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摘　 要:针对传统边坡位移监测方法成本高昂,对环境要求高等问题,提出了一种低成本、高精度的边坡位移视觉测量装置及其

方法。 首先,在监测场景中部署高精度摄像机和特制标志物,利用改进的 YOLOv8-Pose 算法实现对标志物关键点的初步识别。
随后,采用亚像素提取技术对标志物关键点进行处理,以获得其亚像素级别的精确坐标。 接着,通过比较不同时刻关键点的坐

标偏移量,计算标志物的像素位移变化。 最后,结合已知标志物的几何尺寸,通过尺度转换方法计算实际位移变化,从而实现对

边坡位移的精确监测。 为验证该方法的实际应用效果,选取贵州省某高速公路的边坡进行了现场监测实验。 实验结果表明,该
视觉测量方法在边坡位移监测中具有良好的精度表现。 与全站仪监测结果比较,水平位移的准确率达到了 90. 43%,竖直位移

的准确率为 91. 58%,均超过 90%,充分验证了该方法在实际工程应用中的可行性和有效性。
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Abstract:Aiming
 

at
 

the
 

problems
 

of
 

high
 

cost
 

and
 

high
 

environmental
 

requirements
 

of
 

traditional
 

slope
 

displacement
 

monitoring
 

methods,
 

a
 

low-cost
 

and
 

high-precision
 

slope
 

displacement
 

visual
 

measurement
 

device
 

and
 

its
 

method
 

are
 

proposed.
 

First,
 

a
 

high-precision
 

camera
 

and
 

a
 

special
 

marker
 

are
 

deployed
 

in
 

the
 

monitoring
 

scene,
 

and
 

the
 

improved
 

YOLOv8-Pose
 

algorithm
 

is
 

utilized
 

to
 

realize
 

the
 

initial
 

recognition
 

of
 

the
 

key
 

points
 

of
 

the
 

marker.
 

Subsequently,
 

a
 

sub-pixel
 

extraction
 

technique
 

is
 

used
 

to
 

process
 

the
 

key
 

point
 

of
 

the
 

marker
 

to
 

obtain
 

its
 

precise
 

coordinates
 

at
 

the
 

sub-pixel
 

level.
 

Next,
 

the
 

pixel
 

displacement
 

change
 

of
 

the
 

marker
 

is
 

calculated
 

by
 

comparing
 

the
 

coordinate
 

offsets
 

of
 

the
 

keypoints
 

at
 

different
 

moments.
 

Finally,
 

the
 

actual
 

displacement
 

change
 

is
 

calculated
 

by
 

the
 

scale
 

conversion
 

method
 

in
 

combination
 

with
 

the
 

known
 

geometric
 

dimensions
 

of
 

the
 

markers,
 

so
 

as
 

to
 

realize
 

the
 

accurate
 

monitoring
 

of
 

slope
 

displacement.
 

In
 

order
 

to
 

verify
 

the
 

practical
 

application
 

effect
 

of
 

the
 

method,
 

this
 

paper
 

selects
 

the
 

slope
 

of
 

a
 

highway
 

in
 

Guizhou
 

Province
 

for
 

on-site
 

monitoring
 

experiments.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

visual
 

measurement
 

method
 

has
 

good
 

accuracy
 

performance
 

in
 

slope
 

displacement
 

monitoring.
 

