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摘　 要:随着智能安防系统的不断升级,面向全天候监控实现行人检索成为了相关领域热点之一,可见光-红外跨模态行人重识

别的研究应运而生。 该研究面临的主要挑战是同一行人在不同模态的图像间展现出巨大的差异。 现有方法通过探索不同模态

之间共享信息,来减少同一行人在两种模态下的特征差异。 为了进一步提升跨模态行人重识别的准确率,提出了一种多粒度共

享-解离相关网络,通过共享-解离模块的嵌入,对主干网络中参数共享分支进行复制和分解,打破了原有基准模型在多粒度特

征提取上的局限;通过多粒度相关特征学习模块的设计,充分挖掘了行人跨模态不变的身体结构关联信息,优化了全局-局部特

征的对齐方案;通过多层次的损失函数构建,为模型的训练提供了有效的监督,提升了模型的判别力和鲁棒性。 该算法在公开

数据集 SYSU-MM01 和 RegDB 上均获得优秀的性能,其中,SYSU-MM01 全搜索模式下 Rank-1 和平均精度均值( mAP)分别达到

74. 70%和 71. 79%;在 RegDB 的两种检索模式下,Rank-1 和 mAP 均高于 90%,准确率优于多种先进方法。 实验显示该网络在

跨模态特征对齐和复杂场景适应性方面具有一定优势。
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Abstract:
 

With
 

the
 

continuous
 

development
 

of
 

intelligent
 

security
 

systems,
 

pedestrian
 

retrieval
 

for
 

all-day
 

surveillance
 

has
 

become
 

one
 

of
 

the
 

research
 

hotspots.
 

Thus,
 

the
 

research
 

of
 

visible-infrared
 

cross-modality
 

person
 

re-identification
 

has
 

emerged.
 

The
 

main
 

challenge
 

faced
 

in
 

this
 

task
 

is
 

the
 

huge
 

discrepancy
 

between
 

visible
 

and
 

infrared
 

images
 

of
 

the
 

same
 

pedestrian.
 

Existing
 

methods
 

focus
 

on
 

exploring
 

the
 

shared
 

information
 

and
 

reducing
 

the
 

feature
 

variances
 

of
 

the
 

same
 

pedestrian
 

in
 

the
 

two
 

modalities.
 

To
 

further
 

improve
 

the
 

accuracy
 

of
 

the
 

task,
 

this
 

paper
 

proposes
 

multi-granularity
 

shared-disentangling
 

relation
 

network
 

for
 

re-identification.
 

By
 

embedding
 

the
 

shared-disentangling
 

module,
 

the
 

parameter-sharing
 

branch
 

of
 

the
 

backbone
 

is
 

replicated
 

and
 

decomposed,
 

thus
 

breaking
 

limitations
 

of
 

the
 

original
 

benchmark
 

model
 

in
 

multi-granularity
 

feature
 

extraction.
 

By
 

designing
 

the
 

multi-granularity
 

relation
 

feature
 

learning
 

module,
 

the
 

modality-invariant
 

correlation
 

information
 

of
 

the
 

pedestrian
 

body
 

is
 

fully
 

explored,
 

enhancing
 

the
 

learning
 

of
 

the
 

shared
 

features.
 

And
 

through
 

constructing
 

a
 

loss
 

function
 

in
 

multiple
 

levels,
 

effective
 

supervision
 

is
 

available
 

for
 

the
 

training
 

of
 

the
 

model,
 

and
 

the
 

global-local
 

feature
 

alignment
 

scheme
 

is
 

optimized.
 

The
 

proposed
 

algorithm
 

obtains
 

superior
 

performance
 

on
 

both
 

public
 

datasets
 

named
 

SYSU-MM01
 

and
 

RegDB.
 

The
 

Rank-1
 

and
 

mAP
 

in
 

All-search
 

mode
 

on
 

the
 

SYSU-MM01
 

dataset
 

can
 

reach
 

74. 70%
 

and
 

71. 79%
 

respectively.
 

In
 

both
 

retrieval
 

modes
 

of
 

RegDB,
 

Rank-1
 

and
 

mAP
 

are
 

higher
 

than
 

90%,
 

and
 

the
 

accuracy
 

is
 

superior
 

to
 

many
 

state-of-the-art
 

methods.
 

Experiments
 

demonstrate
 

the
 

advantages
 

of
 

this
 

network
 

in
 

cross-modality
 

feature
 

alignment
 

and
 

complex
 

scene
 

adaptation.
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relation
 

network
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0　 引　 言

　 　 视频监控的快速普及促进着视频、图像识别与分析

技术 的 蓬 勃 发 展。 其 中, 行 人 重 识 别 ( person
 

re-
identification,

 

Re-ID)作为一项关键目标于 2006 年被提

了出来,近些年来受到了学术界的广泛关注。 Re-ID 旨

在视域不重叠的摄像头下识别同一行人,实现行人跨镜

头追踪。 传统 Re-ID 聚焦在可见光域的行人检索,即

RGB 图像之间的检索问题。 然而刑事案件、交通事故等

情形常高发于夜晚等一些光线不足的环境,这时可见光

监控摄像机几乎无法发挥作用。 幸运的是现在大多数监

控摄像机都可以在夜间捕获红外(IR)图像,实现 24
 

h 监

控。 因此,研究可见光域与红外域间的行人跨模态检索

是实现智能安防的重要一环,对公共安全、刑事侦查等方

面都有着非常重要的现实意义,可见光-红外跨模态行人

重识别(visible-infrared
 

person
 

re-identification,
 

VI
 

Re-ID)
应运而生[1-2] 。

行人重识别研究面临着视角与姿态变化、复杂背景

以及遮挡等问题。 然而,困扰跨模态任务的不仅仅是模

态内差异。 在 VI
 

Re-ID 中,由于成像原理不同,IR 图像

相较于 RGB 图像缺少着重要的颜色信息,两个模态之间

存在着巨大差异,这种差异被称之为跨模态差异。 综上

所述,在 VI
 

Re-ID 的研究中除了解决单模态研究所遇到

的问题外,探索两域之间的模态不变的共享信息,减少同

一行人在两种模态下的特征差异,构建两者之间联系的

桥梁,是该研究所面临的主要挑战。 现有的 VI
 

Re-ID 研

究可以划分为 3 大类,分别是基于表征学习的研究、基于

距离度量损失的研究以及基于中间模态辅助的研究,其
目的都在于减小同一行人在不同模态下的差异并增大不

同行人之间的距离。
1)基于表征学习的研究。 通过共享特征学习将不同

模态的特征映射到相同的特征空间,从而减小同一行人

不同模态情形下的特征差异。 该任务最常用的网络框架

是双流网络模型[3-7] 。 其中,文献[6]提出了第一个大规

模跨模态行人重识别数据集 SYSU-MM01,为其后的研究

奠定了数据层面的基础。 双流网络模型通常是将 RGB
图像和 IR 图像输入到单独的分支,分别学习行人在每个

模态内特有的特征,再通过特征嵌入将不同模态的特征

映射到同一特征空间。 文献 [ 7] 首次将生成对抗网

络(generative
 

adversarial
 

network,
 

GAN)应用到 VI
 

Re-ID
中,提出跨模态生成对抗网络( cross-modality

 

