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基于改进 Retinex 的轻量化港口集装箱损伤检测∗
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摘　 要:为提高港口复杂堆场环境下多种类集装箱损伤检测的效率,提出一种基于改进 Retinex 的轻量化港口集装箱损伤检测

方法。 该方法主要包含图像预处理与轻量化目标检测两部分:在图像预处理阶段,引入并优化亮度通道分量,在对其应用多尺

度 Retinex 处理方法时,使用双边滤波器代替传统的高斯滤波,保留原物体的边缘细节;改进值域转换函数,减少图像数据的丢

失;通过色彩平衡策略计算得到色彩保护因子,与原始 RGB 图像每个通道的像素点相乘得到增强图像。 在目标检测阶段,将改

进注意力机制后的轻量级网络 MobileNetv3 引入到 YOLOv5 主干网络中,构建成目标检测网络,从而对港口集装箱图像进行验

证。 实验结果表明,该方法在低照度等复杂港口环境下,有助于目标检测网络提取到更丰富的特征信息,对多种集装箱损伤类

型的平均检测精度提升了 1. 4%,达到了 95. 1%,模型体积仅为 20. 5
 

MB,与多种主流检测算法相比具有显著优势,能够满足港

口集装箱的实际检测需求,证明了该方法的有效性。
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Abstract:
 

In
 

order
 

to
 

improve
 

the
 

efficiency
 

of
 

multi-class
 

container
 

damage
 

detection
 

in
 

complex
 

yard
 

environment,
 

a
 

lightweight
 

container
 

damage
 

detection
 

method
 

based
 

on
 

improved
 

RETINEX
 

is
 

proposed.
 

The
 

method
 

mainly
 

consists
 

of
 

two
 

parts,
 

image
 

preprocessing
 

and
 

lightweight
 

target
 

detection:
 

In
 

image
 

preprocessing
 

stage,
 

the
 

luminance
 

channel
 

component
 

is
 

introduced
 

and
 

optimized,
 

and
 

when
 

applying
 

the
 

multi-scale
 

Retinex
 

processing
 

method
 

to
 

it,
 

a
 

bilateral
 

filter
 

is
 

used
 

instead
 

of
 

the
 

traditional
 

Gaussian
 

filter
 

to
 

retain
 

the
 

edge
 

details
 

of
 

the
 

original
 

object;
 

the
 

value
 

domain
 

conversion
 

function
 

is
 

improved
 

to
 

reduce
 

the
 

loss
 

of
 

image
 

data;
 

and
 

a
 

color
 

protection
 

is
 

obtained
 

through
 

the
 

calculation
 

of
 

the
 

color
 

balancing
 

strategy
 

factor,
 

which
 

is
 

multiplied
 

with
 

the
 

pixel
 

points
 

of
 

each
 

channel
 

of
 

the
 

original
 

RGB
 

image
 

to
 

get
 

the
 

enhanced
 

image.
 

In
 

target
 

detection
 

stage,
 

MobileNetv3,
 

a
 

lightweight
 

network
 

with
 

improved
 

attention
 

mechanism,
 

is
 

introduced
 

into
 

the
 

YOLOv5
 

backbone
 

network
 

to
 

construct
 

a
 

text-based
 

target
 

detection
 

network,
 

so
 

as
 

to
 

validate
 

the
 

port
 

container
 

images.
 

The
 

experimental
 

results
 

show
 

that
 

the
 

method
 

helps
 

the
 

target
 

detection
 

network
 

to
 

extract
 

richer
 

feature
 

information
 

in
 

complex
 

port
 

environments
 

such
 

as
 

low
 

illumination,
 

and
 

the
 

average
 

detection
 

accuracy
 

of
 

multiple
 

container
 

damage
 

types
 

is
 

improved
 

by
 

1. 4%
 

to
 

95. 1%,
 

and
 

the
 

model
 

volume
 

is
 

only
 

20. 5
 

MB,
 

which
 

is
 

a
 

significant
 

advantage
 

compared
 

with
 

multiple
 

mainstream
 

detection
 

algorithms,
 

and
 

it
 

can
 

satisfy
 

the
 

actual
 

detection
 

needs
 

of
 

port
 

containers,
 

proving
 

the
 

effectiveness
 

of
 

the
 

method
 

in
 

this
 

paper.
Keywords:container

 

damage;
 

image
 

enhancement;
 

target
 

detection;
 

