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基于八激励模式数据融合的电阻抗成像优化算法∗

丁明亮　 宋　 娟　 赵树飞　 郁章伟

(曲阜师范大学工学院　 日照　 276826)

摘　 要:电阻抗层析成像(EIT)是一种无损可视化检测技术,具有无辐射、实时、便携、成本低等优点,目前在工业检测和医学监

护等方面应用较为广泛,但 EIT 技术也具有低分辨率等缺点,这也极大限制了 EIT 技术的快速发展。 针对电阻抗成像过程中

因“软场”效应及欠定性导致的重建图像内部目标数量不明确以及伪迹过大等问题,提出了一种八模式数据融合的电阻抗成像

优化算法,根据 8 种激励模式各自成像的特点,借助重建图像和实际分布之间的相关系数对测量值进行权重训练,将权重矩阵

同 8 种单一模式下得到的测量值矩阵进行融合,再通过 Tikhonov 正则化算法利用该矩阵进行成像。 仿真结果表明,该算法能够

有效地提高 Tikhonov 正则化算法重建图像分辨率,融合后的重建图像的相关系数平均提高了 19. 86%,相对误差平均降低了

28. 89%。 由此表明,相比于传统的 8 种单一模式下的成像,该研究提出的算法在重建图像目标的数量、大小以及位置精确度等

方面都得到提高,为 EIT 技术在医学和工业等领域的应用实践提供了新的理论依据和技术参考。
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Abstract:
 

Electrical
 

impedance
 

tomography
 

( EIT)
 

is
 

a
 

non-destructive
 

visual
 

detection
 

technology,
 

with
 

no
 

radiation,
 

real-time,
 

portable,
 

low
 

cost
 

and
 

other
 

advantages,
 

currently
 

widely
 

used
 

in
 

industrial
 

testing
 

and
 

medical
 

monitoring.
 

But
 

EIT
 

technology
 

also
 

has
 

low
 

resolution
 

and
 

other
 

shortcomings,
 

which
 

also
 

greatly
 

limits
 

the
 

rapid
 

development
 

of
 

EIT
 

technology.
 

In
 

this
 

paper,
 

aiming
 

at
 

the
 

problems
 

of
 

unclear
 

number
 

of
 

internal
 

targets
 

and
 

excessive
 

artifacts
 

in
 

the
 

reconstructed
 

image
 

due
 

to
 

the
 

“soft
 

field”
 

effect
 

and
 

under
 

characterization
 

in
 

the
 

process
 

of
 

electrical
 

impedance
 

imaging,
 

this
 

paper
 

proposes
 

an
 

eight-modal
 

data
 

fusion
 

electrical
 

impedance
 

imaging
 

optimization
 

algorithm,
 

according
 

to
 

the
 

characteristics
 

of
 

the
 

eight
 

excitation
 

models
 

of
 

each
 

imaging,
 

with
 

the
 

help
 

of
 

the
 

correlation
 

coefficient
 

between
 

the
 

reconstructed
 

image
 

and
 

the
 

actual
 

distribution,
 

the
 

weight
 

matrix
 

is
 

fused
 

with
 

the
 

measurement
 

value
 

matrix
 

obtained
 

in
 

eight
 

single
 

modes.
 

The
 

matrix
 

was
 

then
 

used
 

by
 

the
 

Tikhonov
 

regularization
 

( TR)
 

algorithm
 

for
 

imaging.
 

The
 

simulation
 

results
 

show
 

that
 

the
 

algorithm
 

can
 

effectively
 

improve
 

the
 

resolution
 

of
 

the
 

reconstructed
 

image
 

of
 

the
 

Tikhonov
 

regularization
 

algorithm,
 

and
 

the
 

correlation
 

coefficient
 

of
 

the
 

reconstructed
 

image
 

after
 

fusion
 

is
 

increased
 

by
 

19. 86%
 

on
 

average,
 

and
 

the
 

relative
 

error
 

is
 

reduced
 

by
 

28. 89%
 

on
 

average.
 