generative
 

adversarial
 

network,
 

cmGAN),先利用生成器学习不同模

态的特有特征,再采用判别器判断特征属于哪个类别,通
过训练这两个目标不同的网络,实现跨模态共享特征的

学习。 文献[8-9]提出了双流参数共享网络,探索了双流

网络在以 ResNet50 为主干网络的跨模态任务中需要共

享多少参数以实现最好的识别结果。 通过双流 ResNet50
部分阶段的参数共享,将可见光域和红外域图像映射到

共享空间,为后续的研究提供了基准。 文献[10]通过全

局-局部特征提取模块的设计,学习更具判别力的行人特

征表达。 事实上,在 VI
 

Re-ID 任务中,全局-局部特征学

习一直是一个关键研究点[5,11-13] ,且近些年来多粒度特征

表达构建研究也受到广泛关注[14-15] 。 但现有的算法多为

单模态算法的扩展,在跨模态任务上的表现受限于双流

网络模型对共享特征的学习能力。
2)基于度量损失函数的研究。 在跨模态行人重识别

任务中,损失函数不断拉近模态内与交叉模态下的同一

行人特征距离[3-4,16-19] ,使得同一身份行人可以分类到同

一类别中。 文献[4] 提出了异质中心损失,首先计算不

同每个类别下不同模态的中心向量,再通过减小同一类

别不同中心向量之间的距离来减小模态差异,提升 VI
 

Re-ID 的准确率。 文献[8]提出了异质中心三元组损失,
将传统三元组损失中点与其他所有样本之间距离的比较

替换为锚点与所有中心向量之间距离的比较。 除此之

外,文献[18] 将困难三元组损失引入到跨模态任务中,
同时考虑了全局、模态内和模态间的三元组损失。 上述

这些针对跨模态任务的度量学习损失函数都是在中心损

失的基础上设计的,并在公开数据集上展现了优秀的

性能。
3)基于中间模态生成的研究。 GAN 在跨模态行人

重识别中常用来实现可见光图像和红外图像的相互转

换[20-22] 。 然而多数基于 GAN 的方法准确率并不高。 这

是因为跨模态的行人图像并不是成对出现的,图像的转

换可能存在不同的合成结果,网络很难判断所生成的伪

样本是否为正确的目标图像。 最为关键的是基于 GAN
的模态转换可能会破坏原有的行人结构。 因而更多的研

究倾向于采用轻量级的网络或是灰度变换、通道选择等

方式来对可见光模态图像进行处理。 基于上述方案的辅

助模态生成策略通常能够有效地提升 VI
 

Re-ID 的准确

率[14,23-27] ,缺点在于多数算法会在一定程度上增大模型

计算量。
综上所述,VI

 

Re-ID 研究多是采用双流网络或是双

流参数共享网络[8] 作为基准网络来提取特征,在异质图

像共享信息的挖掘方面具有一定的局限性;在全局-局部

特征学习方面多采用的是基于部件的卷积基准方

法(part-based
 

convolutional
 

baseline,
 

PCB) [28] ,针对多粒

度特征构建,倾向于采用多尺度划分的方案,它们都忽略

了多粒度信息和行人身体结构间的相关信息在 VI
 

Re-ID
任务中发挥的重要作用;引入中间模态通常会增大计算

量。 受文献[29-30]对人体部件间相关关系探索的启发,
本文面向可见光-红外跨模态行人重识别任务提出了一
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种改进的基准网络即多粒度共享-解离相关网络,在不额

外增加计算量的基础上实现不同模态下的行人特征

对齐。
本文在双流参数共享网络框架的基础上嵌入了共

享-解离模块,通过“特有分支-共享分支-解离分支”的架

构实现对输入图像的特征学习;设计了一种多粒度相关

特征学习模块,利用行人身体部件间的相关性对于模态

间和模态内变化的鲁棒性,在粗细粒度层面充分挖掘了

行人多层次模态不变信息;设计了多粒度全局-局部损失

计算模块,通过联合异质三元组中心损失和 ID 分类损失

进一步拉近模态内和模态间同一行人特征间的距离;在
现有的大规模公开数据集 SYSU-MM01[6] 和 RegDB

 [31] 进

行了大量的消融实验和对比试验,验证了本文方法的有

效性和优越性。

1　 基于多粒度共享-解离相关网络的跨模态
行人重识别方法

1. 1　 网络结构

　 　 本文提出的网络整体框架如图 1 所示, 采用在

ImageNet 数据集上预训练的 ResNet50 作为主干网络,输
入为可见光图像集合 V = { Iivis, y

i
vis}

N
i = 1 和红外图像集合

I = { Iiinf,y
i
inf}

N
i = 1,其中 Iivis 和 Iiinf 分别表示可见光和红外图

像, y i
vis 和 y i

inf 分别表示图像中行人的 ID 标签, N 表示的

行人 ID 的总数。 从图 1 可以看出,本文模型包含了两个

核心模块,分别是共享-解离模块和多粒度相关特征学习

模块。

图 1　 本文方法总体框图

Fig. 1　 Overall
 

framework
 

of
 

the
 

proposed
 

method

　 　 双流 ResNet50 通过参数共享的全连接层将模态特

有特征映射到共享空间,这种方法忽略了行人身体结构

的空间特征。 研究表明在卷积层进行参数共享可以获得

更好的识别结果[8] 。 本文所提出的方法为了提升双流参

数共享网络在多粒度特征学习方面的有效性,在卷积层

参数共享后又进行了解离,即在网络中嵌入共享-解离模

块。 主干网络 ResNet50 模型包含 5 个卷积模块,被标识

为 5 个阶段( stage),分别是 stage1、stage2、stage3、stage4

和 stage5。 通过嵌入共享-解离模块,将双流特征学习模

型划分为:1)特有特征学习分支 stage1 ~ stagei ,用于捕

捉模态特有信息; 2 ) 共享特征学习分支 stagei +1 ~
stage j ,用于挖掘跨模态不变信息;3)解离分支 stage j +1 ~
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stage5,用于提取更具有判别力的多粒度共享信息。
多粒度相关特征学习模块替代基于 PCB 的局部特