Retinex;
 

YOLOv5



·234　　 · 电
 

子
 

测
 

量
 

与
 

仪
 

器
 

学
 

报 第 39 卷

0　 引　 言

　 　 现阶段集装箱损伤检测方式主要有传统的验箱员验

箱和智能验箱两种。 其中,人工检验基于港口验箱员的

主观判断,耗费人力物力,影响港口经济发展;智能验箱

基于机器视觉和深度学习技术,人工成本投入低、识别效

率高,是推动智慧港口建设的有效力量[1] 。 而由于集装

箱特殊的钢结构表面,部分集装箱图像质量受光照、角度

等因素干扰的影响较大,在实际港口环境中,光照条件复

杂多变,既有强烈直射光导致的过曝问题,又有光线不足

引发的低照度情况;同时,不同拍摄角度还会造成损伤特

征的变形或遮挡。 例如,在背阴处的集装箱,其损伤部位

可能因光线不足难以分辨;强光直射下,表面反光强烈,
损伤特征易被掩盖。 采集到的图像对比度低、噪声大,损
伤特征模糊、细节损失严重,为港口集装箱损伤的检测带

来困难。
随着机器学习[2] 领域研究的深入发展,通过增强低

质量的集装箱损伤图像,采用并设计基于深度学习的目

标检测模型,对集装箱图像进行不同尺度损伤目标的精

确定位,并准确判断目标所属的损伤类型,可为港口企业

集装箱多种类表面损伤的检测提供参考支持。 颜承壮

等[3] 通过在多尺度 Retinex( multi
 

scale
 

Retinex,MSR) 算

法中引入亮度分量,并采用衰减函数抑制高亮区域的亮

度值增量,提升了墙体开槽机器人目标检测与定位的精

度,但过程中损失了部分图像数据;何磊等[4] 将 Retinex
模型与 Gamma 校正[5] 相结合,提出一种基于 Retinex 先

验引导的低光照图像快速增强方法,该方法在噪声平滑

方面的表现有待进一步提升;曲福恒等[6] 提出一种基于

图像增强与注意力机制的作物杂草识别方法,在多尺度

Retinex 算法中加入颜色恢复函数,替换 ResNet18 网络[7]

的激活函数,并引入卷积注意力机制模块,改进后网络的

检测精度可达到 95. 3%;苏应贤[8] 提出了基于机器视觉

的集装箱表面缺陷检测方法,结合 Retinex 算法对图像进

行增强,但能检测的集装箱损伤种类较少,模型泛化能力

不强;郭双双等[9] 针对 4 种常见集装箱损伤,结合基于深

度神经网络的目标检测技术、基于图像目标定位技术及

基于两阶段目标检测技术对损伤进行识别判断,虽在检

测精度上取得了一定成功,但针对各类损伤的算法不同,
检测模型复杂,实际港口应用中工程部署的难度大。 上

述研究虽在一定程度上改善了模型的检测能力,但在处

理复杂光照下的多种类别损伤集装箱图像时,仍然存在

图像数据损失、噪声抑制不足的问题,同时面临模型泛化

能力弱、结构复杂难以轻量化部署的困境,进一步制约了

模型检测能力的提升。
基于以上研究,本文采用改进的多尺度 Retinex 图像

增强算法,强化集装箱图像中的损伤特征表达,有利于目

标检 测 网 络 提 取; 使 用 引 入 卷 积 注 意 力 机 制 的

MobileNetv3 网络,对 YOLOv5l 目标检测网络进行轻量化

处理,然后对多种集装箱损伤类型进行训练,以提高复杂

港口环境下多种类集装箱损伤检测的精确度。

1　 基于改进 Retinex 的轻量化港口集装箱损
伤检测方法设计

　 　 本文提出的基于改进 Retinex 的轻量化港口集装箱

损伤检测方法主要由两部分组成:基于多尺度 Retinex 算

法的图像增强算法改进和轻量化改进的 YOLOv5 目标检

测网络。 图像增强算法旨在改善图像质量,为目标检测

网络提供高质量的图像数据,使目标检测网络能够更好

地提取损伤特征;轻量化改进的 YOLOv5 目标检测网络

则对增强后的图像进行损伤检测,实现最终的检测任务。
1. 1　 基于多尺度 Retinex 算法的图像增强算法改进

　 　 1)
 