This
 

shows
 

that
 

compared
 

with
 

the
 

traditional
 

imaging
 

under
 

eight
 

single
 

models,
 

the
 

algorithm
 

proposed
 

in
 

this
 

paper
 

has
 

improved
 

the
 

number,
 

size
 

and
 

position
 

accuracy
 

of
 

reconstructed
 

image
 

targets,
 

which
 

provides
 

a
 

new
 

theoretical
 

basis
 

and
 

technical
 

reference
 

for
 

EIT
 

technology
 

in
 

the
 

application
 

practice
 

of
 

medical
 

and
 

industry
 

and
 

other
 

fields.
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0　 引　 言

　 　 电阻抗层析成像( electrical
 

impedance
 

tomography,
 

EIT)是一种非侵入性的成像技术。 它通过在物体表面注

入电流和测量表面点位,重构物体内部的电导率分布,从
而实现对物体内部结构的成像。

目前在其他断层扫描技术中,辐射问题限制了计算

机断层扫描(CT)用于常规监测的使用频率,而磁共振成

像(MRI)需要昂贵的示踪剂来准确监测空气流动[1] 。 此

外,CT 和 MRI 都需要运送被检测对象,不适合实时性监

测[2] 。 EIT 作为一种非侵入性、非辐射和廉价的技术,已
被证明在许多领域应用,如肺功能监测[3-4] 、乳腺癌检

测[5] 和脑活动成像[6] 。
一般来说,电导率分布与电压测量值之间的线性近

似可以解决电导率分布与电压测量值之间的逆问题。 以

往的研究表明,与肺部疾病诊断的其他主流成像技术相

比,由于 EIT 技术的“软场”效应和逆问题求解过程中的

非线性以及病态性,一些传统的成像方法容易导致重建

图像的空间分辨率偏低,对建模误差很敏感[7] ,这就致使

EIT 技术目前仍处于实验研究阶段,从而限制了该技术

的发展。
目前,为了提高重建图像的空间分辨率,研究者们在

不同的方向进行了研究,2015 年,陈锐锋等[8] 对多模态

医学图像融合超声检查系统展开了研究,不过该系统是

在超声成像系统、电磁定位系统的基础上实现的,这也为

多模式数据融合算法应用在 EIT 中开拓了思路。 后来的

研究者们就
 

EIT
 

的激励模式和融合算法展开了研究,并
取得了一些成果。 2017 年,李坤等[9] 对 16 电极

 

