models,
 

it
 

was
 

demonstrated
 

that
 

the
 

model
 

could
 

effectively
 

segment
 

the
 

left
 

ventricle
 

in
 

pediatric
 

echocardiography
 

and
 

could
 

provide
 

a
 

new
 

solution
 

for
 

the
 

auxiliary
 

diagnosis
 

of
 

congenital
 

heart
 

disease.
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0　 引　 言

　 　 先天性心脏病(congenital
 

heart
 

disease,CHD)被认为

是最常见的先天性缺陷之一[1] ,超声心动图对先天性心

脏病的诊断和评估起着至关重要的作用。 准确计算心脏

功能检测指标依赖于对超声心动图中左心室轮廓的精确

分割[2] 。
超声心动图左心室分割存在难点,例如超声心动图

中存在斑点噪声[3] 、血池和心肌之间对比度较低[4] 、不同

患者之间心脏的形状存在差异性[5] 。 另外,对于婴幼儿

等儿科患者来说,患者间心脏大小样本方差较大、心率较

快,超声心动图中心脏边界相较成人更加模糊,增加了分

割难度。
近年来,以卷积神经网( convolutional

 

neural
 

network,
CNN)和 Transformer 为代表的深度学习模型在医学图像

分割方面取得了瞩目的成就[6-7] 。 Ronneberger 等[8] 提出

用于医学图像分割的 UNet,该网络利用编解码结构和特

征融合方法来实现目标分割。 Zeng 等[9] 提出 MAEF-Net
对左心室进行分割,该网络将多注意力机制与高效的特

征融合相结合。 Guo 等[10] 在编码器部分使用具有通道

注意力的双路径特征提取模块来增强特征提取能力,同
时,在解码器部分采用了一个具有空间注意力的高低级

特征融合模块,以更好地融合高低级特征。 Chen 等[11] 首

次提出了混合 CNN-Transformer 架构的 TransUNet 网络对

医学图像进行分割。 但是对于一些混合 CNN-Transformer
结构,如 UTNet[12] 、BoTNet[13] 、TransUNet,只考虑令牌自

注意力来构建令牌之间的关系,无法捕捉不同尺度的特

征。 CrossFormer[14] 虽然采用多尺度特征融合,但并没有

进行特征选择,导致不同尺度特征之间的冲突。 针对上

述问题, He 等[15] 提 出 了 一 种 医 学 图 像 分 割 模 型

H2Former,将 Transformer 的令牌智能注意力、多尺度通道

注意力(multi-scale
 

channel
 

attention,MSCA)和 CNN 的强

归纳偏置相结合形成混合 Transformer 模块 ( hybrid
 

Transformer
 

block,HTB),从不同方面聚合特征提取能力。
H2Former 中的 Transformer 模块在捕获远程依赖关

系方面表现出优异的性能,然而,Transformer 的自注意力

机制在图像尺寸上要求二次复杂度,导致较高的计算成

本,特别是对于医学图像分割等需要密集预测的任务。
近年来,状态空间模型(state

 