征学习模块,囊括了从 3 等分到 6 等分再到全局的特征

表征方式,将多模态数据的多粒度信息深层次融入到共

享特征学习中,构建更具有表征性的全局-局部行人特征

表达模型。 为了更好地捕捉身体各个部件与其他部件之

间的联系,提升模型判别力和鲁棒性,本文方法在特征图

切分后采用了两个关系网络( relation
 

network) [31] 去计算

相关局部特征,替代原始只经过切分和池化操作所获得

的局部特征。 图 1 中采用 Rp(·) 和 Rq(·) 描述上述两个

关系网络。 此外,在跨模态行人重识别模型的训练过程

中构建了多粒度损失函数,优化模型的训练过程,使得训

练好的模型尽可能提取到跨模态不变的行人表征。
1. 2　 共享-解离模块

　 　 双流网络分为特征学习和特征嵌入两部分,前者采

用两个离散分支分别从红外和可见光行人图像中提取中

浅层的模态特有特征;后者通过共享主干网络部分卷积

层或全连接层,将异质特征映射到同一特征空间,挖掘出

深层模态共享信息。 事实上,从卷积层开始进行参数共

享,考虑了行人的身体结构信息,进而可以获得更多行人

跨模态不变的中级特征和空间信息。 为了获得更高判别

力的多粒度信息,共享-解离模块被引入到了双流参数共

享的 ResNet50 网络中。 该模块将共享后的卷积层再一

次进行解离。 解离操作的实质是在阶段共享后又进行了

一次复制操作,复制后的网络不再共享参数,被用来学习

两种精细度不同的局部信息。 不同于特有特征学习分

支,解离后的网络虽然不再共享参数,但仍是在两个不同

的共 享 空 间 中 学 习 模 态 不 的 特 征。 研 究 表 明, 在

ResNet50 的不同 stage 进行参数共享可产生不同的效

果[8] ,因此本文提出若在不同阶段进行共享-解离模块的

嵌入,也可以获得不同的识别效果。 共享-解离模块嵌入

方案如表 1 所示。
表 1　 共享-解离模块嵌入方案

Table
 

1　 Embedding
 

Schemes
 

of
 

the
shared-disentangling

 

module

方案
特有分支
ϕvis 和 ϕinf

共享分支
ϕs

解离分支
ϕd1 和 ϕd2

1 stage1 stage2 stage3-5

2 stage1 stage2-3 stage4-5

3 stage1 stage2-4 stage5

4 stage1-2 stage3 stage4-5

5 stage1-2 stage3-4 stage5

6 stage1-3 stage4 stage5

　 　 表 1 中, ϕvis 和 ϕinf 分别表示的是可见光图像和红外

图像特有特征学习分支, ϕs 表示的是跨模态共享特征学

习分支,而 ϕd1 和 ϕd2 表征的是经过解离后的参数不共享

分支。 对于可见光输入图像 Iivis 来说,经过有共享-剥离

模块嵌入后的网络后可以学习到两个 3D 行人特征 f i
v1 和

fiv2,定义如下:
f i
v1 = ϕd1[ϕs(ϕvis( I

i
vis))]

f i
v2 = ϕd2[ϕs(ϕvis( I

i
vis))]{ (1)

同理可得,输入的红外图像经网络处理后得到特征

f i
t1 和 f i

t2,定义如下:
f i
t1 = ϕd1[ϕs(ϕinf( I

i
inf))]

f i
t2 = ϕd2[ϕs(ϕinf( I

i
inf))]{ (2)

通过在主干网络中嵌入共享-解离模块,整个网络被

划分为 3 个部分,只有在跨模态共享特征学习分支中所

有网络参数共享。
1. 3　 多粒度相关特征学习模块

　 　 通过对 ResNet50 残差块的解离,对多粒度特征的学

习不仅是对输出特征图划分层次的不同,还存在一定的

特征差异性。 模块将 3D 特征 f i
v1、

 

f i
v2、

 

f i
t1 和 f i

t2 进行纵向

的等比切分。 为了获得多粒度的特征,第 1 个解离分支

和第 2 个解离分支输出的特征划分层次不同,即采用 3
等分切分和 6 等分切分两种方案。 不同的切分程度对细

节的表征程度不同。 数据集中的行人图片包含着背景信

息,因此采用不超过 6 等分的纵向划分方式更符合人体

的身体结构分布,且可以避免某些局部特征块中干扰信

息集中的情况出现。 针对输入图片,本模块的输出为两

个全局特征和两组局部特征。
1)在局部特征学习方面,本文受关系网络中的 One-

vs. -rest 模块启发,将人体局部块间的相关联系嵌入到局

部特征的学习过程中。 如图 2 所示, 经过关系网络

Rp(·) 和 Rq(·) 的处理,对于划分大小不同的局部块,可
以获取到两个不同粒度的相关局部特征组 ( f i1

r6 , f i2
r6 , …,

f i6
r6 ) 和( f i1

r3 , f i2
r3 , f i3

r3 )。
图 2(a)选择 6 等分分支进行分析,对于局部特征图

p1,目标是经过一个由 1 × 1 卷积、批量归一化 ( batch
 

normalization,
 

BN)以及激活函数 ReLU 共同构成的关系

网络 Rp(·) 后,可以获得局部相关特征 f i1
r6 ,其定义如下:

f i1
r6 =p1 + Rp concat p1, rp1( )( ) (3)

式中: p1 是将特征 p1 经过 1×1 卷积后得到的 1×1×512
维特征。 rp1 定义如下:

rp1 = 1
5 ∑ 6

i = 2
p i (4)

对 rp1 做相似处理,可以得到 1×1×512 维特征 rp1;
concat(·) 表示特征间的串联。 相似地,f i2

r6 ,f i3
r6 ,…,f i6

r6 也

通过上述方式学习到。 此外,由图 2 ( b) 可以观察到,
Rq(·) 具有和 Rp(·) 相同的网络结构。 通过挖掘 3 等分

支局部特征间的相互关系学习到相关特征 f i1
r3 、

 

f i2
r3 和 f i3

r3 。
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图 2　 关系网络 Rp(·) 以及关系网络 Rq(·) 的网络结构

Fig. 2　 The
 

relation
 

networks
 

Rp(·)
 

and
relation

 

network
 

Rq(·) ,
 

respectively

模块提出局部特征的学习不仅仅是依赖于当前的局

部块,还可以通过挖掘它与其余局部块间的相互关系,构
建出一种跨模态不变的局部相关表征。 该策略避免了不

同行人因局部相似所造成的识别错误问题,提升了局部

特征在跨模态情境下的判别力和鲁棒性。 鉴于在解离分

支后网络参数不再共享,且模块在解离分支后采用了两

种不同大小的切分方案,因此所获得的细粒度共享特征

从不同层次表征着行人细节信息。
2)在全局特征获取方面,对于划分后的特征图采用

广义平均池化( generalized
 

mean
 

pooling,
 

GeM)方案[32] ,
再通过串联操作对特征图拼接获得两个不同的全局特征

f i
g3 和 f i

g6。
1. 4　 整体损失

　 　 模型选择 ID 分类损失和异质中心三元组损失来监

督整个训练的过程。 经过多粒度相关特征学习模块的处

理后,模型可以学习到多种行人特征,它们表征着行人不

同层次、不同方面的信息。 因此,在损失函数的设计上,
需要平衡细粒度损失与粗粒度损失之间的关系。

行人重识别可以视为一个分类任务,ID 分类损失主

要用于监督经 FC 层预测的身份信息,实现更加准确有效

的分类:

Lossid =- 1
N ∑ N

i = 1
q i log

exi

∑ N

j
ex j( )

q i =
N - (N - 1)ξ, y = i
ξ, y ≠ i{

(5)

式中: y 表示可见光或者红外图像中行人的真实身份标

签; exi

∑ N

j
ex j

实现将原始输出 x i 转换为概率分布,表示模

型预测的第 i 个类别的概率; N 为一个训练 batch 中的总

ID 个数; ξ 为一个常数,表示分配给错误类别的概率,用
于阻碍网络模型对数据集的完全依赖,在该类实验中常

被设置为 0. 1。 针对不同的全局特征和局部特征,可以

获得不同 ID 分类损失 Lg1
id 、Lg2

id 、L l6i
id ( i = 1,2, …,6) 和

L l3i
id ( i = 1,2,3), 因此用于任务的 ID 分类损失 L id 可以表

示为:

L id = 1
4

Lg1
id + Lg2

id + 1
6 ∑ 6

i = 1
L l6i
id + 1

3 ∑ 3

i = 1
L l3i
id( )

(6)
式中: Lg1

id 和 Lg2
id 是全局特征产生的分类损失; L l6i

id 和 L l3i
id 分

别是 6 等分和 3 等分后每个局部特征产生的分类损失。
仅仅依赖于 ID 分类损失并不能有效地解决跨模态场景

所带来的困难和挑战。 本文方法将异质中心三元组损失

与 ID 分类损失联合起来,引入同类模态和异类模态的中

心来限制特征的分布。 对于可见光模态和红外模态,首
先计算每个模态下的特征中心为:

cvis
i = 1

Nvis
i
∑ Nvis

i

j = 1
fvis,i,j (7)

c inf
i = 1

N inf
i

∑ Ninf
i

j = 1
finf,i,j (8)

式中: i 表示身份 ID 的类别; cvis
i

 和 c inf
i 分别表示可见光

和红外模态下的特征中心; fvis,i,j 示可见光模态下第
 

i
 

类

样本中的第
 

j 个特征; finf,i,j 类似; Nvis
i 和 N inf

i 分别表示可

见光和红外模态下第
 

i
 

类的样本数量。 异质中心三元组

表示如下:

L i
hc_tri = ∑

P

j = 1
[ρ + ‖cvis

i - c inf
i ‖2 - min

n∈{vis,inf}
j≠i

‖cvis
i -

cn
j ‖2] + + [ρ + ‖c inf

i - cvis
i ‖2 - min

n∈{vis,inf}
j≠i

‖c inf
i - cn

j ‖2] +

(9)
式中: P 是样本数量; ρ 为边界;‖·‖

 

2表示 L2 范数;
‖cvis

i - c inf
i ‖2 和 ‖c inf

i - cvis
i ‖2 表示同一行人异质特征中

心间的距离; min
n∈{vis,inf}

j≠i

‖cvis
i - cn

j ‖2 和 min
n∈{vis,inf}

j≠i

‖c inf
i - cn

j ‖2

表示不同行人特征中心间的最小距离。 该损失可以优化

模型的训练过程,使得模型在跨模态任务中更具有判别

力和鲁棒性。 因此,用于任务的异质中心三元组分类损

失可以表示为:
Lhctri

=
1
4

(Lg1
hctri

+ Lg2
hctri

+ 1
6 ∑ 6

i = 1
L l6i
hc_tri + 1

3 ∑ 3

i = 1
L l3i
hc_tri) (10)

式中: Lg1
hc_tri 和 Lg2

hc_tri 是全局特征产生的分类损失; L l6i
hc_tri 和
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L l3i
hc_tri 分别是 6 等分和 3 等分后每个局部特征产生的损

失。 因此,用于监督网络训练的整体损失 L total 为:
L total = L id + αLhctri

(11)
式中: α 是用来平衡两种不同特征的参数。 经过广泛的

实验,对于 SYSU-MM01[6] 和 RegDB[31] 数据集, α 均设置

为 2。

2　 实验结果与分析

2. 1　 数据集和评价标准

　 　 本文方法在公开数据集上进行了实验, 分别是

SYSU-MM01[6] 和 RegDB[31] 。
SYSU-MM01[6] 是一个大规模的可见光-红外行人数

据集,主要由 6 个分布在室内和室外的摄像机采集整理

所得,包括 4 个可见光摄像机和 2 个红外摄像机。 数据

集已经划分出训练集和测试集,其中训练集包含 395 个

行人 ID,共计 22
 

258 张可见光图像和 11
 

909 张红外图

像;测试集包含 96 个行人 ID,提供了 3
 

803 张用于查询

的红外图像和 301 张随机选择的可见图像。 SYSU-MM01
涉及到拍摄环境的改变,行人的姿态、穿着等都发生了变

化,是一个非常具有挑战性的数据集。
RegDB[31] 是另外一个广泛使用的跨模态数据集,由

一个可见光摄像机和一个热红外摄像机共同拍摄完成。
数据集包含 412 个行人 ID,每个 ID 下有 10 张可见图像

和 10 张热红外图像。 数据集被随机划分成两个部分,
206 个行人 ID 所包含的图像用于训练, 另一半用于

测试。
为了更好描述模型的性能, 采用了累积匹配特

征(CMC)中的 Rank-k ( k = 1,5,10,20) 和平均精度均

值(mAP)作为评价指标。 Rank-k 衡量了检索的前 k 个

结果中出现相同 ID 的行人图像的概率;mAP 用于衡量

方法的平均检索性能,在查询集中存在多个匹配图像的

情况下尤为重要。
2. 2　 实验设置

　 　 本文所有实验均在深度学习框架 PyTorch 下完成,
基本环境配置如表 2 所示。

表 2　 实验环境设置

Table
 

2　 Experimental
 

environment
 

settings
环境 版本

操作系统 Linux
 

Mint
 

20. 3
GPU A800

Pytorch 版本 1. 10. 2
CUDA 12. 2

　 　 算法采用经过 ImageNet 预训练的 ResNet50 作为骨

干网络。 为了捕获更多特征细节,在训练过程中将最后

的卷积块步幅从 2 调整为 1,实现更好的细节捕捉。 训练

阶段,输入图像大小设置统一为 288×144,并在图像周围

进行 10
 

pixels 的零填充。 为了增加训练数据的多样性,
训练时采用了随机左右翻转图片的方法,并将其裁剪到

指定的大小,这样的数据增强策略有助于提高模型的泛

化能力和稳定性。 在网络优化器的选择方面,采用了随

机梯度下降(SGD)优化器,动量参数设置为 0. 9,并初始

化学习率为 0. 1。 此外,实验采用了热身学习率策略,进
而引导网络更快地收敛并获得更高的性能。
2. 3　 消融实验

　 　 1)共享-解离模块的有效性

共享-解离模块通过对共享卷积层的剥离,并复制成

两个不再共享参数的卷积操作,实现两种不同精细度局

部信息的学习。 共享-解离模块的嵌入方案如表 1 所示。
实验主要是为了探究在两个公开数据集 SYSU-MM01 和

RegDB 上采取何种嵌入方案获得最好的结果,并验证模

块相较于双流参数共享网络更为有效,实验结果如图 3 ~
5 所示。

如图 3 和 4 所示,对比 6 种共享-解离模块嵌入方案

可以得出, 在 SYSU-MM01 数据集上, 对主干网络的

stage3 进行参数共享,并在 stage4 处进行复制, stage4 ~
stage5 继续采用双流结构可以取得最好的结果(即采用

方案
 

④), 其中 Rank-1 和 mAP 可以达到 74. 70% 和

71. 79%;在 RegDB 数据集上,综合两种检索模式可以得

到 stage2 ~ stage3 采用共享参数, stage4 ~ stage5 采用双

流结构可以获得更好的结果(即采用方案
 

②)。
为了进一步验证本模块的有效性,将两个数据集上

的结果与双流参数共享网络的结果进行了对比。 如图 3
所示,当 shared= 2 时,即 stage1 ~ stage2 为特有特征提取

分支,而 stage3 ~ stage5 为共享特征学习分支时,Rank-1
和 mAP 在 SYSU-MM01 上取得了最高的准确率。 共享-
解离模块嵌入的最佳表现与之相比,在这两个指标上分