多尺度 Retinex 算法

Retinex 算法的主要思想,是通过利用图像的原始像

素点,尽可能地去掉环境中的反射光,从而对图像的原始

照度进行估计。 多尺度 Retinex[10] 算法是在原 Retinex 算

法的基础上,把一张图像划分为低、中、高 3 个尺度,整合

各层级的优点,采用加权平均策略,结合 3 个尺度图像上

的信息内容,通过 MSR 算法获得的对数域图像公式表示

如下:

ri(x,y) = ∑ K

k = 1
Wk{logIi(x,y) - log[Ii(x,y) × Fk(x,y)]}

(1)
式中:Ii(x,

 

y)为采集到的集装箱彩色图像第 i 个颜色通

道的像素值,i= 1,2,3;Fk( x,
 

y)表示各尺度上的高斯函

数,k 为尺度函数的个数,若 k = 1,即为单尺度 Retinex 算

法,实验证明,当 k 取为 3 时,图像增强的效果最好;Wk

为不同尺度的加权系数,且各尺度的加权系数和为 1。
MSR 算法不仅平衡了低尺度图像上的动态范围压

缩和细节增强优势,同时最大限度的保留了高尺度图像

上的色彩优势,实现了图像色彩与视觉上的一致。
在使用 MSR 对集装箱图像进行色彩增强的过程中,

对于初始色调值较为均衡的图像,增强后的图像往往会

有局部色彩失真、偏色的现象产生,导致原集装箱颜色与

表面结构细节模糊与丧失、图像色彩暗淡,反而加重目标

检测网络对特征的遗失。
2)亮度通道引入

为更好地保留集装箱图像的色彩信息,通过引入亮

度通道分量来对 Retinex 算法的图像增强效果进行优化。
HSI( hue,

 

saturation,
 

intensity) 色彩空间[11] 是一种

模拟人类视觉感知方式构建的数字图像模型,不同于
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RGB(red,
 

green,
 

blue)图像通过红、绿、蓝 3 个分量来表

达颜色信息,HSI 空间采用色调、饱和度和亮度这 3 个维

度来描述图像中的色彩成分,更符合人眼识别和处理色

彩信息的方式。 因此,借鉴 HSI 思想,本文引入亮度通

道,辅助增强图像的色彩保护,算法流程如图 1 所示。

图 1　 引入亮度通道的改进 Retinex 算法流程

Fig. 1　 Flow
 

chart
 

of
 

improved
 

Retinex
 

algorithm
with

 

luminance
 

channel

首先,运用改进后的多尺度 Retinex 方法对图像的亮

度分量 Int
 

(x,
 

y)进行优化提升;其次,采用色彩平衡策

略进一步处理图像数据,以期保留和恢复色彩的真实性;
最后,通过在各个色彩通道间使用通过上述步骤计算得

到的色彩保护因子 A,确保最终得到的图像在改善光照

不均问题的同时恢复良好的自然色彩。
(1)在一副集装箱图像的 HSI 色彩空间中,设原始

图像中的 RGB 通道分别表示为 IR、IG、IB,那么亮度的计

算公式为:

Int(x,y) = 1
3

[ IR(x,y) + IG(x,y) + IB(x,y)] (2)

(2) 根据多尺度 Retinex 算法 MSR 的计算公式

(式(1)),对亮度分量做同样的处理:

IntMSR(x,y) = ∑ K

k = 1
Wk{logInt(x,y) - log[Int(x,y)·

Fk(x,y)]} (3)
(3)为呈现更多的图像细节,采用消除色彩梯度中

极端值的方式,再根据亮度分量的强度大小对通道内颜

色重新进行分配。 该颜色平衡策略的线性化计算公

式为:

Int1(x,y) = 255 ×
IntMSR(x,y) - Imin

Imax - Imin
(4)

式中:Imin 和 Imax 为 IntMSR
 (x,

 

y)的最小值和最大值,通过

计算扩展图像像素,扩充图像的动态范围,实现颜色的

保护。
(4)设各个通道图像像素点的最大值为 B,i 为原始

图像 RGB 通道 IR、IG、IB 中的像素索引,则有:

B = Max[ IR( i),IG( i),IB( i)] (5)
(5)此时,计算色彩保护因子 A,即各通道亮度强度

比值中的最小值:

A = Min[255
B

,
Int1(x,y)
Int(x,y)

] (6)

(6)将式(6)计算出的 A 与原始集装箱 RGB 图像的

中各个通道的像素点相乘,最后获得改进后带色彩保护

的 Retinex 算法图像 RA
 (x,

 

y):
RA(x,y) = A·IR,G,B(x,y) (7)
3)算法函数改进

高斯滤波函数[12] 在图像处理中的增强领域扮演着

重要角色。 然而,高斯滤波在增强图像时,仅侧重于考虑

像素之间的空间位置距离,并没有考虑到像素值本身的

相似度或变化率,这就意味着在去除噪声的同时,可能会

导致光晕现象的产生,使图像变模糊。
为解决该问题,本文提出在计算亮度分量的过程中,

采用双边滤波算法( bilateral
 

filtering,BF) [13] 来替代传统

的高斯滤波方法,以实现更优的图像增强效果。 双边滤

波器的独特之处在于其同时兼顾了空间域(像素间的相

对位置)和平滑域(像素值本身的变化程度),因此能够

在保持图像边缘细节清晰的同时有效去除噪声,从而获

得更加精确和自然的集装箱增强图像。
首先,设当前处理的像素坐标为(x,

 

y),图像中心点

坐标为(m,
 

n),双边滤波器的数学表达式如下:

B(x,y) =
∑ m,n

f(x,y)W(x,y,m,n)

∑ m,n
W(x,y,m,n)

(8)

W(x,y,m,n) = Ws(x,y) × Wr(m,n) (9)

Ws(x,y) = exp( - (x - m) 2 + (y - n) 2

2σ2
s

) (10)

Wr(x,y) = exp( - ‖f(x,y) - f(m,n)‖2

2σ2
r

) (11)

式中:f
 

(x,
 

y)、 f
 

(m,
 

n) 分别为两点的像素值;Ws
 ( x,

 

y)、Wr
 (x,

 

y)分别代表当前处理像素点的空间域、平滑域

高斯函数;σs 为对应于空间域的方差系数,σr 对应平滑

域,以兼顾双边滤波器中不同维度上的权重衰减特性;
W(x,

 

y,
 

m,
 

n) 是在像素点( x,
 

y) 领域内,中心像素

点(m,
 

n) 在空间域和平滑域上对输出的贡献比值;
B

 

(x,
 

y)为点( x,
 

y) 经双边滤波算法处理后得到的像

素值。
因此,在对亮度分量 Int

 

(x,
 

y)进行处理时,改进后

的计算公式如下:

BInt(x,y) =
∑ m,n

Int(x,y)W(x,y,m,n)

∑ m,n
W(x,y,m,n)

(12)

IntMSRB(x,y) = ∑ K

k = 1
Wk[logInt(x,y) - logBInt(x,y)]

(13)
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式中:BInt
 (x,

 

y)为本文引入的亮度分量经双边滤波算法

处理后得到的像素值;IntMSRB
 (x,

 

y)为引入双边滤波器后

得到的优化后的亮度分量。
此外,如式(13)对数值进行对数转换计算时需手动

修正负值的情况, 为解决这一问题, 本文选择使用

Sigmoid 函数[14] 进行值域转换。 Sigmoid 函数可以有效地

模拟 log 函数曲线的部分特性,并能够将输出值有效控制

在[0,
 

1]范围内,数学表达式如式(14)所示,函数图像

如图 2 所示。

Sigmoid(x) = 1
1 + e -x (14)

最终,经本文改进的强化后亮度分量 IntBS  ( x,
 

y)表

达式如下:

IntBS(x,y) = ∑ K

k = 1
Wk[Sigmoid Int(x,y)

BInt(x,y)
] (15)

Sigmoid 函数的引入有效避免了原对数域转换运算

　 　 　