space
 

model,SSM)引起了研

究人员的广泛关注。 以 Mamba[16] 为代表的现代状态空

间模型不仅建立了长距离依赖关系,还能将计算复杂度

降低到线性。 Liu 等[17] 提出了一种通用的视觉主干模型

VMamba, 它 使 用 了 基 于 交 叉 扫 描 模 块 ( cross-scan
 

module,CSM)的视觉状态空间(visual
 

state
 

space,VSS)模

块,在具有全局接受野的二维图像空间中实现一维选择

性扫描。 Ye 等[18] 将 Mamba 合并到编码器和解码器分支

中进一步捕获全局依赖关系,提高了左心室分割性能。
但是基于 Mamba 的模型在医学视频分割方面还不成熟,
主要集中在单帧分割,只能提取空间特征,忽略了儿科超

声心动视频连续帧之间的时间一致性。 研究者将目光转

向利用时序信息的视频分割[19-20] 。 基于光流的方法在自

然视频分割中的成功使其应用于超声心动视频[21-22] 。 然

而,由于心脏运动的不规则性和各向异性以及斑点噪声

的存在,基于光流的方法往往无法有效捕捉超声心动视

频中的运动信息,导致性能不理想。
针对上述问题,提出了一种新的融合注意力和状态

空间的时空深度神经网络,基于时间和位置注意力的分

层混合视觉状态空间模型( hierarchical
 

hybrid
 

visual
 

state
 

space
 

based
 

on
 

temporal
 

and
 

position
 

attention, TPA-
H2VSS)对儿科超声心动图左心室进行分割以解决上述

挑战。 该模型是一个以 H2Former 作为基线网络的编解

码结构,这样有利于不同形状和尺度的儿科超声心动图

左心室分割。 首先,使用 VSS 模块替代混合 Transformer
模块中的 Transformer 模块以形成新的混合视觉状态空间

模块(hybrid
 

VSS
 

block,HVB),改进左心室分割的远程依

赖关系建模,在提升分割精度的同时保持了线性复杂度。
此外,为了充分利用和传输标记帧和未标记帧之间的时

间上下文,设计了时间注意力( temporal
 

attention,TA) 模

块对编码器和解码器之间的时间性进行建模,促进了视

频片段语义信息的交互融合,同时为了更好地捕捉复杂

图像空间的多尺度特征,在时间注意力模块内将得到的

注意图通过选择性内核注意力(selective
 

kernel
 

attention,
SKA) [23] 与输入特征融合。 最后,在模型的输出部分引

入位置注意力( positional
 

attention,PA)模块结合时间序

列信息来增强特征表达,进一步提升网络提取左心室区

域的能力。

1　 整体思路

1. 1　 整体网络架构

　 　 整体网络框架如图 1(a)所示,编码器结构由 4 个阶

段组成。 提出的基于时间和位置注意力的分层混合视觉

状态空间模型的“分层”是指在每个阶段都采用混合视

觉状态空间模块,这有利于医学图像的分割任务。 “混

合”是指将卷积、多尺度通道注意力、VSS
 

3 种特征编码

策略集成到一个统一的块中。
本文使用 H2Former 作为 TPA-H2VSS 的基线网络。
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模型将连续 3 帧超声心动视频片段作为输入,帧指数分

别为 i - 2、i - 1、i 。 模型的输出为一个二值分割,帧索引

为 i 。 输入由维度为 F ∈ RC×T×H×W 的帧序列组成,其中 C
表示每一帧的通道数, T 表示输入序列的时间范围, H ×
W 表示输入的空间分辨率。 在编码器部分, 将混合

Transformer 模块中的 Transformer 模块替换为 VSS 模块形

成一个新的混合视觉状态空间模块。 在编码器与解码器

之间引入 TA 模块从不同角度提取多分辨率的上下文信

息,然后将集成了高级时空表示的输出特征作为解码器

的输入。 解 码 器 部 分 包 含 多 个 补 丁 扩 展 层 ( patch
 

expending)和卷积层( convolution
 

layers),通过多个卷积

操作逐步实现特征融合和细化。 最后在网络的末端加入

PA 模块结合时间序列信息来增强特征表达。
1. 2　 混合视觉状态空间模块(hybrid

 