EIT
 

的 8
种激励模式的特性进行了比较、分析,得出激励电极间隔

数为
 

6
 

时是最优模式。 2019 年,Li 等[10] 提出一种基于

Choquet 积分的多电极激励模式融合算法,该算法可以揭

示激励模式与测量值之间的交互关系,筛选出每种模式

下的最优测量值,从而在成像中融合每种激励模式的优

势,提高图像重建质量。 2021 年,王泽莹[11] 先从重建算

法进行改进,提出一种基于线性反投影的迭代算法,再通

过对 8 种“电压激励-电流测量”方式得到的测量数据进

行加权融合,从而提高图像重建质量。 深度学习框架下

的 EIT 重建方法也取得突破性进展,如王琦等[12] 通过多

尺度注意力机制与视觉 Transformer 结合,有效提升复杂

场域下的边界表征能力。 王子辰等[13] 构建的残差自注

意力网络,在动态场景中展现出优于传统方法的自适应

特征提取能力。
对于电阻抗成像这一研究领域来说,大多采用单一

的“电流激励-电压测量”的相邻激励模式,其成像效果也

是 8 种激励模式中最优的,但是只使用单一激励模式容

易导致场域信息无法得到充分利用,从而导致目标成像

与真实分布之间存在较大误差。 此外,对于已有的关于

数据融合的研究算法来说,大都是基于灵敏度系数对测

量值进行评价,而灵敏度系数是在理想均匀场下得到的,
与真实情况并不相符,不如直接利用测量值本身的特征

进行融合更加具有客观性。 因此,针对如何更好地实现

对物体内部介质的图像重建问题,综合分析 8 种“电流激

励-电压测量”激励模式各自成像的优势和特点,对各模

式下的测量值进行数据分析,提出了基于八模式电压测

量值数据融合的电阻抗成像优化算法,以提高内部介质

重建分辨率。

1　 八模式数据融合算法

1. 1　 电流激励-电压测量模式

　 　 电极激励模式是指激励电流被注入激励电极所采用

的模式,目前主要的激励模式包括相邻激励、间隔激励

等。 以 16 电极 EIT 场为例说明多种 EIT 电流激励-电压

测量模式,8 种电流激励-电压测量模式示意图如图 1 所

示。 在不同模式下,激励电极与测量电极之间所间隔的

电极数量不同,图 1 中的内部曲线为等势线,从等势线的

分布以及弯曲度可以看出,分布在激励电极附近的等势

线比较密集,远离激励电极的等势线较为稀疏,不同的激

励模式分别是从不同角度去测量被测场域内部的信息,
并且等势线的分布随着激励电极之间间隔电极的数量增

加而变均匀。
模式 1 为最典型的相邻电流激励模式。 对电极 1-2

进行激励,依次测量电极对 3-4,…,15-16 上的电压值;再
选择 2-3 作为激励电极,测量 4-5,…,16-1 上的电压值。
以此类推,直到选择电极对 16-1 作为激励电极为止。 对

于模式 1 最终可得到 208 个测量值。 同理,对于其他模

式,以相同的方式顺时针方向选取激励电极,测量其电压

值。 激励模式不同,所得到的电压值数量不同,8 种模式

下的指标汇总如表 1 所示。
1. 2　 8 种模式重建图像特征对比

　 　 由于 EIT 场域内部比较敏感,所以当内部介质分布

情况发生改变时,电场内部电势线会由于内部介质的分

布不同而发生不同程度的扭曲[14] ,进而导致 8 种单一模

式下所重建出图像的分辨率不同。
不同模式下对相同介质的成像结果如图 2 所示,可

以看出,各模态下的成像质量差异较大。 从模式 1 ~ 模式

8,内含物的边缘伪影逐渐增大,边缘区域的目标成像逐

渐清晰,目标的形状也逐渐接近真实目标情况;模式 1、
模式 2 和模式 3 对场域中央区域的重建效果更好,模
式 6 ~模式 8 逐渐对中央区域目标不敏感,无法准确重建
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图 1　 8 种电流激励-电压测量模式空场等势线示意图

Fig. 1　 Schematic
 

diagram
 

of
 

empty
 

field
 

isopes
 

of
 

eight
 

current
 

excitation-voltage
 

measurement
 

modes

图 2　 8 种单一激励模式下多目标成像效果

Fig. 2　 Multi-target
 

imaging
 

effect
 

under
 

eight
 

single
 

excitation
 

modes

出在中央区域的含物目标,整体重建出目标数量也不准

确,不具有可信性。 这些异同说明不同模式下的测量值

包含的场域信息有所不同,同时这些场域信息又相互补

充[15] ,由此可分析,融合 8 种模式下的成像效果有利于

得到分辨率更高的重建图像[16] 。

表 1　 八模式指标汇总

Table
 

1　 Summary
 

of
 

eight
 

modal
 

indicators
模式 激励电极之间间隔电极数 测量值数量

模式 1 0 208
模式 2 1 192
模式 3 2 176
模式 4 3 160
模式 5 4 144
模式 6 5 128
模式 7 6 112
模式 8 7 96
合计 - 1

 

216

1. 3　 八模式数据融合算法

　 　 在数据融合中,加权融合算法是比较成熟的一种算

法[17] 。 为了充分考虑每个测量数据的贡献度,利用交叉

验证训练测量值权重的思想,在 50
 

组模型中逐一逐一除

去一个测量数据,然后计算重建质量的变化率,将多个模

型的变化率取平均归一化后作为每个测量值的权重与原

测量值进行叠加计算成像。
对于 50 个内部介质分布和大小、数量不同的模型,

通过正问题求解,可得到 8 个模式各自对应的灵敏的矩

阵 S( i) 和电压测量值U( i)
j ,其中U( i)

j 表示第 i个模式下第

j 个模型的电压测量值矩阵且 i = 1,2,…,8,j = 1,2,…,k,
k 为模型数量,此处取 50。 完整的测量值集合为:

U( i)
j = U( i)

j[ ] 1, U( i)
j[ ] 2,…, U( i)

j[ ] 16(13 - i){ } (1)
采用 TR 算法对完整的测量值进行成像,表示为:

σ( i)
j,0 = (S( i)T

j S( i)
j + λI) -1S( i)T

j U( i)
j (2)

记为:
σ( i)

j,0 = G(U( i)
j ,S( i)

j ) (3)
式中: σ( i)

j,0 表示在测量值完整的状态下第 i 个模式的第 j
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个模型的电导率矩阵; λ 为正则化因子。 根据交叉验证

原则,依次删除第 m 个测量值后进行图像重建的结果表

示为:
σ( i)

j,m = G({ U( i)
j[ ] 1,…, U( i)

j[ ] m-1, U( i)
j[ ] m+1,…,

U( i)
j[ ] 16(13 - i) },S( i)

j ) (4)
常用 的 图 像 质 量 指 标 有 相 关 系 数 ( correlation

 

coefficient,COR)与相对误差( relative
 

error,RE),分别表

述为:

COR(σ,σ∗ ) =
∑M

i = 1
(σ i - σ- )(σ∗

i -σ∗ )

∑M

i = 1
(σ i - σ- ) 2∑M

i = 1
(σ∗

i -σ∗ ) 2

(5)

RE(σ,σ∗ ) = ‖σ - σ∗ ‖
‖σ∗ ‖

(6)

式中: σ 和 σ∗ 分别表示重建图像的电导率分布矩阵和

实际的电导率分布矩阵。 删除第m个测量值后引起图像

分辨率的变化可表示为:
θ( i)

j,m = COR(σ( i)
j,m,σ∗ ) - COR(σ( i)

j,0 ,σ∗ ) (7)
图 3 所示为第 j 个模型的第 i 种模式下交叉验证计

算测量值权重的原理。 按照如上步骤,依次删除第 m 个

测量值,通过逆问题求解,可得到删除第 m
 

个测量值后

的电导率分布,进一步得到其相关系数,将其与完整的测

量值求解得到的相关系数进行做差,得到差值 θ( i)
j,m。

图 3　 权重矩阵训练原理

Fig. 3　 Weight
 

matrix
 

training
 

schematic
 

diagram

　 　 进一步,将所有模型的相同模式下对应的差值相加

取平均值,分别得到 8 种模式下各测量值的可信任权重,
即对于第 i 个模式下,第 m 个测量值的权重为:

ω ( i)
m = 1

k ∑ k

j = 1
θ( i)
j,m (8)

将各模式得到的权重值和测量值进行融合可以得到

新的测量值矩阵 U′ ,即:

U′ = diag

ω (1)
1

︙
ω (1)

208

ω (2)
1

︙
ω (8)

96

é

ë

ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
úú

+ I

æ

è

ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
÷÷

U(1)
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U(1)

208
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1

︙
U(8)

96

é
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ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
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1
 

216 ×1

(9)

与此同时,将 8 个模式的灵敏度矩阵组合成新的灵

敏度矩阵,即:
S′ = [S(1) ;S(2) ;…;S(8) ] 1

 

216 ×812 (10)

最后,将得到的新的测量值矩阵和新的灵敏度矩阵

代入 TK 算法的逆问题求解中,就可以的到融合后的效

果较好的图像,即:

σ􀮨 = S′TS′ + λI( ) -1S′TU′ (11)

