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Dual-mode true random number generator with dynamic
switching of multiple entropy sources

Lu Yingchun' Ji Ziyan' Xu Enpu' Ma Lixiang’
(1. School of Microelectronics, Hefei University of Technology, Hefei 230601, China;
2. Anhui University of Information Engineering, Wuhu 241000, China)

Abstract; True random number generators (TRNGs) play a critical role in information security. While the Galois ring oscillator-based
TRNG (GARO-TRNG) represents a classical design architecture, it typically suffers from issues of fixed points or periodic oscillations.
To address these limitations, this paper proposes a novel FPGA-based DMRO-TRNG structure with multiple entropy sources incorporating
clock jitter, metastability, and chaos. Distinct from conventional GARO architectures, this dynamic TRNG design implements mode
switching through MUX, enabling transitions between different operational modes to generate random output sequences. The
implementation utilizes Xilinx compiler for automatic place-and-route, effectively enhancing comprehensive performance in random
number generation. Experimental evaluations on Xilinx Kintex-7 and Artix-7 FPGAs demonstrate that the generated random sequences
successfully pass rigorous standard tests including NIST SP800-22, NIST SP800-90B, and TESTUOI. The architecture exhibits
exceptional robustness under varying voltage and temperature conditions through extensive testing. With low hardware overhead, this
TRNG achieves a throughput of 750 Mbps while consuming only 36 LUTs, 4 DFFs, and 16 MUXs, requiring merely a simple XOR-
based post-processing circuit.
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L 5 6 7 8
0 B 566 182 568 562 562 858 560 390
1 %cE 433 818 431 438 436 142 439 610
T 2% 132 364 137 124 127 716 120 780
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TRNG HA7 3 = (e i He AL B % 2 R
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Fig. 11 Temperature and voltage test results

N [ B /IS PAEFTIE 28 (prop) o 24 P {HRT 0. 01 B, 2A

NIST SP 800-22 Kintex-7 Artix-7
P-value Prop P-value Prop

JEEABLRAS: 56 0.699 313 99/100  0.816 537 100/100
e ISR 45 0.719 747 99/100  0.514 124  98/100
SRS 58 0.640 795  99/100  0.349 762  99/100
BB R HR TS 0.867 692 100/100  0.334 538 100/100
A 1 0.678 686 99/100  0.574 903  99/100
LG ZRERLE 0.935716  99/100  0.816 537  100/100
BN F KRR 0.867 692 100/100  0.924 076 100/100
AL E SR ICEAGI 0.482 919 99/100  0.466 505  99/100
FHABITHKGE  0.994 250  99/100  0.514 124 100/100
BEATL i 2l A o 0.594 135 99/100  0.501 433  99/100
FEHLIEE B 0.485761  99/100  0.261 089  99/100
TOCIEFERRKRES 0.474 986 98/100  0.383 827  100/100
g ST 0.366 918  100/100  0.366 918  100/100
S5 A6 0.431 122 99/100  0.564 375  99/100
BRI 0.719 747 99/100  0.883 171  99/100
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Table 4 NIST-SP800-22 test results

NIST SP 800-90B Kintex-7 Artix-7
Cijror Cronn Crgo - Crany
A% 1 40 2 487 0 4 445 0
JE W) B TR A 3 9584 6 8 672 15
FE 0BT BE A 6 624 3 104 876 1873
S IIPRAE G g iV 142 5 1015 18
rp S BRI A 55 3 470 5 6 025 11
ep B A 5 1211 1027 8602 1192
STl A 6 160 2 5 446 5
SN & T 2922 818 6 823 995
FAM(1) 430 7 5013 25
JAWI(2) 2 075 16 9 124 13
JA51(8) 638 4 7 695 16
FmI(16) 4 867 28 2223 30
ozt AWI32) 1945 22 3299 35
giib(Gi=11) (1) 614 3 2927 7
mH2ER2) 5326 7 8 430 3
22(8) 5951 4 3512 10
WHIT2E(16) 2418 3 2 306 3
W2 (32) 314 0 203 1
FEA 5 1 856 51 1 608 56
R VR X LA Pass Pass
AT B A 56 Pass Pass
LRS i3 Pass Pass
A 37 M ) A True True
/M 0. 995 843 0. 995 349
£ 5 TESTUOL U4 R
Table 5 TESTUO1test results
Statistical P-values P/F
Z AR & 2T A 0.12 Pass
BT FAT A AL D i 0 X (0.24,0.07) Pass
t=(2,4)
SET AR i 0.43 Pass
LRt 2% B ik 0.23 Pass
SRR -5 I 40 0.5 Pass
B (e =1) 0.55 Pass
frfi FRL A K ( 4B =3) 0.43 Pass
P R AR Sk R AR 0.53 Pass
SR SR - H 0k 0.23 Pass
FAF R DU I3 0.32 Pass
TR R DU AR S It
L= (32.64.128) (0.84,0.02,0.03) Pass
AR ER DL ST
L=(16.32.64) (0. 64,0.45,0.66) Pass
TFAFE [ A R At (0.65.0.73) Pass
d=(1,2)
PR ER AR A A ik 0.61 Pass
BRI
3932 0. 88 Pass
Fiti B3t 3 I 3K (0.84,0.52,0.77,
Pass

(H,M,],R,C)

0.69,0.16)

B ST L Bl A TS A Ak, A R SR BT R R Y BE AL
FLRR IR R SR A SCEE MY 1.5 A%, STk 26 ] A BEALIE
1 31 B GARO 4241k, 20k 3 1 (2T 5, Aib]
FIF GARO =5 B B HLAR 5 X 1E & PLL 7= A= 1 18 00 i
BRHERTRAE  GEURTH AR KT A SCEE W (A 3R R AR
SCESERIE R 172, SCHER 27 1R ARSI A GARO il
FIRO JH#E T K& BT IR H1 LA 88 Mbps My FFnt 2, 3C
k28] $2 A B 2 15t 8 O Bk 3% % ( MFRO) 1T DL 7E
FIRO,GARO, i /R T 1 BRI IR 1 #% JL 452 =Xk [l 1) 482
IR T FEMS 5 T A GE A, (H Ak R HT R Fe AR LR,
SCHR[ 29 ]38 A RO AEFSIE A BEALYE 1) >f J5 A 5%
PRI FESRA SCAE Ry 2 A% LA b AR SCHR 30 ] T AR F
150 Mbps AYFFIEZE H RS {4 5% 501 #E K 24 2 A8 SC 451
) 8 £,

® 6 LHfl TRNG KLLE
Table 6 Comparison with other TRNGs
Eal

Entropy

25 Fy Area( LUTs+DFFs) Fa
Source Mbps
SCHKL 8] LRO 4LUTs+3DFFs 0.76 Spartan-6
k[ 11]  FIGARO 288 LUTs+190DFFs 400 -
SCHik[ 12] STR 56LUTs+19DFFs 100 Virtex-6
Hk[26]  GARO 50LUTs+79DFFs 280 Artix-7
SCHK[ 27 ] Met_FIGARO 1063LUTs 88  EP4CEI5F17C8
XHk[28]  MFRO 44 LUTs 125 XC6SLX16
CHR[29] RO 83LUTs+26DFFs 100 Cyclone 11
SCHk[30]  DCFL 298LUTs 150 Cyclone 1V
36LUTs+16MUXs+
DMRO ADFE 750 Artix-7
S
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Fig. 12 Visual comparison with other TRNGs
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