VSS
 

block)
　 　 编码器每个阶段都含有一个混合视觉状态空间模

块,结构如图 1( b) 所示。 该结构由 VSS 模块、卷积模

块(convolutional
 

block)和 MSCA 组成。 该模块首先通过

卷积模块和 MSCA 提取局部特征和多尺度通道特征,并
将它们聚合在一起。 然后,通过 VSS 模块提取丰富的特

征,以达到同时结合 CNN、多尺度通道智能注意力和 VSS
的全局特征的优势的目的。

图 1　 TPA-H2VSS 模型的架构和混合视觉状态空间模块

Fig. 1　 Overall
 

architecture
 

of
 

the
 

proposed
 

TPA-H2VSS
 

and
 

hybrid
 

VSS
 

block

　 　 VSS 模块的结构如图 2( a) 所示。 输入特征经过层

归一化( layer
 

normalization) 后被分为两个分支。 在第 1
个分支中,输入特征先经过线性层( linear

 

layer),然后经

过深度可分离卷积( depth-wise
 

separable
 

convolution,DW-
Conv)、激活函数和 2D 选择性扫描 ( 2D-selective-scan,
SS2D)模块。 随后,使用 layer

 

normalization 对特征进行归

一化。 在第 2 个分支中,输入特征先经过线性层和激活

函数处理,然后与第一条路径的输出特征合并。 最后,使
用线性层混合特征,并将此结果与残差连接相结合,形成

VSS 模块的输出。
采用 SiLU(sigmoid-weighted

 

linear
 

unit) [24] 作为激活

函数。 每个阶段 VSS 模块的个数为[2,2,2,2]。 与视觉

变压器不同,VSS 模块避免了位置嵌入,而是选择了没有

多层感知器(multi-layer
 

perceptron,MLP)的流线型结构,
从而在相同的深度预算内实现更密集的模块堆栈。

SS2D 模块包括 3 个步骤,分别为交叉扫描、S6 块选

择性扫描和交叉合并,如图 3 所示。 给定输入图像,交叉

扫描操作首先沿着四条不同的扫描路径将图像展开成序

列。 然后使用 S6 块处理每个序列,确保各个方向的信息

被彻底扫描,从而捕获不同的特征。 随后,使用交叉合并

操作对输出进行合并,构建 2D 特征图作为最终的输出。
SS2D 通过采用互补的扫描路径,使图像中的每个像素能

够有效地整合来自不同方向的所有其他像素的信息,从
而促进全局接受域的建立。
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图 2　 VSS 模块、时间注意力和位置注意力的具体架构

Fig. 2　 Specific
 

architecture
 

for
 

VSS
 

block,
 

temporal
 

attention,
 

and
 

position
 

attention

图 3　 2D 选择性扫描模块

Fig. 3　 Illustration
 

of
 

the
 

SS2D
 

module

1. 3　 TA
　 　 TA 模块的结构如图 2(b)所示。 首先将原始三维特

征映射投影到二维平面,目的是过滤掉不相关的背景并

显示左心室的关键信息。 以经过每个混合视觉状态空间

模块后的输出特征 X 为例。 使用全局最大池化( global
 

maximum
 

pooling,GMP) 和全局平均池化( global
 

average
 

pooling,GAP)沿着时间方向进行时间投影操作得到查询

值 Q 和键值 K ,同时通过单次卷积得到 V,V 仍然保持

3D 形状。 具体操作如下:
K = Q = GMPT X i( ) + GAPT X i( ) (1)
之后,通过对 K 进行群大小为 4 的群卷积,提取局部

时间注意力 M 。 将 Q 与 M 拼接起来得到 W ,然后通过

对 W 进行两个连续 1 × 1 二维卷积和维数扩展操作,进
一步得到全局关注 G 。 注意力矩阵 G 不仅编码孤立查

询键对内的上下文信息,还编码键内的注意力。 接下来,
基于二维全局注意力 G ,计算全局时间融合注意力图 D
来增强特征表示。 具体操作如下:

M = σ GConv K( )( ) (2)

W = Concat(M,Q) (3)
G = Expend(Conv(σ(Conv(W)))) (4)
D = V☉G (5)