图 2　 Sigmoid 函数图像

Fig. 2　 Sigmoid
 

function
 

image

可能导致的负值问题,无需额外对结果进行修正,从而能

够在不损失集装箱图像像素数据的前提下,实现更加稳

定且精确的数据转换和处理效果。
最后得到本文改进的多尺度 Retinex 图像增强算法

流程如图 3 所示。

图 3　 本文改进算法计算流程

Fig. 3　 Improved
 

algorithm
 

calculation
 

flow
 

chart
 

in
 

this
 

paper

1. 2　 轻量化改进的 YOLOv5 目标检测网络

　 　 YOLOv5 目标检测网络[15] 是一阶段的目标检测网

络,结合识别定位于一体,基础的网络模型有 3 个版本,
YOLOv5s、YOLOv5m 和 YOLOv5l,检测精度依次提升,同
时网络复杂度依次增加、检测速度降低。 为平衡集装箱

损伤检测模型的精度与速度,本文选择其中检测精度最

好的 YOLOv5l 网络,并对其进行轻量化处理,以维持集

装箱损伤检测准确率与检测速率之间的最佳平衡。
YOLOv5 目标检测网络主要由输入端( input)、主干

网络(buckbone)、颈部网络(neck)和输出端( output)4 部

分构 成, 本 文 选 择 在 主 干 网 络 部 分 引 入 改 进 的

MobileNetv3 轻量级网络[16] 。 MobileNetv3 由 Google 团队

提出,是一种轻量级的卷积神经网络( convolutional
 

neural
 

network,CNN) [17] ,其继承了前两个版本中的深度可分离

卷积和反转残差线性瓶颈块,在减少参数量的同时,尽量

避免特征信息的损失,并在该系列中首次使用神经网络

架构搜索( neural
 

architecture
 

search,NAS) [18] ,有效降低

了层计算量。 本文采用改进后的 MobileNetv3 _small 版

本。 首 先, 在 特 定 网 络 层 引 入 卷 积 注 意 力 模

块(convolutional
 

block
 

attention
 

module,CBAM) [19] ,如图

4 所示。

图 4　 卷积注意力模块结构

Fig. 4　 Convolutional
 

attention
 

module
 

structure
 

diagram

计算过程可以表示为:
F′ = Mc(F) 􀱋 F (16)
F″ = MS(F′) 􀱋 F′ (17)

式中: F 为输入特征,Mc 为通道注意力机制,二者卷积后

的结果为 F′ ;Ms 为空间注意力机制,最终输出为 F″ 。
CBAM 模块合并了通道与空间之间的对应过程,采

用混合型注意力机制,与原轻量级的 SE 通道注意力机

制[20] 相比,对集装箱损伤部位的感知能力更强,提取到
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的损伤信息更加丰富;此外,在其 block 深层网络部分,使
用 h-swish 激活函数代替原 swish 激活函数,其中,在量化

模式下,使用上限为 6 的 ReLU 函数[21] 以克服其数值精

度损失,能使模型效率提升约 15%,h-swish 的计算公式

如下:

f(x) = x·sigmoid(βx) (18)

h - swish(x) = x ReLU(x + 3)
6

(19)

ReLU = max(0,x) (20)
改进后网络的结构参数如表 1 所示。

表 1　 改进后网络结构参数

Table
 

1　 Improved
 

network
 

structure
 

parameters
Input Operator exp

 

size out SE CBAM NL stride
224×244×3 Conv2d,3×3 — 16 — — HS 2

112×112×16 bneck,3×3 16 16 √ — RE 2
56×56×16 bneck,3×3 72 24 — — RE 2
28×28×24 bneck,3×3 88 24 — — RE 1
28×28×24 bneck,5×5 96 40 — √ HS 2
14×14×40 bneck,5×5 240 40 — √ HS 1
14×14×40 bneck,5×5 240 40 — √ HS 1
14×14×40 bneck,5×5 120 48 — √ HS 1
14×14×40 bneck,5×5 144 48 — √ HS 1
14×14×40 bneck,5×5 288 96 — √ HS 2
7×7×96 bneck,5×5 576 96 — √ HS 1
7×7×96 bneck,5×5 576 96 — √ HS 1
7×7×96 Conv2d,1×1 — 576 — √ HS 1

7×7×576 pool,7×7 — — — — — 1
1×1×576 Conv2d,1×1,NBN — 1

 

024 — — HS 1
1×1×1

 