式中: σ􀮨为融合后的重建图像的电导率分布矩阵。 此融

合算法的原理流程如图 4 所示。
尽管模式 1 在大多数情况下能够较好地重构出物体

的位置和形状,但在某些复杂场景下,单一激励模式导致

目标边缘模糊或伪影较大。 通过融合 8 种激励模式的数

据,可以充分利用不同激励模式下的场域信息,弥补单一

激励模式的不足,从而提高图像分辨率和目标定位精度。

2　 实验结果与分析

2. 1　 模型建立

　 　 本文利用 COMSOL3. 5 进行建模,圆形敏感场域半
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图 4　 数据融合算法流程

Fig. 4　 Flowchart
 

of
 

data
 

fusion
 

algorithm

径设置为 16
 

cm,目标电导率设置为 2
 

S / m,背景电导率

设置为 1
 

S / m,设置电极数量为 16 个,向激励电极施加微

弱电流,激励电流设置为 1
 

mA。 建立 50 个目标数量不

同、位置不同的模型。 采用电流激励-电压测量的 8 种模

式的激励测量模式,各模式下的电压测量值数量如表 1
所示,融合后的电压测量值为 1

 

216 个。 在本文的逆问

题求解中,被测场域被剖分为 812 个网格来重建具有不

同电导率的内部介质分布[18] 。 在仿真实验中,所有激励

模式下的 Tikhonov 正则化参数均采用相同的值,且该值

通过交叉验证方法确定为最优参数,以确保不同激励模

式下的图像重建结果具有可比性。
2. 2　 评价指标

　 　 为了验证内部介质的数量以及位置在不同的时候,
更加直观地说明融合后的图像较 8 种单一激励下重建的

图像分辨率的优化情况,根据相关系数(式(5))与图像

相对误差(式(6))定义了两个新的评价指标,即相关系

数变化率(CC)和相对误差变化率(RR),分别表示为:

CC =
CORm - COR0

COR0

× 100% (12)

RR =
RE0 - REm

RE0

× 100% (13)

式中: CORm 与
 

REm 分别表示融合成像结果的相关系数

与相对误差; COR0 与RE0 分别表示单一模式下成像结果

的相关系数与相对误差。 CC 和 RR 两个指标分别量化

了相关系数的提高与误差的下降,指标越大说明融合结

果相对单一模式的改善效果越好。
2. 3　 融合算法的有效性验证

　 　 图 5 所示为数量不同,位置相同的 4 种仿真模型,其
对比结果可以通过图 6 进一步用 CC 和 RR 量化解释,图
7 所示是数量不同、位置不同的 5 种仿真模型,其相对于