式中: σ(·) 代表归一化操作; GConv(·) 代表群卷积;
Expend(·) 表示维数扩展操作; Concat(·) 表示级联操

作; Conv(·) 代表卷积操作;☉代表广播乘法。
为了更好地捕捉复杂图像空间的多尺度特征,将得

到的全局时间融合注意力图 D 通过 SKA 与输入特征融

合进一步得到输出特征 Y 。 SKA 允许每个神经元对于

不同尺寸的输入信息可以自适应地调整其感受野的大

小。 SKA 的结构如图 4 所示。
1. 4　 PA
　 　 PA 模块的结构如图 2(c)所示。 使用特征图 Z 作为

输入并生成位置注意图 P 。 PA 模块关注输入连续帧的

每一帧中关键信息的位置。 首先,在时间维度和通道维

度对特征图采用 GAP 和 GMP 操作,然后将获得的两个

特征图相加。 具体操作如下:
P = GMP(Z) 􀱇 GAP(Z) (6)
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式中:􀱇表示相加操作。

图 4　 选择性内核注意力

Fig. 4　 Selective
 

kernel
 

attention

2　 实验方法和结果分析

2. 1　 实验数据

　 　 使用的数据集为儿科超声心动视频数据集 EchoNet-
Pediatric[25] 。 该数据集由斯坦福大学于 2023 年提供,包
含 4

 

424 个胸骨旁短轴(parasternal
 

short
 

axis,PSAX)超声

心动视频和 3
 

176 个顶端四腔( pical-4-chamber,A4C)超

声心动视频。 该数据集涵盖了典型的超声心动图像相应

的标记测量值,包括收缩末期和舒张末期的左心室容积、
专家标注的左心室轮廓。 专家只在每个视频的收缩末期

和舒张末期进行注释。 视频每帧的尺寸为 112×112。 将

训练集、验证集和测试集按 8 ∶ 1 ∶ 1 的比例进行划分。
数据集样本及对应左心室轮廓如图 5 所示。

图 5　 样本及对应左心室轮廓

Fig. 5　 Sample
 

and
 

corresponding
 

left
 

ventricular
 

contour

2. 2　 实验条件

　 　 所有实验都是在 NVIDIA
 

GeForce
 

RTX
 

3090
 

GPU 上

用 Pytorch1. 13. 1 实现的。 整个训练过程使用 AdamW 优

化器,初始学习率为 0. 000 1,权重衰减为 0. 000
 

01。 每

经过 10 轮,学习率更新 1 次,调整倍数为 0. 9。 batch
 

size
设置为 16,训练轮数为 90。 将图片输入大小由 112×112
调整为 128×128,输入视频片段是包含心脏收缩末期或

舒张末期在内的连续 3 帧。 损失函数采用二元交叉熵损

失(binary
 

cross-entropy
 

loss,BCE
 

Loss)。
2. 3　 评价指标

　 　 为了评估所提出的模型的分割性能,选取 Dice 系

数(Dice
 

coefficient )、 交 并 比 ( intersection
 

over
 

union,
IoU)、 准确率 ( accuracy ) 和豪斯多夫距离 ( Hausdorff

 

distance,HD)作为其性能评价指标。

HD 量化了预测分割与参考分割之间的最大距离。
该评价指标用于测量预测分割的边界与参考分割的边界

之间的差异,较小的 HD 表示更好的分割结果,公式

如下:
HD = Maxdistance{predicted,GT} (7)

式中:predicted 为网络输出的预测结果;GT 为真实标签。
2. 4　 消融实验

　 　 在 TA 模块的全局时间融合注意力图 D 与输入特征

X 的融合部分, 分别使用 SimA ( simple
 

attention ) [26] 、
SEA(squeeze-and-excitation

 

attention ) [27] 、 EMA ( efficient
 

multi-scale
 

attention ) [28] 、 ECA ( efficient
 

channel
 

attention) [29] 、CA ( comprehensive
 

attention) [30] 和 SKA 模

块进行比较,实验结果如表 1 所示。

表 1　 TA 模块在 PSAX 数据集上对实验结果的影响

Table
 

1　 Impact
 

of
 

TA
 

module
 

on
 

experimental
resultson

 