Compared
 

with
 

the
 

monitoring
 

results
 

of
 

total
 

station,
 

the
 

accuracy
 

of
 

horizontal
 

displacement
 

reaches
 

90. 43%,
 

and
 

the
 

accuracy
 

of
 

vertical
 

displacement
 

is
 

91. 58%,
 

which
 

are
 

more
 

than
 

90%,
 

fully
 

verifying
 

the
 

feasibility
 

and
 

effectiveness
 

of
 

the
 

method
 

in
 

practical
 

engineering
 

applications.
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0　 引　 言

　 　 高速公路作为现代交通网络的重要组成部分,其安

全运营对于保障人民生命财产安全和促进社会经济发展

具有重要意义。 特别是在山区高速公路的建设中,通常

需要开挖山体,破坏原有的地质条件,在高速公路两边形

成路堑边坡,而边坡的稳定性直接关系到道路的安全使

用和寿命。 由于地质条件的复杂性和不确定性,边坡可

能发生形变,从而引发滑坡或塌方等严重地质灾害。 因

此,对高速公路边坡进行位移监测是解决边坡稳定性问

题的关键措施[1] 。
当前,边坡位移测量与实时监测在各类场景中已有

广泛研究。 Prasetya 等[2] 使用机器人全站仪 ( real-time
 

system,RTS)对隧道修复斜坡进行监测。 虎勇等[3] 利用

微机电系统(micro-electro-mechanical
 

system,MEMS)姿态

传感器实时计算边坡变化,实现边坡表面位移监测。
Mazzanti 等[4] 结合多时相三维激光扫描结果,建立了意

大利北部 Baldi 滑坡演化模型。 Wang 等[5] 应用光纤布拉

格光栅技术(fiber
 

bragg
 

gratings,FBG),在温州滑坡监测

项目中分析现场监测数据预测潜在滑动区。 Alameda-
Hernandez 等[6] 利 用 近 距 离 地 面 数 字 摄 影 测 量 技

术(close-range
 

terrestrial
 

digital
 

photogrammetry,CR-TDP)
监测弱叶面岩质边坡的稳定性。 Wang 等[7] 结合 GPS 监

测数据与精密单点定位(precise
 

point
 

positioning,PPP)后
处理方法,探索了毫米级精度的滑坡监测。 Mateos 等[8]

结合摄影测量与永久散射体合成孔径雷达干涉测量技

术(persistent
 

scatterer
 

interferometric
 

synthetic
 

aperture
 

radar,PS-InSAR)分析了滑坡运动与空间和时间的相关

性。 现有方法在监测精度和自动化程度方面取得了显著

进展,但大多依赖人工测量以及精密检测设备,成本高

昂,且对环境要求高,恶劣环境难以部署。
基于机器视觉的目标检测技术以其自动化、易部署、

高精度以及低成本的潜力,正逐步取代传统监测技术[9] 。
目标检测技术分为两种,经典的目标检测算法与依赖深

度学习的目标检测算法。 经典的目标检测算法为使用分

类器对目标部分和非目标部分进行检测分类,其中定向

梯度直方图( histogram
 

of
 

oriented
 

gradients,HOG) +支持

向量机(support
 

vector
 

machine,SVM)的识别模式应用较

为广泛。 Mi 等[10] 设计了一种结合优化的 HOG 算法和

PNP 算法(perspective-n-point)的三维位移测量方法并验

证该方法在基坑监测中有良好的效率和实时性。 基于深

度学习的目标检测方法可以分为单阶段检测算法和双阶

段检测算法两大类。 单阶段方法, 如 YOLO、 SSD 和

RetinaNet,直接在整个图像上一次性完成目标的检测和

分类[11] ;双阶段方法,如 Faster
 

R-CNN 和 Mask
 

R-CNN,

先生成候选区域,再进行详细的分类和定位。 而关键点

检测[12] 被看作是目标检测的一个扩展或细化,旨在从图

像中检测出代表物体或场景重要特征的关键点。 Liang
等[13] 引入了一种自适应中心关键点选择方法(adaptive

 

