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Multi-granularity shared-disentangling relation network for
cross-modality person re-identification
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Abstract: With the continuous development of intelligent security systems, pedestrian retrieval for all-day surveillance has become one of
the research hotspots. Thus, the research of visible-infrared cross-modality person re-identification has emerged. The main challenge
faced in this task is the huge discrepancy between visible and infrared images of the same pedestrian. Existing methods focus on
exploring the shared information and reducing the feature variances of the same pedestrian in the two modalities. To further improve the
accuracy of the task, this paper proposes multi-granularity shared-disentangling relation network for re-identification. By embedding the
shared-disentangling module, the parameter-sharing branch of the backbone is replicated and decomposed, thus breaking limitations of
the original benchmark model in multi-granularity feature extraction. By designing the multi-granularity relation feature learning module,
the modality-invariant correlation information of the pedestrian body is fully explored, enhancing the learning of the shared features. And
through constructing a loss function in multiple levels, effective supervision is available for the training of the model, and the global-local
feature alignment scheme is optimized. The proposed algorithm obtains superior performance on both public datasets named SYSU-MMO1
and RegDB. The Rank-1 and mAP in All-search mode on the SYSU-MMOI dataset can reach 74. 70% and 71. 79% respectively. In both
retrieval modes of RegDB, Rank-1 and mAP are higher than 90%, and the accuracy is superior to many state-of-the-art methods.
Experiments demonstrate the advantages of this network in cross-modality feature alignment and complex scene adaptation.
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Fig. 1 Overall framework of the proposed method
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Fig.3 Comparison of Rank-1 and mAP with different shared-disentangling module embedding schemes and parameter

sharing-only scheme for SYSU-MMOLI in the all-search mode
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Fig. 4 Illustrates the results of Rank-1 and mAP with different

shared-disentangling embedding schemes the optimal share-disentangling embedding scheme and the

in RegDB of the two modes parameter sharing-only scheme in RegDB of two modes
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Table 3 Effectiveness of the multi-granularity relation feature learning module in SYSU-MMO01 (%)
Ik 3 %) 6 543 ES] PSACE D! KR W% 2 Rank-1 mAP
HAi1 2 64.77 61.48
HE2 2 2 66. 96 64. 02
HE3 vV vV 67.53 64.72
44 VvV Vv VvV 68. 56 65. 84
HES 2 2 VvV 70. 12 67.56
HAE6 2 2 v v 72.08 69. 10
A3 v vV vV vV Vv 74.70 71.79

2.4 5EMAER#HITILE

AR SCHE A 5 A B DA R Stk i S RS AT N
T AL A BG4 S e, 25 SR
Fa M5 PR,

1) SYSU-MMO1 %#i 48 |45

SYSU-MMO1 % 85 48 I 4 5 i 47 T 2 48 & (all-
search) F1'E 18 2 (indoor-search ) R T 125 58 A
e AR A MR LA RN 4 Bk, R 4 AL
Bl AR CEEEH AT Rank-1 1 mAP #3k15 T
e UERA R, Horp e RBUR AU Rank-1
F1 mAP 235K E] T 74. 70% 1 71. 79% ; 18 % B R B
T, 9ERE T 79. 67% F1 83. 58% , FHEL T4 ML) U
SRR FLE LU Zero-padding . AGW \HC 25 ¥, AR

BORMERRA T BT, HeTn 421 T S50 =1 3
TR AN BT O = T A R AR D5 A AE HeTri 3%
Bl b3 T e A B R T R AR R ] YOG R
H L RSB T ER R AR T

PSFLNet & T 25 52 09 WU P 28 /E R HE SR, OF
HEZIET Z R B RAE, AT REM R R AT,
Rank-1 #1 mAP M T ©F —E £ E R F, 45 2
0.70% .1.28% .0. 17% F 1. 48% ,{H Rank-10 FI Rank-20
YK F PSFLNet, ASAX 1L, CAJ, AGMNet 45 J5 % Y
Rank-10 1 Rank-20 $845 48 5 F A SCRE . X 1) g2 B
Sy bR VR SR T e (RS AS AE R W R B T T A
XA AT WG EG AT K AR AL B AR SO
BT TR AR AR AT T B E T