PSAX
 

dataset
方法 Dice / % IoU / % Accuracy / % HD / mm
SimA 92. 18 85. 84 98. 62 1. 613

 

3
SEA 92. 24 85. 94 98. 64 1. 574

 

9
EMA 92. 19 85. 87 98. 62 1. 600

 

2
ECA 92. 14 85. 80 98. 62 1. 653

 

0
CA 92. 18 85. 84 98. 63 1. 597

 

8
SKA 92. 30 86. 06 98. 64 1. 559

 

4

　 　 从表 1 可以看出,当融合部分使用 SKA 模块时,模
型的 Dice、 IoU、 Accuracy 和 HD 分别达到了 92. 30%、
86. 06%、98. 64%和 1. 559

 

4,实现了更精确的分割。 这是

因为 SKA 注意力能够根据输入动态选择不同大小的卷

积核。 这种设计使得网络可以根据输入自适应地调整其

感受野,从而更有效地捕获不同尺度的特征。 因此,在
TA 模块的融合部分,将使用 SKA 模块进一步对左心室

进行分割。
为了证明各个模块的有效性,在 PSAX 数据集上进

行消融实验,将 VSS 模块、TA 模块和 PA 模块去掉以形

成一个以 H2Former 为基线的网络,并将它们逐一加入到

基线网络中,实验结果如表 2 所示。
表 2　 各种改进方案在 PSAX 数据集上对实验结果的影响

Table
 

2　 Impact
 

of
 

each
 

improvement
 

scheme
 

on
 

the
experimental

 

results
 

on
 

the
 

PSAX
 

dataset
VSS TA PA Dice / % IoU / % Accuracy / % HD / mm
— — — 91. 44 84. 65 98. 49 1. 778

 

9
√ — — 91. 76 85. 19 98. 56 1. 681

 

1
— √ — 91. 84 85. 30 98. 57 1. 676

 

5
— — √ 91. 63 85. 01 98. 54 1. 688

 

7
√ √ — 92. 10 85. 68 98. 61 1. 628

 

9
√ — √ 91. 85 85. 30 98. 58 1. 650

 

0
— √ √ 92. 11 85. 75 98. 61 1. 607

 

6
√ √ √ 92. 30 86. 06 98. 64 1. 559

 

4
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　 　 从表 2 可以观察到,当仅使用 H2Former 作为基线网

络时,模型的 Dice、IoU、Accuracy 和 HD 分别为 91. 44%、
84. 65%、98. 49%、1. 778

 

9。 将 Transformer 模块替换为

VSS 模块后,与原来的基线网络相比,Dice、IoU、Accuracy
分别提升了 0. 32%、0. 54%、0. 07%,HD 降低了 0. 097

 

8。
当单独加入 TA 模块和 PA 模块后,分割精度均有所提

升,这表明 TA 模块和 PA 模块可以通过利用时间和空间

信息引导网络更加关注儿科超声心动图的左心室区域从

而提高网络的分割性能。 此外,还研究了模块之间的相

互作用对分割的影响,移除单个模块并将剩余模块成对

组合。 由表 2 的对比结果可知,模块的两两组合并不会

降低网络的性能,反而会超过单个模块的性能。 最后,当
把 3 个模块融合后,网络性能同样得到改善,与基线网络

对比, Dice、 IoU、 Accuracy 分别提升了 0. 86%、 1. 41%、
0. 15%,HD 降低了 0. 219

 

5。 消融实验证明了 VSS 模块、
TA 模块和 PA 模块对于提升网络性能具有重要作用,三
者相互配合能提高左心室区域的分割准确率。
2. 5　 不同方法结果比较