center
 

keypoint
 

selection
 

network,ACKSNet)用于解决目标

检测任务中关键点不匹配产生的识别问题。 Yu 等[14] 将

遥感图像中小型车辆作为背景中的关键点进行鲁棒检

测。 由于 YOLO 算法网络模型简单且识别效率高,在关

键点检测方面具备良好的应用效果。 Wang 等[15] 提出了

基于关键点回归策略和角度损失的 YOLOv4,提高了

YOLOv4 算法对关键点检测的精度。 Pranavan 等[16] 应用

改进的 YOLOv7 关键点检测模型预测人体摔倒时的姿

态。 近年来,YOLOv8-Pose 算法显著提升了关键点检测

精度,Wang 等[17] 使用改进的 YOLOv8-Pose 算法来增强

多模 态 机 器 人 的 感 知 和 执 行 能 力。 Yuan 等[18] 将

YOLOv8-Pose 算法应用于面部穴位检测。 尽管关键点检

测算法可以在图像中直接预测并定位关键点位置,得到

关键点的坐标,但定位的精度仅能达到像素级,直接应用

不能满足边坡检测的精度要求,所以需要进一步提升关

键点识别精度。
在图像处理领域,亚像素提取技术作为一种提高识

别精度的方法被广泛应用于各种场景。 常用的亚像素提

取方法有灰度重心法、插值法、边缘检测算法等。 其中双

三次插值法相较于其他方法具有出色的平滑性、细节保

留能力和准确性,能够得到精准的亚像素级别识别结果。
贺强旅等[19] 提出一种基于双三次插值和高斯拟合的激

光线条亚像素提取方法。 郑心草等[20] 实现了经典双三

次插值算法的非局部拓展。
针对上述不足以及相关研究,本研究考虑结合关键

点检测算法以及亚像素提取算法提出了一种边坡位移视

觉测量装置与方法。 首先通过改进的 YOLOv8-Pose 算法

实现标志物关键点的初步定位,然后利用亚像素提取算

法获得标志物关键点的亚像素级别坐标,并计算标志物

在不同时刻的关键点坐标偏移,通过尺度转换得到实际

位移变化,从而实现高精度高速公路边坡位移检测。 相

比现有边坡监测方法,本方法具备显著的低成本和强环

境适应性优势:无需精密仪器或复杂传感设备,仅凭普通

摄像设备及靶标即可完成关键点定位与位移检测,部署

简便,适用于复杂地形。 以监测 1
 

km 边坡为例,传统全

球导航卫星系统(global
 

navigation
 

satellite
 

system,GNSS)
监测设备成本超 1 万美元,且体积大、安装困难。 而本研

究方法设备小巧,成本低廉:一台带云台的相机约 1
 

000
美元,每个标志物成本不足 10 美元,每隔 10

 

m 安装一个

标志物,总成本仅约 2
 

000 美元,仅为 GNSS 成本的 20%。
换言之,使用本研究方法,仅一套 GNSS 系统的费用即可

监测 10 个边坡,大幅降低监测成本。
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本研究方法相比 YOLOv5n-Pose、 YOLOv7n-Pose 等

主流关键点检测算法,在准确率、召回率和平均精度均

值(mean
 

average
 

precision, mAP ) 指标上表现出显著提

升。 与基线模型 YOLOv8n-Pose 相比,本研究方法的准确

率提高了 4. 33%,召回率提高了 3. 82%, mAP 提升了

7. 78%,展现出优异的关键点识别性能。 此外,通过引入

亚像素提取技术,将关键点像素坐标精度提高至 0. 001
个像素,位移监测精度提升至 0. 01

 