别有着 1. 55%和 3. 11%的性能优势。 从平均值来说,模
块嵌入后 6 种方案的平均 Rank-1 和 mAP 分 别 是

73. 23%和 69. 99%,相较于未嵌入该模块的平均结果

72. 61% 和 68. 54% 来说, 也有一定程 度 的 提 升。 在

RegDB 上的比较结果如图 5 所示,可以得到相似的结论。
特别是在红外到可见光检索模式下,模块嵌入后准确率

得到了显著的提升。
2)多粒度相关特征学习模块的有效性

多粒度相关特征模块通过关系网络来捕捉身体各个

部分与其他部分之间的联系,进一步实现跨模态下的全

局-局部特征对齐。 通过一组实验来验证其有效性,实验

结果如表 3 所示。 表 3 中共享-解离模块均以最佳方案

嵌入,若不采用 3 等分或 6 等分的局部特征,则将局部特
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图 3　 全搜索模式 SYSU-MM01 采用不同共享-解离模块嵌入方案和仅采用参数共享方案的 Rank-1 和 mAP 准确率对比

Fig. 3　 Comparison
 

of
 

Rank-1
 

and
 

mAP
 

with
 

different
 

shared-disentangling
 

module
 

embedding
 

schemes
 

and
 

parameter
 

sharing-only
 

scheme
 

for
 

SYSU-MM01
 

in
 

the
 

all-search
 

mode

图 4　 两种模式下 RegDB 上执行不同共享-解离模块嵌入

方案的 Rank-1 和 mAP 准确率对比

Fig. 4　 Illustrates
 

the
 

results
 

of
 

Rank-1
 

and
 

mAP
 

with
 

different
shared-disentangling

 

embedding
 

schemes
in

 

RegDB
 

of
 

the
 

two
 

modes

征部分损失权重设置为 0,全局特征仍是由局部特征串

联获得。

图 5　 两种模式下 RegDB 上执行最优共享-解离模块嵌入

方案和仅采用参数共享方案的 Rank-1 和 mAP 对比

Fig. 5　 Illustrates
 

the
 

results
 

of
 

Rank-1
 

and
 

mAP
 

performing
the

 

optimal
 

share-disentangling
 

embedding
 

scheme
 

and
 

the
parameter

 

sharing-only
 

scheme
 

in
 

RegDB
 

of
 

two
 

modes

从表 3 可以观察到,若仅学习两个全局特征(即组合

1),Rank-1 和 mAP 分别是 64. 77%和 61. 48%;组合 2 和

组合 3 相较于组合 1 来说,加入了不同粒度的局部特征,
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准确率获得了一定的提升。 组合 4 相较于组合 2,在特征

学习阶段增加了一个关系网络 1,因此 Rank-1 和 mAP 分

别提升 1. 60%和 1. 82%。 相似的,组合 5 相较于组合 3
准确率也有了显著的提升。 这些结果都验证了引入两个

粒度的局部相关特征的有效性。 此外,本文方法和组合

6 进行对比,区别在于是否采用学习两个全局特征表达。
从准确率可以看出,本文方法 Rank-1 和 mAP 均显著高

于组合 6,因此可以验证全局相关特征在可见光-红外跨

模态任务中的有效性。

表 3　 多粒度相关特征学习模块在 SYSU-MM01 数据集上的准确率

Table
 

3　 Effectiveness
 

of
 

the
 

multi-granularity
 

relation
 

feature
 

learning
 

module
 

in
 

SYSU-MM01 (%)
方法 3 等分 6 等分 全局 关系网络 1 关系网络 2 Rank-1 mAP
组合 1 √ 64. 77 61. 48
组合 2 √ √ 66. 96 64. 02
组合 3 √ √ 67. 53 64. 72
组合 4 √ √ √ 68. 56 65. 84
组合 5 √ √ √ 70. 12 67. 56
组合 6 √ √ √ √ 72. 08 69. 10
本文 √ √ √ √ √ 74. 70 71. 79

2. 4　 与其他方法进行比较

　 　 本文提出的算法与经典的以及先进的跨模态行人重

识别方法在两个公开数据集上进行结果的比较,结果如

表 4 和 5 所示。
1)SYSU-MM01 数据集上结果

SYSU-MM01 数 据 集 上 分 别 进 行 了 全 搜 索 ( all-
search)和室内搜索(indoor-search)搜索下的实验,与现有

先进算法和经典算法对比结果如表 4 所示。 从表 4 可以

看出,本文算法在两种模式下 Rank-1 和 mAP 均获得了

最高的准确率。 其中,在全搜索模式下,本文算法 Rank-1
和 mAP 分别达到了 74. 70%和 71. 79%;在室内搜索模式

下,分别达到了 79. 67%和 83. 58%。 相较于经典的双流

参数不共享网络如 Zero-padding、AGW、HC 等方法,本文

算法准确率有了显著提升。 HcTri 提出了参数共享的双

流网络和异质中心三元组损失,但本方法在 HcTri 的基

础上增加了共享-解离模块,并提取了局部特征间的关系

信息,因此实现了准确率的提升。
PSFLNet 采用了参数共享的双流网络作为框架,并

且考虑了多粒度特征。 本文方法在两种搜索模式下,
Rank-1 和 mAP 相较于它有一定程度的提升,分别是

0. 70%、1. 28%、0. 17%和 1. 48%,但 Rank-10 和 Rank-20
均低于 PSFLNet。 不仅如此, CAJ、 AGMNet 等方法的

Rank-10 和 Rank-20 指标都高于本文算法。 这可能是因

为上述这些方法均采用了中间模态生成策略来提升准确

率。 当对输入的可见光图像进行灰度化处理后,本文方

法的所有指标都获得了显著提升。

表 4　 SYSU-MM01 数据集上的实验结果对比
Table

 

4　 Comparison
 

of
 

our
 

method
 

and
 

state-of-the-art
 

methods
 

on
 

SYSU-MM01 (%)

检索模式
All-search Indoor-search

Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP
Zero-padding[6] 14. 80 47. 99 65. 50 12. 85 15. 60 61. 18 81. 02 21. 49

eBDTR[3] 27. 82 67. 34 81. 34 28. 42 32. 46 77. 42 89. 62 42. 46
cmGAN[7] 26. 97 67. 51 80. 56 31. 49 31. 63 77. 23 89. 18 42. 19
D2 RL[20] 28. 90 70. 60 82. 40 29. 20 28. 12 70. 23 83. 67 29. 01

AlignGAN[21] 42. 40 85. 00 93. 70 40. 70 45. 90 87. 60 94. 40 54. 30
AGW[1] 47. 50 84. 39 92. 14 47. 65 54. 17 91. 14 95. 98 62. 97
HAT[23] 55. 29 92. 14 97. 36 53. 89 62. 10 95. 75 99. 20 69. 37
HC[4] 56. 96 91. 50 96. 82 54. 95 59. 74 92. 07 96. 22 64. 91