　 　 为了评估模型的性能,将本文设计的模型与基线模

型以及其他 9 种分割模型进行定量比较。
PSAX 数据集实验结果如表 3 所示。 本文设计的方

法在各项评估指标上均表现优异,Dice、IoU、Accuracy 和

HD 分别达到 92. 30%、 86. 06%、 98. 64%、 1. 559
 

4, 与

UNet 相 比, Dice、 IoU、 Accuracy 分 别 提 升 了 1. 67%、
2. 78%、0. 28%,HD 降低了 0. 422

 

1。 这是因为 UNet 采

用小卷积核的卷积操作,忽略了全局上下文信息。 同时,
与性能较优的 DATransUNet 相比,Dice、IoU、Accuracy 分

别提高了 1. 11%、1. 82%、0. 19%,HD 降低了 0. 307
 

7。
表 3　 不同算法在 PSAX 数据集上的性能指标

Table
 

3　 The
 

values
 

of
 

performance
 

indexes
 

by
 

different
algorithms

 

on
 

the
 

PSAX
 

dataset
方法

 

Dice / %
 

IoU / %
 

Accuracy / %
 

HD / mm
FCN[31] 89. 98 82. 32 98. 26 2. 144

 

7
UNet[8] 90. 63 83. 28 98. 36 1. 981

 

5
DeepLabV3[25] 89. 59 81. 69 98. 20 2. 246

 

3
TransUNet[11] 90. 76 83. 59 98. 38 2. 042

 

5
SSFormer[32] 90. 90 83. 76 98. 40 1. 966

 

0
DCSAUNet[33] 90. 28 82. 80 98. 28 2. 126

 

7
DATransUNet[34] 91. 19 84. 24 98. 45 1. 867

 

1
AMSUNet[35] 89. 07 80. 88 98. 07 2. 473

 

3
Mamba_UNet[36] 90. 89 83. 78 98. 40 1. 949

 

1
H2Former[15] 91. 44 84. 65 98. 49 1. 778

 

9
TPA-H2VSS 92. 30 86. 06 98. 64 1. 559

 

4

　 　 表 4 为 A4C 数据集上的对比实验结果,TPA-H2VSS
模型在各项指标上均优于其他几种分割方法,在 Dice、
IoU、Accuracy 上分别达到 90. 75%、83. 47%、98. 10%,同
时,TPA-H2VSS 模型获得了最小的 HD,这意味着它有能

力处理模糊的边界。 与基线网络 H2Former 相比,Dice、
IoU、Accuracy 分别提高了 0. 93%、1. 53%、0. 2%,HD 降

低了 0. 167。 与性能较好的 SSFormer 相比, Dice、 IoU、
Accuracy 分别提高了 1. 14%、1. 84%、0. 24%,HD 降低了

0. 351 4。
通过对比发现,尽管 DATransUNet 和 SSFormer 能够

捕获全局上下文,但仍然获得比 TPA-H2VSS 更低的精

度。 这种观察结果归因于充分利用连续帧之间的时间信

息缓解了超声心动图中模糊的边界的影响。 此外,VSS
模块可以更好地捕获远程依赖关系,从而更准确地识别

左心室轮廓。 虽然 DATransUNet 和 SSFormer 两种算法在

特定的数据集上能取得较好的效果,但在不同数据集上

表现不同,而 TPA-H2VSS 模型在两个数据集上均实现了

最优的分割结果,进一步证明了 TPA-H2VSS 的泛化性。
表 4　 不同算法 A4C 数据集上的性能指标

Table
 

4　 The
 

values
 

of
 

performance
 

indexes
 

by
different

 

algorithms
 

on
 

the
 

A4C
 

dataset
方法

 

Dice / %
 

IoU / %
 

Accuracy / %
 

HD / mm
FCN[31] 88. 44 79. 84 97. 61 2. 784

 

1
UNet[8] 88. 61 79. 98 97. 64 2. 587

 

6
DeepLabV3[25] 88. 52 79. 94 97. 65 2. 776

 

3
TransUNet[11] 89. 07 80. 77 97. 76 2. 648

 