mm 级,极大地增强了

边坡监测领域的监测精度。

1　 高速公路边坡位移测量方案

　 　 本研究设计了一套完整的高速公路边坡位移测量方

案,通过在监测场景下部署相机和特殊规格标志物,保证

本研究提出的位移测量方法的可行性。
1. 1　 相机设置

　 　 为了确保监测数据的准确性和有效性,本研究选用

带云台的高精度变焦摄像机通过水泥浇筑固定于远离监

测区域的地基稳定位置,尽可能保证相机不受外部环境

因素的影响而产生位移,确保相机在长期监测过程中稳

定可靠,并保障其视角能够广泛覆盖监测区域,不留盲

区,以获得全面的监测数据。 同时采取高频采样策略来

保证图像样本的质量,通过高频采样确保相机不同时刻

采集的图像数据有效可靠,即便存在残缺或无效的样本

数据,也不会对后续识别解算位移变化量产生影响。
1. 2　 标志物设计

　 　 为了实现边坡监测系统的高精度和高效性,并确保

相机能够清晰准确地采集到标志物信息,本研究采用一

个由 5 行 5 列黑白方格组成的棋盘作为标志物,每个小

方格的边长为 30 mm,如图 1 所示。 这种标志物具有独

特的几何图案和高对比度,在图像处理和特征识别中表

现出优异的性能。 棋盘格每个黑白十字交叉点即为标志

物的关键点,每个标志物上有多个关键点,有效避免单一

关键点被遮挡或误识别导致的监测结果误差问题。 通过

监测这些关键点随时间产生的位移变化,可以实时反映

边坡位移情况。 多个关键点也意味着每个标志物具有多

组位移变化结果,通过平均滤波处理可以确保每个标志

物的位移变化更加准确和可靠。
为实现位移监测系统对边坡全面的监测,标志物需

沿着边坡均匀分布,本研究选择在边坡的所有坡面每间

隔 10
 

m 安装一个标志物,确保标志物正对相机,保证监

测精度的同时确保标志物覆盖整个监测区域,设备布置

效果如图 2 所示。 鉴于夜间光照条件较差可能对监测结

果产生影响,本研究设计的监测系统主要针对白天进行

工作。 系统通常设置为每天 8:00 ~ 17:00,每隔 0. 5
 

h 采

图 1　 棋盘格标志物

Fig. 1　 Traditional
 

measurement
 

programs

集 1 次监测数据,以确保监测结果的准确性和实时性。
这种设计充分考虑了光照条件对标志物识别的影响,避
免了夜间环境变化可能带来的干扰。

图 2　 设备布置效果

Fig. 2　 Equipment
 

layout
 

effect
 

diagram

2　 算法流程

　 　 在上述高速公路边坡位移测量方案的基础上,本研

究设计了结合改进的 YOLOv8-Pose 算法与亚像素提取技

术的高速公路边坡位移测量方法。 首先,相机在相同预

置位不同时刻高频采样,捕获边坡上每个标志物的图像。
相机完成图像采集任务后,采用改进的 YOLOv8-Pose 标

志物关键点检测方法进行标志物关键点的预测与识别,
获取标志物每个关键点在图像中的像素坐标。 然后使用

亚像素提取算法获取标志物所有关键点的亚像素级别精

确坐标。 接着,比较当前时刻和上一时刻每个标志物关

键点的像素偏差,通过平均滤波整合每个标志物所有关

键点的像素位移,得到标志物的偏移量。 最后,通过二维

和三维位移之间的尺度因子转换,将标志物的二维位移

转化为实际位移,得到边坡位移监测结果。
2. 1　 改进的 YOLOv8-Pose 标志物关键点检测方法

　 　 当图像采集结束后,需对图像中标志物及其关键点

进行定位。 本研究采用改进的 YOLOv8-Pose 关键点检测

方法对标志物上的关键点进行识别,得到每个关键点在

图像中的像素坐标。
YOLOv8-Pose 是 YOLOv8 算法中同时实现目标框检

测和关键点检测的模型,YOLOv8-Pose 的目标任务是在

完成目标检测的基础上进行图像关键点的预测,在检测

精度和速度方面表现良好。 然而,在对小目标进行检测

时,由于小目标的特征不够明显,模型难以准确识别和定

位关键点。 此外,模型在识别不同尺度的目标时也存在
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局限性。 而本研究的标志物关键点较小,且边坡不同位

置的标志物在图像中的大小不一,所以必须对原有模型

进行改进以实现对相机画面中棋盘格标志物关键点的精

确检测与定位。 对此,本研究在 YOLOv8-Pose 的基础上

进行了改进,改进后的网络结构如图 3 所示,图中红色部

分为新增的改进模块。

图 3　 改进的 YOLOv8-Pose 网络结构

Fig. 3　 Improved
 

YOLOv8-Pose
 

network
 

structure

　 　 1)高效通道注意力(ECA)机制

ECANet[21] 是一种轻量级通道注意机制,通过 ECA
注意力机制,模型处理特征图时,自动为不同的通道分配

不同的权重,增强重要的通道并抑制不重要的通道,使模

型在学习过程中更加集中于关键特征,从而提高模型的

性能。 为增强 YOLOv8-Pose 模型对标志物关键点特征的

检测能力,同时避免深层网络处理过程中丢失关键点特

征,本研究将模块加入 backbone 网络的最后一层中,
ECANet 结构如图 4 所示。

ECANet 首先对输入的特征图进行全局平均池

化(GAP),使特征图的维度由H × W × C变为 1 × 1 × C,
对于输入特征图 X ∈ RH×W×C ,全局平均池化将其压缩为

Z ∈ R1 ×1 ×C ,平均池化操作表达式为:

Z = 1
H × W∑

H

i = 1
∑

W

j = 1
x ij (1)

图 4　 ECA 注意力机制

Fig. 4　 ECA
 

attention
 

mechanism

然后通过卷积核大小为 k 的一维卷积对池化后的 Z
进行卷积操作,以捕获局部跨通道交互,卷积核大小 k 与

通道尺寸 C 存在映射关系,求解 k 的表达式为:

k = ψ C( ) =
log2(C)