MCLNet[19] 65. 40 93. 33 97. 14 61. 98 72. 56 96. 98 99. 20 78. 30
HcTri[8] 61. 68

 

93. 10 97. 17 57. 51 63. 41 91. 69 95. 28 68. 17
SFANet[24] 65. 74 92. 98 97. 05 60. 83 71. 60 96. 60 99. 45 80. 05

CAJ[25] 69. 88 95. 71 98. 46 66. 89 76. 26 97. 88 99. 49 80. 37
CAJ+[25] 71. 48 96. 23 98. 71 68. 15 78. 36 98. 36 99. 78 78. 44
CMIT[33] 70. 94 94. 93 96. 37 65. 51 73. 28 95. 20 99. 43 77. 18
CMTR[34] 65. 45 94. 47 98. 16 62. 90 71. 99 96. 37 99. 09 57. 07

AGMNet[26] 69. 63 96. 27 98. 82 66. 11 74. 68 97. 51 99. 14 78. 30
PSFLNet[15] 74. 00 96. 50 99. 00 70. 51 79. 50 97. 50 99. 24 82. 10
本文算法 74. 70 94. 06 96. 77 71. 79 79. 67 98. 41 99. 25 83. 58
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表 5　 RegDB 数据集上的实验结果对比

Table
 

5　 Comparison
 

of
 

our
 

method
 

and
 

state-of-the-art
 

methods
 

on
 

RegDB (%)

方法
Visible→infrared Infrared→visible

Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP
Zero-padding[6] 17. 75 34. 21 44. 35 18. 90 16. 63 34. 68 44. 25 17. 82

eBDTR[3] 34. 62 58. 96 68. 72 33. 46 34. 21 58. 74 68. 64 32. 49
D2 RL[20] 43. 40 66. 10 76. 30 44. 10 - - - -

AlignGAN[21] 57. 90 - - 53. 60 56. 30 - - 53. 40
AGW[1] 70. 05 86. 21 91. 55 66. 37 70. 49 87. 21 91. 84 65. 90
HAT[23] 71. 83 87. 16 92. 16 67. 56 70. 02 86. 45 91. 61 66. 30

MCLNet[19] 80. 31 92. 70 96. 03 73. 07 75. 93 90. 93 94. 59 69. 49
HcTri[8] 91. 05 97. 16 98. 57 83. 28 89. 30 96. 41 98. 16 81. 46

SFANet[24] 76. 31 91. 02 94. 27 68. 00 70. 15 85. 24 89. 27 63. 77
CAJ[25] 85. 03 95. 49 97. 54 65. 33 84. 75 95. 33 97. 51 77. 82

CAJ+[25] 85. 69 95. 45 97. 54 79. 70 84. 88 95. 66 97. 74 78. 55
CMIT[33] 88. 78 94. 76 97. 04 88. 49 84. 55 93. 72 95. 83 83. 64
CMTR[34] 88. 11 - - 81. 66 84. 92 - - 80. 79

AGMNet[26] 88. 40 95. 10 96. 94 81. 45 85. 34 94. 56 97. 48 81. 19
本文算法 92. 23 95. 78 97. 62 92. 13 90. 44 96. 21 98. 30 90. 92

　 　 2)RegDB 数据集上结果

RegDB 数据集上分别进行了可见光到红外( Visible
→infrared)和红外到可见光( Infrared→visible) 模式下的

实验,与现有先进算法和经典算法对比结果如表 5 所示。
从表 5 可以看出,在该数据集上的表现和 SYSU-MM01 相

似,两种模式下 Rank-1 和 mAP 均获得了最高的准确率。
而在可见光到红外模式下,Rank-10 和 Rank-20 略低于

HcTri;在红外到可见光模式下 Rank-10 也较 HcTri 低

0. 20%。 由于 RegDB 的数据量相较于 SYSU-MM01 更

少,且拍摄环境更为简单,因此先进算法的准确率均较

高,但是仍然可以看出本文算法在 mAP 上具有明显的

优势。

3　 结　 论

　 　 本文针对可见光-红外行人重识别任务提出了一种

基于多粒度共享-解离相关网络,为高判别力模态共享特

征的学习设计了 3 个模块。 首先,为了提升双流参数共

享网络在多粒度特征学习方面的有效性,在基准网络中

嵌入了共享-解离模块,并通过多组实验选取出最优嵌入

方案;再者,为了提高行人特征的鲁棒性,将关系网络策

略融入到全局-局部特征的构建中,从不同粒度上探索了

行人身体结构间的关联信息;最后联合 ID 分类损失和异

质中心三元组损失,通过对多粒度特征学习过程的多层

次约束,优化了模型的训练过程。 在两个公开数据集

SYSU-MM01 和 RegDB 上证明了该文算法较优秀。 后续

研究可以通过融合轻量级的辅助模态生成方法,在不过

多增加计算量的同时,进一步提升模型的准确率。

参考文献

[ 1 ]　 YE
 

M,
 

SHEN
 

J,
 

LIN
 

G,
 

et
 

al. Deep
 

learning
 

for
 

person
 

re-identification:
 

A
 

survey
 

and
 

outlook [ J ].
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2022,44
 

(6):2872-2893.
[ 2 ]　 罗浩,姜伟,范星,等. 基于深度学习的行人重识别研

究进展[J]. 自动化学报,2019,45(11):2032-2049.
LUO

 

H,
 

JIANG
 

W,
 

FAN
 

X,
 

et
 

al.
 

A
 

survey
 

on
 

deep
 

learning
 

based
 

person
 

re-identification
 

[ J ].
 

Acta
 

Automatica
 

Sinica,
 

2019,45(11):2032-2049.
[ 3 ]　 YE

 

M,
 

LAN
 

X,
 

WANG
 

Z,
 

et
 

al.
 

Bi-directional
 

center-
constrained

 

top-ranking
 

for
 

visible
 

thermal
 

person
 

re-
identification [ J ].

 

IEEE
 

Transactions
 

on
 

Information
 

Forensics
 

and
 

Security,
 

2020,
 

15:407-419.
[ 4 ]　 LIU

 

H,
 

CHENG
 

J,
 

WANG
 

W,
 

et
 

al.
 

Enhancing
 

the
 

discriminative
 

feature
 

learning
 

for
 

visible-thermal
 

cross-
modality

 

person
 

re-identification [ J].
 

Neurocomputing,
 

2020,
 

398:11-19.
[ 5 ]　 范馨月,张阔,张干,等. 细微特征增强的多级联合聚

类跨模态行人重识别算法[J]. 电子测量与仪器学报,
2024,38(3):94-103.
FAN

 

X
 

Y,
 

ZHANG
 

K,
 

ZHANG
 

G,
 

et
 

al.
 

Cross-modal
 

person
 

re-identification
 

algorithm
 

based
 

on
 

multi-level
 

join
 

clustering
 

with
 

subtle
 

feature
 

enhancement [ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2024,38(3):94-103.
[ 6 ]　 WU

 

A,
 

ZHENG
 

W,
 

YU
 

H,
 

et
 

al.
 