融合后的图像变化情况如图 8 所示。 图 9 所示是形状不

同的 2 种仿真模型,其相对于融合后的图像变化情况如

图
 

8 所示。 由仿真结果可看出,从模式 1 ~模式 8,模式 1
的成像分辨率较好,伪影较小,随着模式的增加,目标伪

影逐渐增大。 融合算法下的重建图像,相比于 8 种单一

模式成像分辨率而言,能够更加精确的呈现出目标的真

实尺寸和位置;在目标数量相同、位置不同时,例如模型

1,在 8 种单一激励模式下,由于内部目标距离较近,故随

着激励模式的增加,成像目标之间边界模糊,且边界伪影

随之变大,在成像中无法准确体现目标的尺寸、位置和数

量信息。 虽然成像分辨率在降低,但是目标边缘的圆滑

度[19-20]相对提高,并且目标大小更加接近于真实目标大

小。 但是在融合算法重建的图像中,目标之间的边界清

晰,并且能够准确地体现出目标的具体位置,目标尺寸也

与实际模型更为接近,伪影变小。 目标数量不同时,随着

目标数量的增加,由于内部场域变得更加复杂,例如模型

9,单一激励模式无法准确的呈现出内部真实的目标的尺

寸和数量,且相对于目标数量较少的场域,相邻近的目标

边界更加模糊;但在融合算法重建出的图像中,目标区域

的空间分辨率显著提升,并且位置靠近的目标的边界可以

呈现得更加清晰、分散,目标之间的模糊性边界现象减弱,
目标的数量和位置也能准确的呈现出来;即使随着目标数

量的增加,也不会出现成像分辨率低、目标数量模糊以及

相邻目标相互影响导致偏差过大的问题,目标伪影也在减

小。 此外,在目标形状不同时,如模型 10 和模型 11,单一

激励模式下的成像目标只能大体上反映出其位置信息,整
体上无法分辨其具体形状,在融合算法重建的图像中,不
但有效减小了目标成像伪影,而且成像目标轮廓更贴近其

真实形状。 融合前后图像分辨率的对比如图 5、7 所示。
实验结果表明,融合算法能够显著提高图像分辨率,尤其

是在目标数量较多或目标位置较近的情况下,融合算法

能够有效减少目标边缘的模糊现象,提高目标定位精度。
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图 5　 目标数量相同、位置不同八模式融合对比

Fig. 5　 Comparison
 

diagram
 

of
 

eight-mode
 

fusion
 

with
 

the
 

same
 

number
 

of
 

targets
 

and
 

different
 

positions

图 6　 模型 1~ 4 在融合算法下的重建图像相对于 8 种单一模式的指标变化率

Fig. 6　 Index
 

change
 

rates
 

of
 

reconstructed
 

images
 

of
 

models
 

1~ 4
 

under
 

the
 

fusion
 

algorithm
 

relative
 

to
 

the
 

eight
 

single
 

modes

表 2　 模型 1~ 4 在融合算法下的重建图像相对于 8 种单一模式的指标变化率

Table
 

2　 The
 

index
 

change
 

rates
 

of
 

reconstructed
 

images
 

of
 

models
 

1~ 4
 

under
 

the
fusion

 

algorithm
 

relative
 

to
 

eight
 

single
 

modes (%)

模式
模型 1 模型 2 模型 3 模型 4

CC RR CC RR CC RR CC RR
模式 1 15. 11 25. 17 13. 19 10. 31 13. 52 9. 26 13. 44 22. 17
模式 2 13. 68 28. 00 12. 30 8. 52 11. 66 7. 93 11. 07 19. 10
模式 3 13. 99 30. 77 12. 53 9. 18 12. 92 15. 43 11. 85 20. 19
模式 4 15. 39 32. 96 13. 23 9. 12 15. 52 20. 46 13. 80 23. 54
模式 5 17. 12 34. 18 14. 30 10. 61 17. 99 22. 10 15. 51 24. 10
模式 6 19. 03 34. 05 16. 15 16. 29 18. 41 19. 19 16. 19 22. 86
模式 7 23. 29 33. 78 20. 38 25. 85 20. 58 16. 62 18. 34 20. 97
模式 8 28. 95 33. 86 24. 68 33. 42 24. 56 19. 19 23. 16 23. 26

表 3　 模型 5~ 9 在融合算法下的重建图像相对于 8 种单一模式的指标变化率

Table
 

3　 The
 

index
 

change
 

rates
 

of
 

reconstructed
 

images
 

of
 

models
 

5~ 9
 

under
 

the
 

fusion
 

algorithm
 

relative
 

to
 

eight
 

single
 

modes (%)

模式
模型 5 模型 6 模型 7 模型 8 模型 9

CC RR CC RR CC RR CC RR CC RR
模式 1 13. 85 33. 79 13. 52 9. 26 14. 96 22. 90 13. 41 12. 73 19. 08 18. 59
模式 2 12. 37 34. 77 11. 66 7. 93 12. 78 24. 96 11. 97 16. 42 15. 36 18. 10
模式 3 12. 44 37. 07 12. 92 15. 43 12. 85 26. 77 12. 59 19. 42 16. 71 21. 95
模式 4 13. 23 38. 33 15. 52 20. 46 14. 21 29. 87 14. 30 22. 66 19. 80 25. 48
模式 5 14. 40 40. 00 17. 99 22. 10 16. 66 32. 43 16. 48 25. 00 23. 93 28. 15
模式 6 15. 55 41. 38 18. 41 19. 19 19. 01 32. 88 18. 64 24. 98 25. 97 29. 12
模式 7 18. 09 43. 72 20. 58 16. 62 23. 45 33. 44 21. 22 24. 16 31. 57 30. 14
模式 8 21. 87 46. 21 24. 56 19. 19 30. 67 34. 38 24. 55 27. 22 40. 03 31. 37
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图 7　 目标数量不同、位置不同八模式融合对比