β
+ α

β 0dd

(2)



　 第 2 期 一种边坡位移视觉测量装置与方法研究 ·117　　 ·

式中:一般取 α = 2,β = 1, | x | 0dd 表示 x 的最近奇数。
接着应用 Sigmoid 函数激活得到表示特征通道重要

性的权重 ω ∈ R1 ×1 ×C。 计算权重 ω 的表达式为:
ω = Sigmoid[C1Dk(Z)] (3)
其中, C1Dk 代表一维卷积, Sigmoid 函数的表达

式为:

Sigmoid(x) = 1
1 + e -x (4)

最后将权重值 ω 与原始特征 X 逐个相乘获得加权

特征 X- 。
2)加权双向特征金字塔

YOLOv8-Pose 原本的 Neck 模块采用路径聚合网

络[22](path
 

aggregation
 

network,PAN),这种特征提取方式

虽然包含了自上而下以及自上而下的特征传递,但是仅

能实现两个层次的特征融合。 所以本研究采用加权双向

特征金字塔网络[23](bidirectional
 

feature
 

pyramid
 

network,
BiFPN)代替原有的路径聚合网络-特征金字塔网络结

构(path
 

aggregation
 

network-feature
 

pyramid
 

network,PAN-
FPN),增强多尺度特征融合的效果,有效提高网络对不

同尺度物体的检测能力,降低模型的计算复杂度,同时提

高模型的精度。
BiFPN 是一种高效的多尺度特征融合结构,其在传

统 FPN 和 PAN 基础上进行了优化,引入双向跨尺度连接

和加权特征融合机制,不仅在自顶向下( top-down) 的路

径上进行特征融合,还添加了自底向上( down-top) 的路

径,形成了双向的特征流动,能够快速地将特征融合到各

个层次中。 FPN、PAN、BiFPN 的网络结构如图 5 所示。

图 5　 BiFPN 特征金字塔

Fig. 5　 BiFPN
 

feature
 

pyramid

BiFPN 的特征融合过程可以表达为一系列加权和的

操作,并通过快速归一化来实现加权特征融合,定义如

式(5)所示。

Output = ∑
i

w i

ε + ∑
j
w j

× Ii (5)

式中: w i 代表可以学习的权重大小; Ii 表示输入特征;

ε = 10 -3 用来避免数值不稳定。
2. 2　 关键点亚像素提取算法

　 　 在对图像样本进行改进的 YOLOv8-Pose 标志物关键

点检测后可以得到每一标志物全部关键点的像素坐标,
接着需要引入关键点亚像素提取算法得到每个关键点在

原图像中的精准亚像素坐标。 研究选择双 3 次插值

法[24] ,来获得亚像素级别的关键点坐标。
双三次插值通过考虑每个关键点周围的 16 个像素

计算插值。 其核心在于利用三次多项式对每个方向进行

插值,从而在水平方向和垂直方向上都获得平滑的过渡。
对待关键点 P(x,y) ,取其附近的 4×4 邻域点 (x i,

y j),i,j = 0,1,2,3,如图 6 所示。

图 6　 关键点插值领域

Fig. 6　 Keypoint
 

interpolation
 

field

按式(6)进行插值计算,得到所求亚像素关键点像

素值。

f(x,y) = ∑
3

i = 0
∑

3

j = 0
f(x i,y j)W(x - x i)W(y - y j) (6)

其中, f(x i,y j) 表示关键点 4×4 邻域内每个像素点

的像素值, W(x - x i)、W(y - y j) 分别表示这个关键点到
邻域内每一像素点在 x 和 y 方向上的权重系数。 权重系

数计算公式为:
W(x) =

(a + 2) | x | 3 - (a + 3) | x | 2 + 1, | x | ≤ 1
a | x | 3 - 5a | x | 2 + 8a | x | - 4a, 1 < | x | ≤ 2
0, | x | > 2

ì

î

í
ïï

ïï

(7)
式中: x表示当前关键点到邻域内每一像素点 x或 y方向

上的距离; a 表示分段曲线的变化趋势, 一般取 a =
- 0. 5。
2. 3　 位移求解

　 　 在获得标志物 16 个关键点的亚像素坐标后,需比较

当前时刻关键点坐标相对于上一时刻坐标是否发生偏

移,并计算出图像坐标系中 x 轴方向和 y 轴方向上的偏

移量。 若每个关键点可得到坐标 (x,y) ,以每个关键点
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横坐标 x 为例,前后两个监测时刻同一标志物可以得到