7
SSFormer[32] 89. 61 81. 63 97. 86 2. 508

 

8
DCSAUNet[33] 88. 44 79. 86 97. 60 2. 949

 

2
DATransUNet[34] 89. 21 81. 01 97. 78 2. 636

 

8
AMSUNet[35] 87. 25 78. 06 97. 40 3. 357

 

0
Mamba_UNet[36] 89. 21 81. 09 97. 82 2. 639

 

9
H2Former[15] 89. 82 81. 94 97. 90 2. 324

 

4
TPA-H2VSS 90. 75 83. 47 98. 10 2. 157

 

4

　 　 为了对实验结果进行更深入的分析,TPA-H2VSS 模

型和其他模型在测试集上的可视化图如图 6 所示。 其

中,白色区域表示专家在儿科超声心动图左心室上的手

工分割结果,红色轮廓代表算法自动分割结果。 前两行

代表 PSAX 数据集上分割的结果,后两行代表 A4C 数据

集上分割的结果。 结果表明,几种模型在两个数据集上

均受伪影的干扰,在左心室舒张末期和收缩末期出现欠

分割和过分割现象,相比之下,TPA-H2VSS 在一定程度

上降低了伪影的干扰,更接近手动分割结果,同时可以发

现该算法受分割区域面积变化的影响较小,在心脏收缩

末期左心室区域极小时,表现仍然优于其他几种算法。
除了数值和视觉结果外,还提供了评估指标的统计

结果。 使用箱线图对所有测试图像的评价指标分布进行

分析和对比。 图 7 和 8 所示为所有算法在 PSAX 数据集

和 A4C 数据集上的 Dice 分布,有效地显示了数据的分散

度。 箱型图描绘了下四分位数、上四分位数、中位数、最
小值和最大值。 从图 7、8 可以看出,TPA-H2VSS 明显优

于其他模型,并在两个数据集上表现出一致的性能。
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图 6　 PSAX 数据集和 A4C 数据集的左心室分割结果

Fig. 6　 The
 

segmentation
 

of
 

left
 

ventricle
 

on
 

the
 

PSAX
 

dataset
 

and
 

A4C
 

dataset

图 7　 在 PSAX 数据集上 Dice 的箱型图

Fig. 7　 The
 

Boxplots
 

of
 

Dice
 

on
 

PSAX
 

dataset

图 8　 在 A4C 数据集上 Dice 的箱型图

Fig. 8　 The
 

Boxplots
 

of
 

Dice
 

on
 

A4C
 

dataset

3　 结　 论

　 　 以往关于儿科超声心动图的研究主要集中在单帧分

割,没有充分探索视频帧之间的时间一致性。 此外,
Transformer 的自注意力机制的复杂性随着输入图像尺寸

的增加呈二次增长,导致较高的计算成本。 针对上述问

题,提出了一种融合注意力和状态空间的模型 TPA-
H2VSS 对儿科超声心动图像左心室进行分割。 该算法

利用 VSS 对远程依赖的建模能力和 CNN 对局部信息的

归纳能力提升分割精度。 在此基础上,在编码器和解码

器之间加入时间注意力融合当前帧和历史帧的特征,从

不同角度提取上下文信息。 最后在网络的输出部分加入

位置注意力,进一步结合时间序列信息来增强特征表达,
提高网络分割左心室区域的准确性。 实验结果表明,本
文设计的算法能够取得更准确的分割结果。 相对基线模

型 H2Former,在 PSAX 和 A4C 数据集上的 Dice 分别提升

0. 86% 和 0. 93%, IoU 分 别 提 升 1. 41% 和 1. 53%,
Accuracy 分别提升 0. 15%和 0. 2%,HD 降低了 0. 219

 

5
和 0. 167。 此外,本文只针对儿科超声心动图左心室进

行研究,未来的研究将聚焦于更为复杂和多样的医学图

像,以提升模型在广泛的医学分割任务中的应用能力。
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