024 Conv2d,1×1,NBN — 1
 

000 — — — 1

　 　 引入本文改进后 MobileNetv3 网络的 YOLOv5 网络 结构如图 5 所示。

图 5　 本文改进的 YOLOv5 网络结构

Fig. 5　 The
 

improved
 

YOLOv5
 

network
 

structure
 

diagram
 

in
 

this
 

paper

2　 实验结果与分析

2. 1　 数据集获取与预处理

　 　 1)图像获取

实验采用的集装箱损伤图像数据通过网络爬取、现

场拍摄和监控截取的方式获取。 其中,对 Kaggle 平台公

开的集装箱数据集进行筛选和整理,现场和监控图像来

源于山东某港口,图像像素规格不等,均为 JPG 格式。
2)数据预处理

由于集装箱损伤种类繁多且部分损伤类型总体占比

较少,本文通过旋转、平移等方法对收集到的集装箱图像
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进行扩充,保持各类集装箱损伤图像数据间的数量平衡,
最终得到 4

 

892 张集装箱损伤图像,并按 7 ∶ 2 ∶ 1 的比例

划分训练集、测试集和验证集。 为更好训练集装箱损伤

特征,实验对训练集中部分大尺寸图像进行裁剪,突出保

留不同的集装箱损伤细节;所训练的集装箱损伤检测网

络模型输入端图像尺寸大小统一为 640×640。 图像预处

理后的 7 种集装箱损伤类型如图 6 所示。

图 6　 7 种集装箱损伤类型图像

Fig. 6　 Seven
 

types
 

of
 

container
 

damage
 

images

2. 2　 图像增强实验结果

　 　 为证明本文改进具有色彩保护作用的多尺度

Retinex 图像增强算法的有效性,从主观视觉感受和客观

数据分析两个方面展开,对 Retinex 系列图像增强算法进

行对比实验验证。
实验 的 硬 件 环 境 如 下: CPU 为 Inter

 

Core
 

i5-
13700KF,32

 

G 内存;GPU 为 NVIDIA
 

GeForce
 

RTX
 

4070,
12

 

G 显存;操作系统为 Window11,Python 版本为 3. 8. 5,
代码运行的学习框架为 PyTorch

 

1. 8. 0。
关于实验过程中涉及到原多尺度 Retinex 算法时的

参数设置, 选用色彩恢复因子 C 大小为 0. 33、 0. 34、
0. 33,高斯尺度常量为 15,80,200。 在部分受光照、角度

影响,数据信息表达较差的集装箱图像上进行实验,可视

化结果对比如图 7 所示,其中,每一列即未使用图像增强

与使用不同算法增强后的可视化结果。
由图 7(a)可以看到,在真实集装箱作业现场摄像头

捕捉的图像中,受环境因素影响,图像是很容易产生过曝

及暗淡现象的。 由图 7( b) ~ ( d)可以看到,SSR 算法和

MSR 算法对集装箱图像的增强效果是比较相似的,在整

体视觉上呈现出泛白感,尤其对于过曝区域,集装箱表面

钢结构的边缘模糊发散,相比之下,经 MSRCR 算法处理

　 　 　 　

图 7　 不同算法图像增强效果对比

Fig. 7　 Comparison
 

of
 

image
 

enhancement
 

effect
 

of
 

different
 

algorithms
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后的集装箱图像具有更多的细节表达;然而对于整体色

彩偏暗淡的图像,在经过以上 3 种算法增强后,会失去原

物体的色彩特质,并且损伤与集装箱箱体间的对比度较

差,使得损伤目标特征信息严重丢失。 由图 7( e)可以看

到,经过本文改进算法处理后的集装箱增强图像,能够较

好的减少过曝图像的色彩差异,达到增强后整体亮度和

谐的效果,呈现出更丰富、准确的损伤细节信息,同时可

以很好的恢复出低照度条件下集装箱本身的箱体颜色,
暴露真实的受损情况。 从视觉效果上看,本文提出的改

进算法增强效果最佳。
为进一步验证本文提出算法的有效性,从客观角度

进行分析,首先选取 3 种常用的图像评估指标。
1)信息熵(information

 

entropy,IE),与图像质量高低

呈正相关,用于衡量一副图像蕴含信息量的多少。
2)标准差( standard

 

deviation,SD),与图像质量高低

呈正相关,用于衡量图像像素值与其均值偏差程度的

大小。
3)平均梯度(average

 

