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Research on a visual measurement device and method for slope displacement

Song Yangchen' Mi Chao'? Liu Yi' Shen Yang™’

(1. School of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China; 2. Shanghai SMU Vision Co. Lid. ,
Shanghai 201306, China; 3. Higher Institute of Technology, Shanghai Maritime University, Shanghai 201306, China)

Abstract : Aiming at the problems of high cost and high environmental requirements of traditional slope displacement monitoring methods,
a low-cost and high-precision slope displacement visual measurement device and its method are proposed. First, a high-precision camera
and a special marker are deployed in the monitoring scene, and the improved YOLOv8-Pose algorithm is utilized to realize the initial
recognition of the key points of the marker. Subsequently, a sub-pixel extraction technique is used to process the key point of the marker
to obtain its precise coordinates at the sub-pixel level. Next, the pixel displacement change of the marker is calculated by comparing the
coordinate offsets of the keypoints at different moments. Finally, the actual displacement change is calculated by the scale conversion
method in combination with the known geometric dimensions of the markers, so as to realize the accurate monitoring of slope
displacement. In order to verify the practical application effect of the method, this paper selects the slope of a highway in Guizhou
Province for on-site monitoring experiments. The experimental results show that the visual measurement method has good accuracy
performance in slope displacement monitoring. Compared with the monitoring results of total station, the accuracy of horizontal
displacement reaches 90. 43% , and the accuracy of vertical displacement is 91.58% , which are more than 90%, fully verifying the
feasibility and effectiveness of the method in practical engineering applications.
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HEETRY P/% R/% mAP/%  WiF/FPS
YOLOv5n-Pose 83.74 74.53 78.25 183
YOLOv7n-Pose 88.16 80. 71 83.27 204
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Table 3 Subpixel coordinates of key points of markers

BT x y
1 458. 787 445.332
2 484. 376 449. 700
3 509. 521 453. 766
4 534.729 458. 125
5 455. 106 471. 262
6 480. 502 475. 098
7 505. 749 479.717
8 531.416 483. 854
9 451. 366 496. 676
10 476. 824 500. 984
11 501. 981 505. 142
12 527. 500 509. 431
13 447. 649 522.011
14 473. 051 526. 446
15 498. 512 530. 737
16 523. 689 535. 069
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Table 4 Cumulative displacement monitoring results

at a given point in time on site

ARG T7 i A
PRI KRR BEEE WOy Rl
iy (x> % Xz % (x> % (x> %
mm mm mm mm
1 0.01 -0.03 0. 00 0. 00
2 -0.12 -0.02 -0.10 0. 00
3 -0.48 1.04 -0.50 1.00
4 0.17 0. 14 0.20 0. 10
5 0.23 0.32 0.20 0.30
6 -0.42 1.13 -0.40 1. 10
7 -0.54 1.24 -0.5 1.20
8 -0.02 0.08 0. 00 0. 10
9 0.29 0.05 0.3 0. 00
10 0. 12 0. 03 0. 10 0. 00
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Fig. 11  Comparison of measured data with total station data
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Fig. 12 Error analysis of measurement data and
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total station data
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