两组 4 阶矩阵,前一时刻横坐标矩阵为 X1,后一时刻为

X2。 将矩阵 X2 中的每个元素减去 X1 中对应位置的元素

得到结果矩阵 Xout。
Xout = X2 - X1 (8)
其中,结果矩阵中每一元素 xoutij

= x2ij
- x1ij

,接着通

过平均滤波,得到更准确的结果。

X- out = 1
42 ∑

4

i = 1
∑

4

j = 1
xoutij

(9)

最终得到这一标志物当前时刻相对于上一时刻 x 轴

方向上的平均偏移量 X- out ,同理可得到 y 轴方向上的平

均偏移量 Y- out,然后根据距离公式计算当前时刻标志物每

相邻两个关键点之间像素距离并取平均值得到棋盘格每

一小格的平均像素长度 l ,同时已知棋盘格每一小格的

边长 L= 30
 

mm,从而得到二维和三维位移之间变换的尺

度因子 k 的值。

k = L
l

(10)

由于标志物正对相机,可以认为标志物表面与相机

画面处于同一平面,标志物水平方向即为图像坐标系中

x 轴方向,竖直方向即为图像坐标系中 y 轴方向。 将尺度

因子 k 乘上 x 轴方向上的平均偏移量 X- out 和 y 轴方向上

的平均偏移量 Y- out ,最终得到标志物水平方向上以及竖

直方向上的实际位移,从而间接得到相邻两个时刻边坡

在标志物水平及竖直方向的沉降位移监测结果,将所有

时刻位移监测结果累加,可以得到从初始时刻开始的累

计位移监测结果,最终实现高精度的高速公路边坡沉降

位移监测。

3　 实验验证

3. 1　 关键点检测精度实验

　 　 本实验旨在验证本研究提出的改进
 

YOLOv8n-Pose
 

标志物关键点检测方法的有效性,并通过与其他关键点

检测算法的对比,全面评估本研究方法的性能优势。
1)数据集

本研究通过采集边坡现场安装标志物后实际拍摄样

本组成数据集。 该数据集由 600 个样本实例组成,按照

8 ∶ 1 ∶ 1 的比例随机分为训练集( 480 张图像)、验证

集(60 图像)和测试集(60 张图像),再通过高斯模糊,镜
像等数据增强技术,最终扩展到 4

 

800 个训练样本、
600 个验证样本和

 

600 个测试样本,部分代表性样本如

图 7 所示。
2)训练环境以及参数设置

本研究模型的训练及测试均在同一台计算机上进

图 7　 样本实例

Fig. 7　 Sample
 

example

行,训练迭代次数设为 500,批量大小设为 8,初始学习率

设置 0. 01,主要训练环境配置如表 1 所示。

表 1　 训练环境配置

Table
 

1　 Configuration
 

of
 

the
 

training
 

environment
硬件配置 参数

CPU 12th
 

Gen
 

Intel(R)
 

Core(TM)
 

i9-12900H
GPU GeForce

 

RTX
 

3060
 

Ti
操作系统 Windows

 

11 专业版

开发环境 Python
 

3. 11. 9
 

Pytorch
 

2. 3
 

cuda
 

11. 8

　 　 3)评估指标

为了 评 估 标 志 物 识 别 的 准 确 性, 采 用 精 确

度(precision,P)、召回率( recall,R) 作为性能指标,为了

评估标志物关键点检测的准确性,采用目标关键点相似

度 ( object
 

keypoint
 

similarity, OKS ) 计 算 出 平 均 精

度(average
 

precision,AP),再通过 AP 得到mAP 作为评价

指标,定义为:

P = TP
TP + FP

× 100% (11)

R = TP
TP + FN

× 100% (12)

OKS =
∑

i
exp{ - d2

pi / 2S
2
pσ

2
i }δ(vpi > 0)

∑
i
δ(vpi > 0)

(13)

δ =
= 1(vpi > 0)
= 0(vpi ≤ 0){

AP =
∑

m
∑

p
β(OKSP > T)