Fig. 7　 Comparison
 

diagram
 

of
 

eight-mode
 

fusion
 

with
 

different
 

number
 

of
 

targets
 

and
 

different
 

positions

图 8　 模型 5~ 9 在融合算法下的重建图像相对于 8 种单一模式的指标变化率

Fig. 8　 Index
 

change
 

rates
 

of
 

reconstructed
 

images
 

of
 

models
 

5~ 9
 

under
 

the
 

fusion
 

algorithm
 

relative
 

to
 

the
 

eight
 

single
 

modes

图 9　 目标形状不同八模式融合对比

Fig. 9　 Comparison
 

diagram
 

of
 

eight-mode
 

fusion
 

of
 

different
 

target
 

shapes

图 10　 模型 10~ 11 在融合算法下的重建图像相对于 8 种单一模式的指标变化率

Fig. 10　 The
 

index
 

change
 

rate
 

of
 

reconstructed
 

images
 

of
 

models
 

10~ 11
 

under
 

the
 

fusion
 

algorithm
 

relative
 

to
 

the
 

eight
 

single
 

modes
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表 4　 模型 10~ 11 在融合算法下的重建图像相对于

8 种单一模式的指标变化率

Table
 

4　 The
 

index
 

change
 

rates
 

of
 

reconstructed
 

images
 

of
models

 

10~ 11
 

under
 

the
 

fusion
 

algorithm
 

relative
 

to
 

eight
 

single
 

modes (%)

模式
模型 10 模型 11

CC RR CC RR
模式 1 13. 41 14. 80 11. 15 0. 91
模式 2 11. 65 28. 19 10. 11 11. 19
模式 3 11. 59 32. 84 10. 77 15. 78
模式 4 12. 31 27. 97 11. 43 16. 79
模式 5 13. 68 14. 15 11. 88 9. 89
模式 6 15. 17 19. 54 13. 62 15. 25
模式 7 18. 02 12. 06 18. 56 17. 96
模式 8 22. 57 3. 56 27. 28 13. 03

　 　 实验结果表明,融合后的图像相关系数平均提高了

19. 86%,相对误差平均降低了 28. 89%,显著优于单一激

励模式下的图像重建效果。
通过 3 组模型的 CC 和 RR 的柱状图,可知这几种模

型的 CC 和 RR 值都为正,这说明融合算法重建图像的相

关系数(COR)相比于 8 种单一模式所重建图像的更高,
相对误差(RE)比 8 种单一模式更低;结合重建图像分辨

率和量化指标的分析,故可判定该研究算法相较于 8 种

单一模式成像更具有可信性和有效性。

3　 结　 论

　 　 针对 EIT 中因“软场”效应和欠定性导致的图像分

辨率低、伪影显著等问题,提出了一种基于八激励模式数

据融合的优化算法。 通过交叉验证方法动态训练各激励

模式下测量值的权重矩阵,结合多模态数据融合策略,将
8 种单一激励模式的优势互补,构建全局灵敏度矩阵与

融合测量值矩阵,最终通过 Tikhonov 正则化算法实现高

分辨率图像重建。 核心技术体现在权重分配机制的设计

上,通过逐次删除测量值并量化其对重建质量的影响,动
态确定各测量值的可信度权重,突破了传统方法依赖理

想均匀场灵敏度系数的局限性。 技术难点主要集中于多

模式数据的有效融合与正则化参数的优化,需在保证算

法稳定性的前提下平衡数据冗余与信息互补性,同时避

免过拟合。 未来研究可进一步扩展训练样本规模以优化

权重矩阵的普适性,并探索深度学习框架下的自适应权

重训练方法,结合参数化水平集算法提升复杂几何目标

的表征能力,为 EIT 技术在动态监测与多目标检测中的

实际应用提供更鲁棒的解决方案。
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