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Marking method based gradient descent for train axle on primary
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Abstract: The surface shape of the train shaft is irregular after hot forge, and the shaft body may deform during the cooling process,
which poses challenges and difficulties for the positioning of the axis point in the primary turnery process. The existing methods, such as
two-point method, optical projection method, rotation axis method, etc., or only consider the center and local surface, ignoring the
deformation of the axis and the irregular shape of the surface, have problems such as low efficiency, inability to manufacture, and large
product loss and so on. This paper proposes a marking method for the optimal manufacturing of train axle in primary turnery to address
the problems, which in existing methods. Firstly, obtaining a 3D point cloud of the axle by a scanner. Then, the point cloud is
successively transformed into another coordinate system, cut into discrete slices, and calculated to getting the initial machining axis.
Next, the spatial margin distribution of the product machining computer aided design (CAD) model in the axle point cloud is analyzed.
Simultaneously, the gradient descent optimization strategy is used to adjust the machining axis position. Finally, the optimal marking
point for rail axle to processing optimal manufacturing is calculated, and then marked on the axle by the laser marking machine. This
method is implemented using the mixed encoding of C++and point cloud library (PCL) , and has been validated on site by China railway
rolling stock corporation (CRRC) for up to a month, and data statistics show an accuracy of over 98% , with an efficiency improvement
of 3~6 times compared to the operator. This method improves the production efficiency of the primary turnery process for rail axles,

reduces the scrap rate in the production process, and ensures the margin adequacy and rotational balance during the turning process.
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Fig. 1 Intelligent detection and position system for train axle
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Fig.3 Coordinate system distribution
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Fig. 6  Optimization of manufacturing axis
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Table 3 Comparison of primary axis calculation methods

S B, A EEM Ak /AR Bk
TR
mm Iters Error/mm Iters Error/mm
YD 0.1 11 10. 24 92 10. 16
BVV 0.1 10 9.93 68 9.93
HXD 0.1 6 9.72 84 9.89
CZ 0.1 9 8.29 95 8.51

e 3 T LAE 25 (8] LR BLA T AH ot/ 24 e
JCE N O Ak Wi S T e b (2 R R B (Tters ) &2
L) 5 HERATE (BRZE(E (Error) S 30) JEASEIT
4.5 HAATIRUARE S 47

RO EF T FR AL BR 2 ROR , AR SCHEAT T 45 2 5
55 AR e BE AN 4 S R S5 R 6 M7 PR,
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Table 4 Calibration data of laser marking machine A
. FIARHLAL BT 2R/ mm AL AR R/ mm
B sE £
X, Y, Z, X Y Z
1 -23.2  49.6 780 -24.5 -363.1 3833.6
2 12.6 32.3 780 11.2 -380.9 3833.6
3 48 14.6 780 47.1 -398.9 3833.7
4 -40.5 13.9 780 -42.5 -398.9 3833.6
5 -4.8 -4.0 780 -6.5 -416.9 3833.6
6 30.8 -21.5 780 29.1 -434.6 3833.6
7 -57.9 -22.2 780 -60.3 -434.7 3833.5
8 =22.5 -40.1 780 -24.5 -452.6 3833.5
9 13.3 =57.5 780 11.3  -470.4 3833.6

x5

HLFTHRNL B AR E SR

Table 5 Calibration data of laser marking machine B

bR FIFRHLALAR R/ mm RGBT R/ mm

X, Y, 7, X Y zZ
1 34.1  43.7 7350 -37.7 -374.0 1800.8
2 -5.7 410 7350 2.0 -376.8 1800.9
3 -45.7 381 735.0 41.9 -379.4 180l 1
4 37.0 3.6 7350 -40.5 -414.1 1800.8
5 -2.8 0.8 7350 -0.7 -416.6 1800.9
6 -42.8  -2.1 7350 39.3 -418.9 180l 1
7 39.9  -36.2 7350 -43.2 -453.8 1800.9
8 0.1 -39.4 735.0 -3.3 -456.4 1800.9
9 -39.7 -42.0 735.0 36.4 -459.1 180L.1

F 6 BOEITHRVIREEPE

Table 6 Calibration matrix of laser marking machine

WOGTTARAL A HWOGTTARIL B
0.996 73 —0. 008 42 0 -1.003 33 -0.005 64 0
0.008 42 0.996 73 0 -0.005 64 1.003 33 0
0 0 0. 996 76 0 0 -1.003 35
KT BARITHRIREIRE
Table 7 Calibration error of laser marking machine
. BOGFARHL A/mm WOGTTARHL B/mm
R 2 B
D, D, D, D, D, D,
1 0.044 0.134 0.044 0.03 0.045  0.12
2 0.037 0.252 0.088 0.036 0.244  0.041
3 0.442 0.221 0.187 0.079 0.216  0.177
4 0.312  0.241 0.009 0.09 0.061 0.093
5 0.01  0.03 0 0.012  0.04 0
6 0.007 0.146 0.071 0.131 0.336  0.185
7 0.405 0.016 0.093 0.205 0.124 0.119
8 0.116  0.359 0.052 0.011 0.336 0.016
9 0.155 0.297 0.004 0.03 0.045  0.12
WA 0.442  0.359  0.187 0.205 0.336  0.208
FB/ME - 0.007  0.016 0 0.011  0.033 0
FHME 0.170 0.188  0.061  0.072  0.159  0.106
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Fig.9 Comparison of slice on coordinate system

with or without correction
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Table 8 Marking positions for different slice intervals

(mm)
N WOEFTFRHL A WOLITHRHL B
[ F&
X Y A X Y A
2 -5.64 -433.26 4 023.55 0.54 -433.40 1 697.94
4 -5.48 -433.19 4023.55 0.51 -433.41 1697.94
6 -5.42 -433.23 4 023.55 0.44 -433.20 1697.94
8 -5.57 -433.28 4 023.55 0.37 -433.08 1697.95
10 -5.68 -433.56 4023.56 0.37 -433.41 1 697.94
12 -5.56 -433.21 4023.55 0.27 -433.14 1697.94
14 -5.61 -433.15 4 023.55 0.11 -432.98 1697.95
16 -5.57 -433.54 4 023.56 0.22 -432.84 1697.95
18 -5.54 -433.47 4023.56 0.12 -433.04 1 697.95
20 -5.47 -433.65 4 023.56 0.18 -432.94 1697.95

Ave -5.56 -433.36 4023.56 0.32 -433.15 1697.95
Range  0.261  0.501 0. 004 0.427 0.578  0.004
Std 0.006  0.030 0 0.022 0.038 0
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