∑
m

∑
p

1
(14)

β =
OKS(OKS > T)
0(OKS ≤ T){

其中,TP 表示准确预测目标对象样本数量,而 FN
表示模型未检测到目标对象样本的数量,FP 表示模型误

识别的实例数。 dpi 表示预测第 i 个关键点与真实关键点

的欧拉距离; Sp 表示标志物 p 点的尺度因子; vpi 表示关

键点可见性,关键点的可见性可以分为 3 种情况:0 表示

未标注,1 表示标注被遮挡,2 表示标注并可见; σ i 表示

关键点的归一化因子。
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4)对比实验

本 研 究 使 用 YOLOv5n-Pose、 YOLOv7n-Pose 和

YOLOv8n-Pose 模型作为对照组与改进的 YOLOv8n-Pose
模型进行比较,实验结果如表 2 所示,从 YOLOv5n-Pose
到 YOLOv8n-Pose,模型在准确率、召回率和 mAP 方面均

有显著提高,同时 FPS 也逐步增加,验证了模型在性能与

速度上的优化,因此,YOLOv8n-Pose 被选为基线模型。
改进的 YOLOv8n-Pose 在所有性能指标上表现优异,与基

线相比,准确率提升 4. 33%,召回率提升 3. 82%,mAP 提

升 7. 78%,进一步增强了关键点检测性能。 尽管帧率下

降了 3. 6%,仍保持较高水平,表明改进模型在提升性能

的同时基本维持了实时性。

表 2　 不同模型的关键点检测效果

Table
 

2　 Effectiveness
 

of
 

keypoint
detection

 

with
 

different
 

models
模型 P / % R / % mAP / % 帧率 / FPS

YOLOv5n-Pose 83. 74 74. 53 78. 25 183
YOLOv7n-Pose 88. 16 80. 71 83. 27 204
YOLOv8n-Pose 93. 54 91. 62 89. 43 221

改进的 YOLOv8-Pose 97. 87 95. 44 97. 21 213

　 　 如图 8 所示,所有模型均成功检测到图像中的棋盘

格标志物,但预测效果存在差异。 YOLOv5n-Pose 在关键

点预测时偏移较大,甚至出现误识别;YOLOv7n-Pose 能

够预测大部分关键点,但部分位置与实际偏差明显;
YOLOv8n-Pose 预测效果优于 YOLOv7n-Pose,但仍有少

数关键点不够精确。 改进的 YOLOv8n-Pose 则表现最佳,
不仅准确预测了关键点位置,且置信度更高,性能更加

优异。

图 8　 不同模型关键点预测结果

Fig. 8　 Prediction
 

results
 

of
 

key
 

points
 

of
 

different
 

models

3. 2　 边坡位移监测实验

　 　 为验证本研究提到的高速公路边坡位移测量方法在

实际应用中的可行性与准确性,依托贵州剑榕高速公路

某边坡作为实验地点,根据本研究提出的高速公路边坡

位移测量方案设计实验并部署相关设备。 根据实验要

求,主要采用设备包括视觉摄像机、标志物若干、数据采

集卡、便携式计算机等硬件设备,现场布置如图 9 所示。

图 9　 现场部署

Fig. 9　 Site
 

deployment
 

diagram

本研究选择现场 10 个标志物作为监测对象,按照上

述算法流程进行实验,以其中一个标志物为例,在某一个

监测时刻其实验过程如图 10 所示。

图 10　 实验过程

Fig. 10　 Site
 

deployment
 

diagram

相机采集的原始图像先通过改进的 YOLOv8-Pose 算

法识别图像中标志物关键点,再通过亚像素提取得到关

键点亚像素坐标。 标志物经过关键点检测以及亚像素提

取后可以得到每个关键点的亚像素坐标,如表 3 所示。

表 3　 标志物关键点亚像素坐标

Table
 

3　 Subpixel
 

coordinates
 

of
 

key
 

points
 

of
 

markers

编号 x y
1 458. 787 445. 332
2 484. 376 449. 700

 

3 509. 521 453. 766
4 534. 729 458. 125
5 455. 106 471. 262
6 480. 502 475. 098
7 505. 749 479. 717
8 531. 416 483. 854
9 451. 366 496. 676
10 476. 824 500. 984
11 501. 981 505. 142
12 527. 500 509. 431
13 447. 649 522. 011
14 473. 051 526. 446
15 498. 512 530. 737
16 523. 689 535. 069
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　 　 接着根据上述算法流程中位移求解方法可得到该标