gradient,AG),与图像质量高低

呈正相关,用于衡量一幅图像的实际清晰程度的高低,即
图像清晰度。

分别选两组集装箱图像做参考,一组为过度曝光的

集装箱图像及其增强图像,另一组为色彩暗淡的集装箱

图像及其增强图像。 对比以上 3 种指标,实验结果如表

2、3 所示。

表 2　 不同算法下过曝集装箱图像的质量数据对比

Table
 

2　 Comparison
 

of
 

quality
 

data
 

of
 

overexposed
container

 

images
 

under
 

different
 

algorithms
增强算法 信息熵 标准差 平均梯度

原过曝集装箱图像 7. 58 61. 76 148. 46
SSR 6. 39 30. 24 65. 52
MSR 6. 76 37. 31 69. 76

MSRCR 6. 81 32. 26 140. 25
本文改进算法 7. 60 65. 01 488. 52

表 3　 不同算法下暗淡集装箱图像的质量数据对比

Table
 

3　 Comparison
 

of
 

quality
 

data
 

of
 

dim
container

 

images
 

under
 

different
 

algorithms
增强算法 信息熵 标准差 平均梯度

原暗淡集装箱图像 5. 73 28. 95 56. 21
SSR 5. 36 12. 31 16. 46
MSR 5. 85 18. 34 18. 39

MSRCR 5. 34 11. 04 41. 90
本文改进算法 7. 06 36. 80 462. 27

　 　 使用 MSR 和 MSRCR 算法处理的集装箱图像,都是

针对 RGB 色彩空间,并且采取高斯函数作为环绕函数,
不仅可能会损害各通道之间的比例关系,还可能导致集

装箱图像中的损伤细节被高斯滤波过滤,进而使图像出

现颜色失真、集装箱钢结构边缘模糊,从而丧失损伤特征

信息的情况,最终影响后续集装箱损伤检测工作的进行。
由表 2、3 可以看到,无论是出现过曝现象还是色彩暗淡

的集装箱图像,在信息熵、标准差以及平均梯度的指标数

据对比中,本文提出的图像增强方法都能取得最高的信

息质量,印证了本文改进算法的有效性。
2. 3　 目标检测实验结果

　 　 为证明本文改进的轻量化港口集装箱损伤检测网络

的优越性,将经过本文图像增强算法处理后的图像用作

实验训练集数据,输入到不同改进的 YOLOv5 网络进行

消融实验对比。 本文引入精确率 ( precious, P )、 召回

率(recall,R)、 平均精度均值 ( mean
 

average
 

precision,
mAP)、权重文件参数量 Ws 以及帧率作为评价模型性能

的关键指标。 实验结果如表 4 所示。

表 4　 消融实验结果对比

Table
 

4　 Comparison
 

of
 

ablation
 

results
实验序号 MobileNetV3 CBAM mAP / % Ws / MB 帧率 / fps

1 95. 8 46. 5 59. 7
2 √ 92. 6 18. 3 74. 9
3 √ √ 95. 1 20. 5 72. 4

　 　 注:√表示使用该方法

　 　 由表 4 可以看到,经过 MobileNetv3 轻量化网络处理

后的集装箱损伤检测模型参数量明显减少,实时检测速

度得到显著提升;在引入 CBAM 卷积注意力机制后,增强

了网络的特征提取能力,对不同类型集装箱损伤的检测

更加准确,在一定程度上恢复了检测精度,同时保证了较

高的检测速度,达到港口集装箱实时检测的需求。 以上

不同改进方式的可视化检测效果如图 8 所示,其中,每一

列即为原图以及使用不同方法得到的检测结果。

表 5　 检测算法性能比较

Table
 

5　 Detection
 

algorithm
 

performance
 

comparison
网络模型 mAP / % 帧率 / fps Ws / MB

Fsater
 

R-CNN 82. 3 17. 6 136. 6
YOLOv5 95. 8 59. 7 46. 5
YOLOv7 97. 1 94. 3 73. 1

本文改进的 YOLOv5 95. 1 72. 4 20. 5

　 　 与当前主流的目标检测算法进行对比,实验结果如

表 5 所示。 在检测速度和精度上,远超于一阶段目标检

测算法 Fsater
 

R-CNN[22] ;与原 YOLOv5 相比,本文提出的

改进轻量化集装箱损伤检测模型在仅损失了 0. 7%检测

精度的情况下,检测速度提升为先前的 1. 2 倍,模型大小

缩小了 55. 9%,与 YOLOv7 相比,本文改进的网络模型同

样较好的实现了模型体积与性能之间的动态平衡。
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图 8　 不同改进方式实验可视化检测结果