RGB-infrared
 

cross-
modality

 

person
 

re-identification[C].
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2017:
 

5390-5399.
[ 7 ]　 DAI

 

P,
 

JI
 

R,
 

WANG
 

H,
 

WU
 

Q,
 

et
 

al.
 

Cross-modality
 



· 10　　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

person
 

re-identification
 

with
 

generative
 

adversarial
 

training[ C].
 

International
 

Joint
 

Conference
 

on
 

Artificial
 

Intelligence,
 

2018:
 

677-683.
[ 8 ]　 LIU

 

H,
 

TAN
 

X,
 

ZHOU
 

X.
 

Parameter
 

sharing
 

exploration
 

and
 

hetero-center
 

triplet
 

loss
 

for
 

visible-thermal
 

person
 

re-identification[ J].
 

IEEE
 

Transactions
 

on
 

Multimedia,
 

2020,
 

23:4414-4425.
[ 9 ]　 KONG

 

J,
 

HE
 

Q,
 

JIANG
 

M,
 

et
 

al.
 

Dynamic
 

center
 

aggregation
 

loss
 

with
 

mixed
 

modality
 

for
 

visible-infrared
 

person
 

re-identification [ J ].
 

IEEE
 

Signal
 

Processing
 

Letters,
 

2021,
 

28:2003-2007.
[10]　 XUE

 

C,
 

DENG
 

Z,
 

WANG
 

S,
 

et
 

al.
 

GLSFF:
 

Global-
local

 

specific
 

feature
 

fusion
 

for
 

cross-modality
 

pedestrian
 

re-identification[ J].
 

Computer
 

Communications,
 

2024,
215:157-168.

[11]　 KIM
 

M,
 

KIM
 

S,
 

PARK
 

J,
 

et
 

al.
 

PartMix:
 

Regularization
 

strategy
 

to
 

learn
 

part
 

discovery
 

for
 

visible-
infrared

 

person
 

re-identification [ C].
 

2023
 

IEEE / CVF
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2023:
 

18621-18632.
[12]　 石林波,李华锋,张亚飞,等. 模态不变性特征学习和

一致性细粒度信息挖掘的跨模态行人重识别[ J]. 模
式识别与人工智能,2022,35(12):1064-1077.
SHI

 

L
 

B,
 

LI
 

H
 

F,
 

ZHANG
 

Y
 

F,
 

et
 

al.
 

Modal
 

invariance
 

feature
 

learning
 

and
 

consistent
 

fine-grained
 

information
 

mining
 

based
 

cross-modal
 

person
 

re-identification [ J ].
 

Pattern
 

Recognition
 

and
 

Artificial
 

Intelligence,
 

2022,
35(12):1064-1077.

[13]　 张勃兴,马敬奇,张寿明,
 

等. 利用全局与局部关联特

征的行人重识别方法 [ J]. 电子测量与仪器学报,
2022,36(6):205-212.
ZHANG

 

B
 

X,
 

MA
 

J
 

Q,
 

ZHANG
 

SH
 

M,
 

et
 

al.
 

Person
 

re-
identification

 

method
 

based
 

on
 

global
 

and
 

local
 

relation
 

features [ J ].
 

Journal
 

of
 

Electronic
 

Measurement
 

and
 

Instrumentation,
 

2022,36(6):205-212.
[14]　 马潇峰,程文刚. 双粒度特征融合网络的跨模态行人

再识 别 [ J ]. 中 国 图 象 图 形 学 报, 2023, 28 ( 5 ):
1422-1433.
MA

 

X
 

F,
 

CHENG
 

W
 

G.
 

Dual-grained
 

feature
 

fusion
 

network-
relevant

 

cross-modality
 

pedestrian
 

re-identification [ J ].
 

Journal
 

of
 

Image
 

and
 

Graphics,
 

2023,
 

28 ( 5 ):
1422-1433.

[15]　 CHAN
 

S,
 

DU
 

F,
 

TANG
 

T,
 

et
 

al.
 

Parameter
 

sharing
 

and
 

multi-granularity
 

feature
 

learning
 

for
 

cross-modality
 

person
 

re-identification [ J ].
 

Complex
 

Intelligence
 

System,2024,10:
 

949-962.
[16]　 YE

 

H,
 

LIU
 

H,
 

MENG
 

F,
 

et
 

al.
 

Bi-directional
 

exponential
 

angular
 

triplet
 

loss
 

for
 

RGB-infrared
 

person
 

re-identification [ J ].
 

IEEE
 

Transactions
 

on
 

Image
 

Processing,
 

2021,
 

30:1583-1595.
[17]　 KONG

 

J,
 

HE
 

Q,
 

JIANG
 

M,
 

et
 

al.
 

Dynamic
 

center
 

aggregation
 

loss
 

with
 

mixed
 

modality
 

for
 

visible-infrared
 

person
 

re-identification [ J ].
 

IEEE
 

Signal
 

Processing
 

Letters,
 

2021,
 

28:
 

2003-2007.
[18]　 李灏,

 

唐敏,
 

林建武,
 

等.
 

基于改进困难三元组损失

的跨模态行人重识别框架[ J].
 

计算机科学,
 

2020,
 

47(10):
 

180-186.
LI

 

H,
 

TANG
 

M,
 

LIN
 

J
 

W,
 

et
 

al.
 

Cross-modality
 

person
 

re-identification
 

framework
 

based
 

on
 

improved
 

hard
 

triplet
 

loss[J].
 

Computer
 

Science,
 

2020,
 

47(10):
 

180-186.
[19]　 HAO

 

X,
 

ZHAO
 

S,
 

YE
 

M,
 

et
 

al.
 

Cross-modality
 

person
 

re-identification
 

via
 

modality
 

confusion
 

and
 

center
 

aggregation[C].
 

IEEE / CVF
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2021:16383-16392.
[20]　 WANG

 

Z,
 

WANG
 

Z,
 

ZHENG
 

Y,
 

et
 

al.
 

Learning
 

to
 

reduce
 

dual-level
 

discrepancy
 

for
 

infrared-visible
 

person
 

re-identification[ C].
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision
 

and
 

Pattern
 

Recognition,
 

2019:
 

618-626.
[21]　 WANG

 

G,
 

ZHANG
 

T,
 

CHENG
 

J,
 

et
 

al.
 

RGB-infrared
 

cross-modality
 

person
 

re-identification
 

via
 

joint
 

pixel
 

and
 

feature
 

alignment[C].
 

IEEE
 

International
 

Conference
 

on
 

Computer
 

Vision,
 

2019:
 

3622-3631.
[22]　 WEI

 

Z,
 

YANG
 

X,
 

WANG
 

N,
 

et
 

al.
 

Dual-adversarial
 

representation
 

disentanglement
 

for
 

visible
 

infrared
 

person
 

re-identification[ J].
 

IEEE
 

Transactions
 

on
 

Information
 

Forensics
 

and
 

Security,
 

2024,19:
 

2186-2200.
[23]　 ZHONG

 

X,
 

LU
 

T,
 

HUANG
 

W,
 

et
 

al.
 