志物当前时刻与上一时刻的位移变化以及从当前时刻到

初始时刻标志物水平及竖直方向的累计位移监测结果,
现场 10 个标志物的累计位移结果如表 4 所示,标志物竖

直向下位移为正,水平向边坡外侧位移为正。

表 4　 现场某一时刻累计位移监测结果

Table
 

4　 Cumulative
 

displacement
 

monitoring
 

results
at

 

a
 

given
 

point
 

in
 

time
 

on
 

site

监测点

编号

本研究方法监测 全站仪监测
水平累计

位移 /
mm

竖直累计

位移 /
mm

x 轴方向

位移 /
mm

y 轴方向

位移 /
mm

1 0. 01 -0. 03 0. 00 0. 00
2 -0. 12 -0. 02 -0. 10 0. 00
3 -0. 48 1. 04 -0. 50 1. 00
4 0. 17 0. 14 0. 20 0. 10
5 0. 23 0. 32 0. 20 0. 30
6 -0. 42 1. 13 -0. 40 1. 10
7 -0. 54 1. 24 -0. 5 1. 20
8 -0. 02 0. 08 0. 00 0. 10
9 0. 29 0. 05 0. 3 0. 00

10 0. 12 0. 03 0. 10 0. 00

　 　 并通过全站仪测量结果对本研究方法的监测结果进

行验证,设定全站仪测量 x 轴为标志物水平方向,y 轴为

标志物竖直方向,正方向与本研究方法监测结果一致,本
文方法与全站仪监测数据对比如图 11 所示。

图 11　 测量数据与全站仪数据对比

Fig. 11　 Comparison
 

of
 

measured
 

data
 

with
 

total
 

station
 

data

可以发现本研究方法监测结果与全站仪监测结果虽

然存在一定的误差,但基本一致。 进一步对本研究所测

得的标志物位移变化量与全站仪测得的标志物位移变化

量误差进行分析,结果如图 12 所示。
根据两种监测方式的测量结果计算出每个标志物所

图 12　 测量数据与全站仪数据误差分析

Fig. 12　 Error
 

analysis
 

of
 

measurement
 

data
 

and
total

 

station
 

data

在监测点水平和竖直累计位移的绝对误差,并计算水平

和竖直方向平均绝对误差(MAE) 以及本研究监测方法

相对于全站仪监测的准确率,MAE 定义为:

MAE = 1
n ∑

n

i = 1
| μ - | (15)

式中: n 表示标志物总数; μ 表示每个标志物所在监测点

本研究方法的监测数据; 表示每个标志物所在监测点

全站仪监测数据。 准确率 APdirection 公式为:

APdirection = (1 - MAE
MAE total

) × 100 (16)

其中, MAE total =
1
n ∑

n

i = 1
| | ,表示全站仪的误差,以

其基准值的绝对值为衡量标准。 如上图所示,最大绝对

误差为 0. 05,水平 MAE 和竖直 MAE 都很小,水平准确率

为 90. 43%,竖直准确率为 91. 58%,均达到 90%以上,表
明本研究监测方法具备较高的精度,能够充分满足边坡

监测对精度的要求。

4　 结　 论

　 　 本研究提出了一种低成本、高精度的边坡位移视觉

测量装置及方法,通过部署高精度摄像机和特制标志物,
结合改进的 YOLOv8-Pose 算法与亚像素提取技术,实现

对边坡位移的精确监测。 该方法能够在复杂环境中以低

成本获取高精度的监测数据,充分满足工程实践对于边

坡安全评估的需求。 本研究针对标志物关键点检测进行

优化,通过改进 YOLOv8-Pose 算法提高关键点检测准确

性和效率。 并利用亚像素提取技术,进一步提升了关键

点坐标识别的精度,使得位移计算更为准确。 在未来的

研究中,可进一步提升算法在动态环境中的适应能力,增
强系统的实时数据处理能力,并探讨与其他传感器技术

的融合方案,从而实现多模态位移监测。 同时,扩大实验

范围,在多种复杂边坡条件下进行验证,提升方法的普

适性。
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