Fig. 8　 Visual
 

detection
 

results
 

of
 

different
 

improved
 

methods
 

experiments

2. 4　 增强算法在目标检测领域有效性验证

　 　 为验证本文改进带色彩保护的 Retinex 图像增强算

法在目标检测领域的性能,在改进后的 YOLOv5 模型

上,分别使用原集装箱图像数据集和经本文改进算法

增强后的集装箱图像数据集进行测试,实验结果如表 6
所示。

表 6　 不同图像增强算法检测结果对比

Table
 

6　 Comparison
 

of
 

detection
 

results
 

of
different

 

image
 

enhancement
 

algorithms (%)
增强算法 P R mAP

未使用图像增强 93. 3 90. 8 93. 7
本文改进的多尺度 Retinex 算法 94. 2 91. 4 95. 1

　 　 通过对比可以看出,经过本文改进 Retinex 算法增强

后的算法,有效避免了因光线、角度等问题引起的集装箱

损伤特征漏检情况,且改进后的目标检测网络,对图像数

据中的细节部分关注度更强,从而使之更加准确的检测

出复杂港口环境中的多种集装箱损伤类型。
为更清晰的展示本文增强算法对图像样本的提升作

用,引入在同一检测算法下的不同图像样本所输出的热

力图,此时可以认为,如果红色部分颜色越深,代表算法

对该部分的关注度更高,即该图像样本的损伤特征表达

效果更好。 检测可视化结果如图 9 所示,其中,每一列即

为原图以及使用不同图像增强算法得到的热力图检测

结果。
可以看到,改进的 Retinex 图像增强算法处理后的集

装箱图像数据集,为网络提供了更多细节,使网络更多关

注集装箱图像的有效信息部分,对于无效信息部分的关

注有较为明显的削弱;训练后的模型检测精确率提升了

1. 4%,在一定程度上缓解了因光线、角度等问题引起的
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图 9　 不同图像增强算法检测效果可视化结果对比图

Fig. 9　 Comparison
 

of
 

visual
 

results
 

of
 

detection
 

effects
 

of
 

different
 

image
 

enhancement
 

algorithms

集装箱损伤特征检测精度低、漏错检等问题,有利于更加

准确的检测出复杂港口环境中的多种集装箱损伤类型,
证明了本文所使用的改进 Retinex 算法在目标检测领域

的有效性。

3　 结　 论

　 　 针对港口集装箱损伤检测中,部分集装箱图像数据

受光照角度影响,质量低下,导致的集装箱损伤检测准确

率较低问题,本文提出一种基于改进多尺度 Retinex 图像

增强算法与加入注意力机制的轻量化港口集装箱损伤检

测方法。 其核心思路主要包括两方面:1)改进的多尺度

Retinex 港口集装箱图像增强算法,通过引入亮度分量来

调节图像各通道内色彩信息的分配,并优化算法计算过

程中使用的滤波函数及值域转换函数,在保持整体视觉

效果的同时,增强了局部细节并减少了色彩失真;2)轻量

化目标检测网络,将原 YOLOv5l 的主干网络部分替换为

轻量化网络 MoblieNetv3,其中,对 MoblieNetv3 中引入

CBAM 注意力机制,在保证集装箱损伤检测速度的条件

下,使网络更多的关注到指定的集装箱损伤特征种类中。
实验结果表明,本文建立的港口集装箱损伤检测模型,能
够较好的实现复杂环境下不同质量集装箱图像的实时损

伤检测, 其检测准确率达到了 95. 1%, 帧率达到了

72. 4
 

fps,模型体积仅为 20. 5
 

MB,与其它主流算法相比

优势显著。 未来工作将进一步优化网络特征融合机制,
提升对微小损伤的识别能力,同时丰富损伤类型数据集,
增强模型对罕见损伤的泛化性,以适应更复杂的港口

天气。
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