Grayscale
 

enhancement
 

colorization
 

network
 

for
 

visible-infrared
 

person
 

re-identification [ J ].
 

IEEE
 

Transactions
 

on
 

Circuits
 

and
 

Systems
 

for
 

Video
 

Technology,
 

2022,
 

32
 

(3):1418-1430.
[24]　 LIU

 

H,
 

MA
 

S,
 

XIA
 

D,
 

et
 

al.
 

SFANet:
 

A
 

spectrum-
aware

 

feature
 

augmentation
 

network
 

for
 

visible-infrared
 

person
 

re-identification[J].
 

IEEE
 

Transactions
 

on
 

Neural
 

Networks
 

and
 

Learning
 

Systems,
 

2023,
 

4:1958-1971.
[25]　 YE

 

M,
 

WU
 

Z,
 

CHEN
 

C,
 

et
 

al.
 

Channel
 

augmentation
 

for
 

visible-infrared
 

re-identification [ J ].
 

IEEE
 

Transactions
 

on
 

Pattern
 

Analysis
 

and
 

Machine
 

Intelligence,
 

2024,
 

46(4):
 

2299-2315.
[26]　 LIU

 

H,
 

XIA
 

D,
 

JIANG
 

W.
 

Towards
 

homogeneous
 

modality
 

learning
 

and
 

multi-granularity
 

information
 

exploration
 

for
 

visible-infrared
 

person
 

re-identification[J].
 

IEEE
 

Journal
 

of
 

Selected
 

Topics
 

in
 

Signal
 

Processing,
 

2023,17 ( 3):
 

545-559.
[27]　 YE

 

M,
 

SHEN
 

J, SHAO
 

L.
 

Visible-infrared
 

person
 

re-



　 第 10 期 多粒度共享-解离相关网络支持下的跨模态行人重识别算法 · 11　　　 ·

identification
 

via
 

homogeneous
 

augmented
 

tri-modal
 

learning[J].
 

IEEE
 

Transactions
 

on
 

Information
 

Forensics
 

and
 

Security,
 

2021,16:728-739.
[28]　 SUN

 

Y,
 

ZHENG
 

L,
 

YANG
 

Y,
 

et
 

al. Beyond
 

part
 

models:
 

Person
 

retrieval
 

with
 

refined
 

part
 

pooling
 

(and
 

a
 

strong
 

convolutional
 

baseline)[C].
 

European
 

Conference
 

on
 

Computer
 

Vision,
 

2018:
 

501-518.
[29]　 VARIOR

 

R,
 

SHUAI
 

B,
 

LU
 

J,
 

et
 

al.
 

A
 

siamese
 

long
 

short-term
 

memory
 

architecture
 

for
 

human
 

re-
identification [ C ]. European

 

Conference
 

on
 

Computer
 

Vision,
 

2016:
 

135-153.
[30]　 PARK

 

H,
 

HAM
 

B.
 

Relation
 

network
 

for
 

person
 

re-
identification [ C ].

 

AAAI
 

Conference
 

on
 

Artificial
 

Intelligence,
 

2019:
 

11839-11847.
[31]　 NGUYEN

 

D,
 

HONG
 

H,
 

KIM
 

K,.
 

Person
 

recognition
 

system
 

based
 

on
 

a
 

combination
 

of
 

body
 

images
 

from
 

visible
 

light
 

and
 

thermal
 

cameras [ J].
 

Sensors,
 

2017,
 

17(3):605.
[32]　 BERMAN

 

M,
 

HERVE
 

J,
 

VEDALDI
 

A,
 

et
 

al.
 

MultiGrain:
 

A
 

unified
 

image
 

embedding
 

for
 

classes
 

and
 

instances[J].
 

ArXiv
 

preprint
 

arXiv. 1902. 05509,
 

2019.
[33]　 FENG

 

Y,
 

YU
 

J,
 

CHEN
 

F,
 

et
 

al.
 

Visible-infrared
 

person
 

re-
identification

 

via
 

cross-modality
 

interaction
 

transformer [J].
 

IEEE
 

Transactions
 

on
 

Multimedia,
 

2023,
 

25:7647-7659.
[34]　 LIANG

 

T,
 

JIN
 

Y,
 

LIU
 

W,
 

et
 

al.
 

Cross-modality
 

transformer
 

with
 

modality
 

mining
 

for
 

visible-infrared
 

person
 

re-identification [ J ].
 

IEEE
 

Transactions
 

on
 

Multimedia,
 

2023,
 

25:8432-8444.
作者简介

　 　 宋婉茹(通信作者),2020 年于南京邮

电大学获得博士学位,现为南京邮电大学校

聘副教授、硕士生导师,主要研究方向为模

式识别及教育人工智能。
E-mail:

 

songwanru@ njupt. edu. cn
Song

 

Wanru
 

( Corresponding
 

author )
　 　 　 　

received
 

her
 

Ph. D.
 

degree
 

from
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications
 

in
 

2020.
 

Now
 

she
 

is
 

a
 

university-appointed
 

associate
 

professor
 

and
 

M. Sc.
 

supervisor
 

at
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications.
 

Her
 

main
 

research
 

interests
 

include
 

pattern
 

recognition
 

and
 

AI
 

for
 

education.
郝川艳,2015 年于澳门大学获得博士

学位,现为南京邮电大学教育科学与技术学

院副教授,主要研究方向为图像处理、模式

识别以及教育人工智能。
E-mail:

 

hcy@ njupt. edu. cn
Hao

 

Chuanyan
 

received
 

her
 

Ph. D.
 

degree
 

from
 

University
 

of
 

Macau
 

in
 

2015.
 

Now
 

she
 

is
 

an
 

associate
 

professor
 

and
 

M. Sc.
 

supervisor
 

at
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications.
 

Her
 

main
 

research
 

interests
 

include
 

image
 

processing,
 

pattern
 

recognition
 

and
 

AI
 

for
 

education.
郑洁莹,2020 年于南京邮电大学获得

博士学位,现为南京邮电大学讲师,主要研

究方向为图像处理和模式识别。
E-mail:

 

zhengjieying@ njupt. edu. cn
Zheng

 

Jieying
 

received
 

her
 

Ph. D.
 

degree
 

from
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications
 

in
 

2020.
 

Now
 

she
 

is
 

a
 

lecturer
 

at
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications.
 

Her
 

main
 

research
 

interests
 

include
 

image
 

processing
 

and
 

pattern
 

recognition.
刘峰,1997 年于南京理工大学获得博

士学位,现为南京邮电大学教育科学与技术

学院教授,主要研究方向为图像处理、模式

识别以及教育人工智能。
E-mail:

 

liuf@ njupt. edu. cn
Liu

 

Feng
 

received
 

his
 

Ph. D.
 

from
 

Nanjing
 

University
 

of
 

Science
 

and
 

Technology
 

in
 

1997.
 

Now
 

he
 

is
 

a
 

professor
 

and
 

Ph. D.
 

supervisor
 

at
 

Nanjing
 

University
 

of
 

Posts
 

and
 

Telecommunications.
 

His
 

main
 

research
 

interests
 

include
 

image
 

processing,
 

pattern
 

recognition
 

and
 

AI
 

for
 

education.