%4 SYSU-MMO1 ##FE&%E FRLIR L& R3TLIE

Table 4 Comparison of our method and state-of-the-art methods on SYSU-MMO01 (%)

izt All-search Indoor-search
Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP
Zero-padding!®’ 14. 80 47.99 65.50 12.85 15. 60 61.18 81.02 21.49
eBDTR'? 27.82 67. 34 81.34 28. 42 32.46 77.42 89. 62 42.46
emGAN!7! 26.97 67.51 80. 56 31.49 31.63 77.23 89. 18 42.19
D?RL 28.90 70. 60 82.40 29.20 28.12 70.23 83.67 29.01
AlignGAN(2! 42.40 85.00 93.70 40.70 45.90 87. 60 94. 40 54.30
AGW!! 47.50 84.39 92. 14 47.65 54.17 91. 14 95.98 62.97
HAT!?! 55.29 92. 14 97.36 53.89 62.10 95.75 99. 20 69. 37
Hc! 56.96 91.50 96. 82 54.95 59.74 92.07 96. 22 64.91
MCLNet! %) 65. 40 93.33 97. 14 61.98 72.56 96. 98 99.20 78.30
HeTril®! 61.68 93.10 97.17 57.51 63. 41 91.69 95.28 68. 17
SFANet! 2 65. 74 92.98 97.05 60. 83 71.60 96. 60 99. 45 80. 05
CAJ»! 69. 88 95.71 98. 46 66. 89 76.26 97.88 99. 49 80. 37
CAJ+[2] 71.48 96.23 98.71 68.15 78.36 98. 36 99.78 78. 44
cMIT: ! 70. 94 94.93 96. 37 65.51 73.28 95.20 99. 43 77.18
CMTR! 65. 45 94. 47 98. 16 62.90 71.99 96. 37 99. 09 57.07
AGMNet 2] 69. 63 96. 27 98. 82 66. 11 74.68 97.51 99. 14 78.30
PSFLNet! ' 74.00 96. 50 99. 00 70. 51 79. 50 97.50 99. 24 82.10
AR SR 74.70 94. 06 96. 77 71.79 79. 67 98. 41 99.25 83.58
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Table 5 Comparison of our method and state-of-the-art methods on RegDB (%)
o Visible—infrared Infrared—visible
Rank-1 Rank-10 Rank-20 mAP Rank-1 Rank-10 Rank-20 mAP
Zero-padding®’ 17.75 34.21 44.35 18.90 16. 63 34.68 44.25 17.82
eBDTR!3! 34.62 58.96 68.72 33.46 34.21 58.74 68. 64 32.49
D2RL % 43.40 66. 10 76. 30 44.10 - - - -
AlignGAN'?! 57.90 - - 53.60 56. 30 - - 53.40
AGWH 70. 05 86.21 91.55 66. 37 70. 49 87.21 91. 84 65.90
HAT!?! 71.83 87.16 92.16 67.56 70. 02 86. 45 91.61 66. 30
MCLNet! ") 80. 31 92.70 96. 03 73.07 75.93 90.93 94. 59 69. 49
HeTril® 91. 05 97.16 98.57 83.28 89.30 96. 41 98. 16 81.46
SFANet - 76.31 91.02 94.27 68. 00 70. 15 85.24 89. 27 63.77
CAJ'>) 85.03 95.49 97. 54 65.33 84.75 95.33 97.51 77.82
CAJ+!%) 85. 69 95. 45 97.54 79.70 84. 88 95. 66 97.74 78.55
cMIT: ! 88.78 94.76 97. 04 88.49 84.55 93.72 95.83 83. 64
CMTR 88. 11 - - 81. 66 84.92 - - 80. 79
AGMNet 0] 88. 40 95.10 96. 94 81.45 85.34 94.56 97. 48 81. 19
AR 92.23 95.78 97.62 92.13 90. 44 96. 21 98. 30 90. 92
2) RegDB $u#la 4k E45 R 5 2
RegDB B SR Loy ) A 1 AT LRI LL S (Visible [ 1] YEM, SHEN J, LIN G, et al. Deep learning for person
—infrared ) FIZLAPF AT HLIE (Tnfrared —visible ) BT () re-identification; A survey and outlook [ J]. IEEE
SRS, S SeE R M R XS A R gk 5 R Transactions on Pattern  Analysis and Machine
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fol, PR R Rank-1 A mAP BI0608 T BB HOMERIR . [ 2] %, 265, AL, 5. ST V2% ) 04 AT LM F
MAE R DL Y2 20 #8455 2 F |, Rank-10 1 Rank-20 &K T FEHEREJ]. AR ,2019,45(11) :2032-2049.
HeTri; 7E21 40 2 7] BB AL T Rank-10 W5 HeTri ik LUO H, JIANG W, FAN X, et al. A survey on deep
0.20%, M T RegDB By A 38 = AH 3 T SYSU-MMO1 B learning based person re-identification [ J ]. Acta
A ELAAEE IR T B 5 D] I ot A R ) M 3R A 8K Automatica Sinica, 2019,45( 11) ;2032-2049.
B HER T DL A SRR TE mAP EEAHEH [ 3] YEM, LAN X, WANG Z, et al. Bi-directional center-
- constrained top-ranking for visible thermal person re-
identification [ J ]. IEEE Transactions on Information
3 z:!n: .L/b\ Forensics and Security, 2020, 15.407-419.
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